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Die arithmetischen Theorien der Irrationalzahlen.
Vortrag, gehalten in der Vereinigung von Mathematiklehrern an schweiz.
Mittelschulen, am 6. Dezember 1902.

Von Dr. C. Brandenberger.

1. Die irrationalen Zahlen haben in der zweiten Hilfte des vorigen
Jahrhunderts von drei Mathematikern, von Dedekind, W eierstrass
und G. Cantor, eine rein arithmetische Behandlung erfahren.

Die Dedekindschen Betrachtungen stammen aus dem Jahre 1858,
also aus der Zeit, wo Dedekind Professor der Mathematik am eidg. Poly-
technikum in Zurich war. Er hatte damals Vorlesungen zu halten uber
die Elemente der Differential- und Integralrechnung und fihlte bei dieser
Gelegenheit wie nie zuvor den Mangel einer streng begriindeten Arith-
metik. Er fasste den Entschluss, so lange nachzudenken, bis er ,eine
rein arithmetische und vollig strenge Begrindung der Prinzipien der
Infinitesimalrechnung gefunden haben wiirde“. Dies gelang ihm im No-
vember 1858, aber erst im Jahre 1872 veroffentlichte er seine Unter-
suchungen in einer kleinen Schrift ,Stetigkeit und irrationale Zahlen®,
die 20 Jahre spiter eine zweite Auflage erlebte (Braunschweig, Vieweg &
Sohn, 1 M.). J

Weierstrass behandelte die Irrationalzahlen in der Einleitung zu
seinen Vorlesungen iiber die Theorie der analytischen Funktionen. Ver-
offentlicht wurde seine Darstellung durch seine Schiiler: Durch den Gym-
nasiallehrer Kossak in der Programm-Abhandlung des Werderschen
Gymnasiums, Berlin 1872; durch Pincherle in einer italienischen mathe-
matischen Zeitschrift (Giorn. di mat. 18); durch Biermann in seinem

Buche ,Theorie der analytischen Funktionen“, Leipzig 1887. Georg
- Cantor publizirte seine Theorie in der Abhandlung ,Uber die Aus-
dehnung eines Satzes aus der Theorie der trigonometrischen Reihen® im
5. Bande der math. Annalen, ebenfalls im Jahre 1872. Heine schliesst
sich in seinen ,Elementen der Funktionenlehre* (J. fur Math. 74) an
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Cantor an. Die neuern Lehrbucher der Arithmetik, Algebra und
algebraischen Analysis gehen entweder von der Cantorschen oder der
Dedekindschen Definition der Irrationalzahl aus. Stolz und Gmeiner z. B.
stellen in ihrer ,Theoretischen Arithmetik“ die Cantorsche Definition an
die Spitze und behandeln die Irrationalzahlen im Anschluss an die Lehre
von den systematischen Brichen. Von der Dedekindschen Definition gehen
aus: Weber in seiner ,Algebra“; ferner Hr. Prof. Burkhardt in Zurich
in seinem neuesten Buche ,Algebraische Analysis®, das in Bilde er-
scheinen wird.

2. Bevor ich dazu ubergehe, in den Hauptziigen wenigstens, die drei
Theorien der Irrationalzahlen darzustellen, will ich (in einer Art Vor-
bereitung)- von drei Punkten reden. Erstens von der Erweiterung des
Zahlbegriffs im allgemeinen. Ich werde bei dieser Gelegenheit die Fragen
nennen, die wir bei jeder Erweiterung des Zahlbegriffes, also auch bei der
Einfuhrung der irrationalen Zahlen zu beantworten haben. Zweitens
werde ich an einem Beispiele zeigen, dass wir mit den rationalen Zahlen
nicht auskommen, dass wir eine unabsehbare Menge von Aufcaben stellen
konnen, die man im Reiche der rationalen Zahlen nicht zu lésen im stande
ist. Drittens will ich an einen fiir die Einfiihrung der irrationalen Zahlen
fundamentalen Satz tber rationale Zahlen erinnern.

3. Den Ausgangspunkt der Arithmetik bilden die naturlichen Zahlen
1239345 Sie werden zum Gegenstand mathematischer Unter-
suchung, wenn man mit ihnen gewisse Verkniipfungen vornimmt, wenn
man mit ihnen gewisse Operationen austihrt, wenn man mit ihnen ,rechnet®.
Die Arithmetik leitet Gesetze ab, die angeben, wie gerechnet wird. Jedes
Gesetz sagt aus, dass eine Reihe von Operationen ersetzt werden kann
durch eine Reihe anderer Operationen, ohne dass sich das Schlussergebnis
dndert, z. B.c (a4} b) = ac4bc oder (¢40).(a —b) = a2 —102. Wir
unterscheiden Fundamentalgesetze und abgeleitete Gesetze. Der Einteilungs-
grund liegt in der Art der Beweisfuhrung. Das erste der beiden ge-
nannten Gesetze ist ein Fundamentalgesetz, das zweite ein abgeleitetes
Gesetz. Das erste wird in folgender Weise bewiesen: ¢ (a - 5) heisst, man
soll (¢4b) emal als Summand setzen. Wir gehen also zuriick auf den
Begriff der Multiplikation und die Bedeutung der Zahl ¢. Ein Gesetz,
bei dessen Herleitung auf die reale Bedeutung der Operationen und der
Objekte zuruckgegangen wird, heisst ein Fundamentalgesetz. Soll dagegen
die Richtigkeit der Formel (a 4 8) (@ — ) — a% — 42 nachgewiesen werden,
so wird einfach multiplizirt nach bereits abgeleiteten Gesetzen; wir rechnen
mit den Zeichen der Operationen und der Objekte. Solche Gesetze heissen
abgeleitete Gesetze. Bei der Erweiterung des Zahlengebietes ist diese
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Einteilung der arithmetischen Gesetze, wie wir bald sehen werden,
wichtig. :

Wiihrend die direkten Operationen im Reiche der naturlichen Zahlen
unter allen Umstinden ausfithrbare Operationen sind, erfordern die in-
direkten Operationen viermal eine Erweiterung des Zahlbegriffs, d. h. man
macht neben den natiirlichen Zahlen noch andere Gedankendinge, die
man auch mit dem Wort ,Zahl“ bezeichnet, zum Gegenstand der Unter-
suchung. Wir fithren ein bei der Subtraktion die negativen, bei der
Division die gebrochenen, bei der Wurzelausziehung die irrationalen und
die komplexen Zahlen. Die neuen Zahlen miissen definirt werden. Wir
verwenden dazu die bereits vorhandenen Zahlen. Die gebrochene Zahl
z. B. kann durch ein ,Paar ganzer Zahlen“ eingefilhrt werden; zur De-
finition der Irrationalzahl ist nach jeder der drei Definitionen eine un-
endliche Menge rationaler Zahlen ndétig. Darin besteht das Gemeinsame
der drei Definitionsformen; der Unterschied liegt in den Bedingungen,
die die unendliche Menge rationaler Zahlen zu erfullen hat, damit sie als
Grundlage der Definition einer irrationalen Zahl dienen kann und. wie
Cantor sagt, ,in dem Erzeugungsmoment, durch welches die Menge mit
der durch sie definirten Zahl verkniipft ist“. Sind die neuen Objekte
definirt, so muss gezeigt werden, wie man sie unter sich und mit den
bereits vorhandenen Zahlen vergleicht und wie man mit ihnen rechnet.
Man versucht, die Begriffe des Gleich-, Grosser- und Kleinerseins und die
Grundoperationen so zu definiren, dass die Gesetze, die fur das Rechnen
mit naturlichen Zahlen gelten, auch fir die neuen Zahlen aufrecht er-
halten bleiben.

Ich fasse zusammen: Fithren wir neue Zahlen ein, so miissen sie genau
definirt werden; es muss untersucht werden, ob und wie sich die
Grundoperationen und die Begriffe des Gleich-, Grosser-
und Kleinerseins definiren lassen, dass die Gesetze, nach welchen
mit natirlichen Zahlen gerechnet wird, auch im erweiterten Zahlenreiche
gelten. Dabei gentuigt der Beweis fir die Permanenz der Fun-
damentalgesetze; gelten diese, so gelten auch die abgeleiteten
Gesetze.

4. Um zu zeigen, dass wir mit denrationalen Zahlen nicht
auskommen, betrachten wir die rein quadratische Gleichung

R=gq
wo a eine positive ganze Zahl ist. Wir fragen nach den Bedingungen,
unter denen die Gleichung eine rationale Wurzel hat. Ist die Wurzel

rational, so ist sie entweder eine ganze Zahl n, oder ein Bruch ﬁ,
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wo p und ¢ ganz und als relativ prim vorausgesetzt werden. Wenn die
ganze Zahl » die Wurzel der Gleichung ist, so ist @ =n2, d. h. @ ist das
Quadrat einer ganzen Zahl. Ist dagegen

g="1
q
die Wurzel, so ist
%
=B =a,
woraus folgt
p2=—uaq

a, p und ¢ sind ganze Zahlen. Die linke und die rechte Seite dieser
Gleichung sind ganze Zahlen. Ein Faktor der rechten Seite muss auch
- Faktor der linken Seite sein, ¢2 muss in p2, ¢ in p enthalten sein, was gegen
die Voraussetzung ist. Ein Bruch kann somit die Gleichung nicht befriedigen.
Wir finden den Satz: Ist ¢ keine Quadratzahl, so gibt es keine rationale
Zahl, welche die Gleichung 22 — a befriedigt. Der ausgesprochene Satz
ist der einfachste Spezialfall eines allgemeinen Satzes uber algebraische
Gleichungen.

Nun stehen zwei Wege offen: Wir konnen erkliren, dass solche
Gleichungen keine Liésung zulassen, oder versuchen, durch Einfihrung
neuer Zahlen ihre Losung zu ermoglichen. Da geometrische Probleme oft
solche Gleichungen liefern, werden wir den zweiten Weg einschlagen und
neue Zahlen, die sogenannten Irrationalzahlen, schaffen. KEine Irrational-
zahl, die, wie hier, Wurzel einer algebraischen Gleichung sein kann, heisst
eine algebraische irrationale Zahl. Jede nicht-algebraische Irratio-
nalzahl heisst transzendent. Zwei transzendente Irrational-
zahlen spielen eine grosse Rolle: n, das Verhiltnis des Umfangs zum
Durchmesser eines Kreises, und e, die Basis des naturlichen Logarithmen-
systems. Es gibt sehr viel mehr transzendente als algebraische Irrational-
zahlen. Ich verweise Sie in dieser Beziehung auf die Schrift von Klein
& Tégert: ,Vortrige uber ausgewihlte Fragen der Elementarmathematik®
(Leipzig, 1895). Klein beweist dort, dass es sehr viel mehr transzendente
als algebraische Irrationalzahlen gibt; er zeigt, dass in jedem noch so
kleinen Bereiche sozusagen oo® transzendente Zahlen liegen.

Ich habe diese Bemerkungen hier gerne eingeschoben, um Sie die
‘Wichtigkeit einer strengen Theorie der Irrationalzahlen erkennen zu
lassen. Sie sehen, dass es sich nicht nur um Quadrat- und Kubikwurzeln
handelt; die Natur der Zahlen z und e kann erst auf Grund einer voll-
kommenen Theorie der irrationalen Zahlen tuberhaupt erkannt werden.
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5. Zum Schlusse dieser Vorbereitung will ich an einen Satz uber
rationale Zahlen erinnern, den wir oft brauchen werden: .Die ratio-
nalen Zahlen bilden eine geordnete, iiberall dichte, aber
keine stetige Menge.“* Ich will versuchen, Ihnen den Inhalt dieses
Satzes und die Bezeichnungen .Merge®, ,geordnet”, ,dicht® und ,stetig“
zu erkléren.

Unter einer Men ge verstehen wir die begriffliche Zusammentassung
von Objekten unserer Anschauung oder unseres Denkens. Wir, geehrte
Kollegen, bilden eine Menge; die naturlichen Zahlen bilden eine Menge;
die rationalen Zahlen bilden eine Menge.

Eine Menge heisst ge ordnet, wenn angegeben werden kann, welches
von zwei beliebigen Elementen der Menge das grissere ist. Die rationalen
Zahlen bilden eine geordnete Menge. Denn wihlen wir zwei beliebige

5 :
rationale Zahlen, z. B. s und - 50 kann man sofort entscheiden, welches

Element das grossere ist.

Eine Menge heisst dicht, wenn zwischen zwei Elementen immer
noch andere Elemente der Menge gefunden werden. Bilden die natiirlichen
Zahlen eine dichte Menge ? Nein ; denn zwischen zwei aufeinanderfolgenden
positiven ganzen Zahlen liegt kein Element der Menge. Die rationalen
Zahlen hingegen bilden eine tberall dichte Menge. Geben Sie mir zwei
beliebige rationale Zahlen, sie mégen noch so nahe beieinander liegen, so
kann ich immer eine und damit unendlich viele andere rationale Zahlen
nennen, die zwischen den gegebenen Zahlen liegen. Zwischen den ratio-

1
nalen Zahlen ¢ und b liegt z. B. ihr arithmetisches Mittel 5 (a—b).

Wann heisst eine Menge stetig? Dedekind findet das Wesen der
Stetigkeit in dem folgenden geometrischen Axiome: ,Zerfallen alle
Punkte der Geraden in zwei Klassen von der Art, dass jeder Punkt der
ersten Klasse links von jedem Punkt der zweiten Klasse liegt, so existirt
ein und nur ein Punkt, welcher diese Einteilung aller Punkte in zwei
Klassen, diese Zerschneidung der Geraden in zwei Stiicke hervorbringt.“1)
Demnach wird eine Menge stetig genannt werden, wenn eine Scheidung
aller ihrer Elemente in zwei Klassen von der Art, dass jedes Element
der einen Klasse grosser ist als jedes Element der andern Klasse, durch
ein bestimmtes Element der Menge und nur durch ein solches moglich
ist. Man bezeichnet die erste Klasse auch als das Obergebiet, die
zweite als das Untergebiet. Nennen wir eine Einteilung der Elemente

1) _Stetigkeit und irrationale Zahlen®, p. 11.
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einer Menge in zwei Klassen von der Art, dass jedes Element einer Klasse
angehort und dass jedes Element der einen Klasse kleiner ist als jedes
Element der andern Klasse, einen ,Schnitt in die Menge“, so kinnen
wir die Definition der Stetigkeit so fassen:

Eine Menge heisst stetig, wenn jeder Schnitt in die
Menge durch ein bestimmtes Element der Menge erzeugt
wird. '

Wir behaupten, dass die rationalen Zahlen keine stetige Menge bilden.
In der Tat werden wir bei der Dedekindschen Theorie zeigen, dass wir
in die Menge der rationalen Zahlen Schnitte ausfithren kénnen, nicht nur
durch rationale Zahlen, also nicht nur durch Elemente der Menge, son-
dern auch auf andere Art. _Dichte Menge“ und ,stetice Menge* sind
wohl auseinander zu halten.

Ich will versuchen, IThnen diese Begriffe durch ein Beispiel zu
veranschaulichen. Sie, verehrte Anwesende, bilden eine Menge. Sie wird
zu einer geordneten, wenn ich Sie in gerader Linie aufstelle und festsetze,
dass von zwei Elementen dasjenige das hohere sein soll, das rechts vom
andern steht. Nehme ich [die 12. Person aus der Reihe heraus, rechne
die 11 ersten zur ersten, die andern zur zweiten Klasse, so habe ich einen
Schnitt in die Menge ausgefiihrt, und zwar wurde dieser Schnitt erzeugt
durch ein Element der Menge. Sollen dagegen die 15 ersten Personen
der 1., alle andern der 2. Klasse angehoren, so wird dieser Schnitt nicht
durch ein Element der Menge ausgefithrt. Wir werden zeigen, dass wir
in die Menge der rationalen Zahlen sowohl Schnitte der ersten wie der
zweiten Art ausfihren konnen. Wire sie eine stetige Menge, so liessen
sich keine Schnitte der zweiten Art konstruiren. ‘

6. Wir wenden uns zur Dedekindschen Theorie der Irrationalzahlen.

Wir fassen die unendliche Menge rationaler Zahlen ins Auge und
fithren, nach irgend einem bekannten Gesetze, einen Schnitt in die Menge.
Das Untergebiet sei 4, das Obergebiet 4. Jede rationale Zahl kommt
in A4 oder 4’ vor. Jedes A ist kleiner als jedes 4’. Der Schnitt wird
passend durch 4/A4’ bezeichnet. Ein Beispiel : Ich rechne zum Unter-
gebiet alle Zahlen, die kleiner sind als 1000, also alle negativen Zahlen
und die positiven Zahlen bis 1000 ; dem Obergebiet gehéren alle Zahlen
an, die grosser sind als 1000. 1000 selbst rechne [ich z. B. zum Unter-
gebiet. 'Wir konnen von jeder Zahl sagen, zu welchem Gebiet sie gehort:
—3 zum Untergebiet; 1001 zum Obergebiet.

Vergleichen wir alle denkbaren Schnitte, die in die Menge der ratio-
nalen Zahlen ausgefithrt werden konnen, so werden wir drei Fille
unterscheiden :

Schweiz. Piidagog. Zeitschrift. 1903, 13
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I. Das Untergebiet enthiilt eine grosste Zahl, d. h. eine Zahl,
die grosser ist als alle andern Zahlen des Untergebietes und das Ober-
gebiet eine kleinste Zahl, d. h. eine Zahl, die kleiner ist als alle
andern Zahlen des Obergebietes.

II. Das Untergebiet besitzt eine grosste, aber das Ober-
gebiet keine kleinste Zahl oder das Obergebiet besitzt eine
kleinste, aber das Untergebiet keine grosste Zahl

IOI. Es gehort weder dem Untergebiet eine grosste- noch
dem Obergebiet eine kleinste Zahl an.

Wir werden zeigen: Der Schnitt I ist undenkbar; durch den
Schnitt IT wird dierationale, durch den Schnitt III dieirratio-
nale Zahl definirt.

Dass der erste Fall nicht statthaben kann, sieht man indirekt ein.
Es sei g die griosste Zahl des Untergebietes, & die kleinste Zahl des Ober-
gebietes. Somit ist ¢ <k. Die Menge der rationalen Zahlen ist eine
itberall dichte Menge, d. h. es liegen zwischen zwei beliebigen Elementen

1
noch andere Elemente. Zwischen ¢ und % z. B. liegt m=-g (9+k). Zu

welchem Gebiete gehort m? m ist grosser als g, grosser als die grosste
~ Zahl des Untergebietes; m gehért nicht zum Untergebiet. m ist kleiner
als %, kleiner als die kleinste Zahl des Obergebietes; m gehort nicht zum
Obergebiet. m gehort also weder zum Unter- noch zum Obergebiet, was
aber gegen die Definition des Schnittes ist. Dieser Widerspruch wird nur
dadurch gehoben, dass wir zugeben, dass ein Schnitt I. also ein Schnitt,
bei dem das Untergebiet eine grosste und gleichzeitig das Obergebiet eine
kleinste Zahl besitzen, unmoglich ist.

Kehren wir zu dem Beispiel zurick, wo der Schnitt durch die Zahl
1000 erzeugt wird. 1000 gehort zum Untergebiet; dieses besitzt also
eine grosste Zahl, nimlich 1000. Das Obergebiet besitzt aber keine kleinste
Zahl. Denn bezeichnet man irgend eine Zahl des Obergebietes als die
kleinste, so kann man immer noch andere Zahlen nennen, die zwischen
ihr und 1000 liegen. 1000,000001, welche Zahl doch 1000 sehr nahe
kommt, ist nicht die kleinste; denn es ist z. B. 1000,00000001 noch kleiner
und gehort auch noch dem Obergebiet an. — Rechnen wir 1000 zum
Obergebiet, so besitzt das Obergebiet eine kleinste, aber das Untergebiet
keine grisste Zahl. Die grosste Zahl des Untergebietes, bez. kleinste Zahl
des Obergebietes ist gerade die Zahl, welche den Schnitt hervorbringt
Umgekehrt kénnen wir jede rationale Zahl durch einen solchen Schnitt
definiren.
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Ein Schnitt in die Menge der rationalen Zahlen, so
beschaffen, dass entweder das Untergebiet eine grisste
oder das Obergebiet eine kleinste Zahl besitzt, definirt

eine rationale Zahl

Wir kommen zur Frage nach der Moglichkeit des Schnittes III.
Koénnen wir in die Menge der rationalen Zahlen Schnitte ausfithren von
der Art, dass weder das Untergebiet eine grosste, noch das Obergebiet
eine kleinste Zahl besitzt? Wir beweisen, dass dies in der Tat mioglich
ist. Zu diesem Zwecke konstruiren wir in die Menge der rationalen

Zahlen einen Schnitt nach [folgender Festsetzung: —:’{ sei eine positive

9
Zahl, aber kein Quadrat, z. B. nicht 16" Zum Untergebiet rechnen wir

alle positiven Zahlen, deren Quadrat < ist als %, zum Obergebiet alle

Zahlen, deren Quadrat > ist als 1::4 Dadurch ist der Schnitt definirt.
Wir konnen von jeder beliebig vorgelegten Zahl entscheiden, zu welcher
Klasse sie gehort. Wir quadriren sie, vergleichen das Quadrat mit ’Lf
und werfen sie ins Unter- oder Obsrgebiet, je nachdem das .Quadrat kleiner
oder grosser ist als % Nun behaupten wir: Bei diesem Schnitt gehort
dem Untergebiet weder eine grisste, noch dem Obergebiet eine kleinste
Zahl an. Wir bsgniugen uns, den ersten Teil der Behauptung nachzu-
weisen. a sei eine Zahl des Untergebietes, also a2 < —7;1 Die Menge der
rationalen Zahlen ist dicht. Somit lasst sich eine Zahl o' finden, so
beschaffen, dass a2 zwischen a2 und % liegt, mit a. W. ist
"

aus welcher Ungleichung leicht ¢’ > @ gefunden wird. Es kann somit zu
jeder Zahl a des Untergebietes immer eine grossere Zahl a' des Unter-
gebietes gafunden werden, d. h. das Untergebiet besitzt keine grisste
Zahl. Ebenso baweist man, dass dem Obergebiet keine kleinste Zahl an-
gehdrt. Der so konstruirte Schnitt wird also nicht durch eine rationale
Zahl hervorgebracht. Vergleichen wir diese Tatsache mit der oben ge-
gebhenen Definition der Stetigkeit, so konnen wir schliessen: Die ratio-
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nalen Zahlen bilden keine stetige, sondern eine unstetige
Menge. Um die unstetige Menge der rationalen Zahlen zu der stetigen
Menge der allgemeinen (reellen) Zahlen zu erginzen, ordnen wir jeder
Liicke eine neue, eine irrationale Zahl zu. Die Dedekindsche Definition
der Irrationalzahl kann also so formulirt werden:

Ein Schnitt in die Menge der rationalen Zahlen, so be-
schaffen, dass weder das Untergebiet eine grosste, noch
das Obergebiet eine kleinste Zahl besitzt, definirt eine
irrationale Zahl.

Die rationalen und irrationalen Zahlen bilden die reellen oder all-
gemeine'n Zahlen. Die Menge der-reellen Zahlen ist eine
stetige; denn ein Schnitt in diese Menge wird immer durch ein Element
der Menge erzeugt.

Ich habe Ihnen den Dedekindschen Existenzbeweis der Irrationalzahl
so ausfuhrlich vorgetragen, weil er, mich wenigstens, so recht von dem
Vorhandensein dieser Zahlen uberzeugt hat.

7. Nun soll an einem Beispiel gezeigt werden, wie auf Grund der
Definition der Irrationalzahl mittelst des Begriffes des Schnittes diese
berechnet werden kann. Als Beispiel wihlen wir die irrationale Zahl,
die den Mathematikern zuerst entgegentrat, niamlich ¥ 2. Wir suchen
die Zahl, deren Quadrat 2 ist. Zu diesem Zwecke konstruiren wir in die
Menge der rationalen Zahlen einen Schnitt nach folgender Festsetzung:
Zum Untergebiet rechnen wir alle Zahlen, deren Quadrat <2, zum Ober-
gebiet alle Zahlen, deren Quadrat > 2. Durch Probiren findet man: 1
gehort zum Untergebiet, denn 12—=1<2; 2 gehort zum Obergebiet, denn
22—4>2. Zum Untergebiet gehiren alle Zahlen <1, zum Obergebiet
alle Zahlen > 1. Dagegen ist noch unentschieden, welchem Gebiete die
Zahlen zwischen 1 und 2 angehdren. Greifen wir ‘eine beliebige Zahl aus
dem ,Intervall der Unentschiedenheit heraus, so konnen wir entscheiden
zu welchem Gebiete sie gehort. 1,5 z. B. gehort zum Obergebiet, denn
1,52 = 2,25 > 2. Das Obergebiet ist bis 1,5 ausgedehnt, das Intervall der
Unentschiedenheit ist jetzt 1...1,5. Die Zahl 1,25 gehort zum Unter-
gebiet; denn 1,252 = 1,5625 < 2. Das Intervall der Unentschiedenheit ist
nun 1,25...1,5. Auf diese Weise findet man, dass angehéren:
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dem Untergebiet: dem Obergebiet:
1 St )
1,25 1,5
1,375 1,4375
1,4063 1,4219
1,4141 1,4180
: 1,4160
1,4150

1,4145

Das Intervall der Unentschiedenheit ist nun
1,4141....1,4145;

wir wissen 1,4141 << ¥ 2 <C1,4145. Durch hinreichend oftmaliges Hal-
biren des Intervalles der Unentschiedenheit kann man der Irrationalzahl
beliebig nahekommen, man kann sie mit vorgeschriebener Genauigkeit
berechnen.

Diesem Beispiele entnehmen wir die allgemeine Bemerkung, dass wir
bei der Berechnung einer Irrationalzahl auf Grund der Definition durch
den Schnitt eine Zahl des Unter- und eine des Obergebietes kennen und
ein Verfahren besitzen miissen, durch welches das Intervall der Unent-
schiedenheit immer kleiner und kleiner gemacht werden kann.

Niheres uber die Berechnung der Irrationalzahlen auf Grund der drei
Definitionen finden Sie in einem Aufsatze von Hrn. Prof. Burkhardt
(Vierteljahresschrift der naturf. Gesellschaft Ziurich, Bd. 46, p. 179).

8. Wir zeigeﬁ, wie zwei allgemeine, durch Schnitte definirte Zahlen,
verglichen werden konnen, d. h. wir definiren die Begriffe des Gleich-,
Grosser- und Kleinerseins.

Gegeben seien die Zahlen ¢ = A/A’ und g = B/B’. « und g heissen
gleich, wenn jedes 4 ein B und jedes A ein B’ ist. — a heisst grisser
als 8, wenn mindestens ein 4 ein B’ ist. — « heisst kleiner als 8, wenn
mindestens-ein A’ ein B ist.

9. Was die Grundoperationen mit so definirten Zahlen betrifft,
beschrinke ich mich auf die Definition der Addition und auf den Beweis fur
die Gultigkeit des Kommutationsgesetzes der Addition. Eine ausfihrliche
Darstellung findet sich z. B. in Cahen, ,Eléments de la théorie des
nombres“, einem Buche, das die Theorie der Irrationalzahlen sehr klar
auseinandersetzt.
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Gegeben seien wieder die Zahlen « = 4/A‘ und 8 = B/B‘. Was ver-
steht man unter der Summe a«-} 8? Wir addiren jedes 4 zu jedem B
und erhalten eine Menge C. Wir addiren jedes 4' zu jedem B’ und
erhalten eine Menge €. Nun lisst sich zeigen, dass die Mengen C und
C' die zur Definition einer allgemeinen Zahl notwendigen Eigenschaften
besitzen: Jedes C ist kleiner als jedes C'; jede rationale Zahl gehort (im
allgemeinen) entweder C oder C' an. Der Schnitt C/C’ in die Menge der
reellen Zahlen definirt eine neue Zahl y», die rational oder irrational sein
kann., 5= C/C’ heisst die Summe von o= 4/4' und 8 =B,IB‘.'

Bilden wir statt « =+ g in gleicher Weise 8= «, so gewinnt man
offenbar dieselbe Zahl y, d. h. es ist a4 8= 8-+ @, das kommutative
Gesetz der Addition gilt.

10. Wihrend Dedekind die Irrationalzahl ohne Benutzung irgend
eines arithmetischen Ausdruckes definirt, knupfen Weierstrass und Cantor
ihre Definitionen an eine bestimmte formale Darstellung der Irrational-
zahl an. i : ‘

Wir gehen aus von einem Satze, den wir schon unsern Schulern
beweisen. Ist @ eine positive Zahl, aber keine n.Potenz einer rationalen

Zahl, so lidsst sich —n-,/'a_ in einen unendlichen, unperiodischen Dezimal-

bruch entwickeln, in einen Dezimalbruch von der Form
Lp Co _C s '
%+t 15 + o0 t To00 T To000 T -
¢g ist O oder eine positive ganze Zahl; ¢, ¢y, cg, .. .. sind Zahlen der Reihe

0, 1, 2,....9. Nach diesem Satze ldsst sich 2 in einen unperiodischen
Dezimalbruch entwickeln: ¥'2=1,4142...., oder

i et S

Dieser Ausdruck besitzt zwei Eigenschaften, von welchen man zu der
Definition der Irrationalzahl nach Weierstrass und Cantor gelaﬁgen kann.
Die beiden Eigenschaften lauten:
a) Wieviele und welche der Grossen

4 1 4 2 2

10 > 100, 1000’ 10000°" """~

ich auch in endlicher Anzahl summire, die Summe ist immer endlich.
Addiren wir die 5 ersten Grissen, so erhalten wir eine endliche Zahl;
addiren wir die 1., 3.,....999. Grisse, die Summe ist endlich. Nennt
man die Summe aus einer beliebigen, aber endlichen Anzahl der Grossen
einen ,Bestandteil* der Reihe, so driickt sich die erste Eigenschaft
kurz so aus: ,Jeder Bestandteil ist endlich.“

1,
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b) Um die zweite Eigenschaft zu erkennen, bilden wir die Reihe:
1:°14; 141514145 1A142; . 0.
Wir sehen: Dadurch, dass ich eine hinreichend grosse, aber endliche An-
zahl von Anfangsgliedern dieser Reihe unterdriicke, kann die Differenz

zweier beliebiger Glieder der noch iibrig bleibenden Reihe beliebig klein
gemacht werden. Soll die Differenz zweier Glieder z. B. kleiner sein als

1 .
o0 5° genugt es, die 3 ersten Glieder wegzulassen. Auch diese Eigen-

schaft konnen wir mittelst des Begriffes der ,Schwankung“ kirzer
fassen. Unter einer Schwankung ist der absolute Wert der Differenz
zweier Glieder zu verstehen. Die Schwankung von 1,41 und 1,4142 z. B. ist:
o 1141 14142 ] = 0,0042.

Damit lautet die zweite Eigenschaft: ,Dadurch, dass ich eine end-
liche Zahl von Anfangsgliedern unterdriicke, kann die
Schwankung unter jeden Kleinheitsgrad hinuntergedrickt
werden.” ; :

Weierstrass entnimmt der ersten Eigenschaft das Prinzip
der Summenbildung; Cantor steigt von der zweiten empor zu
dem Begriff der Fundamentalreihe. Was eine Fundamentalreihe ist,
werde ich bei der Cantorschen Theorie zeigen; fur jetzt sei nur bemerkts
dass ¥ 2 dargestellt wird durch die Fundamentalreihe 1; 1,4; 1,41;
LA~ _

11. Auch Weierstrass legt der Definition der Irrationalzahl eine
unendliche Menge rationaler (vorliufig positiver) Zahlen zugrunde. Wir
schreiben sie nebeneinander und verbinden sie durch Pluszeichen :

“1+02+“3+?4+“5+ -----
Dieses Aggregat definirt ein neues Objekt, das wir mit « bezeichnen
wollen. Wir nennen « eine allgemeine Zahl. ¥
Merken wir uns aber wohl: Das neue Objekt wird durch das Aggregat
(ay+as+a3-4....) definirt und nicht etwa durch die ,Summe“ der
unendlichen Menge rationaler Zahlen. Die Bezeichnung ,Summe* ist hier
sinnlos, weil bis jetzt nie definirt wurde, was man unter der ,Summe*

: ! ; .
von unendlich vielen Zahlen zu verstehen hat. Wie 5, —3, 3 W s W

ganz bestimmte Objekte bezeichnen, so ist auch (¢; 4 a4 a34....) das
Zeichen eines zu untersuchenden Objektes, dem wir, seiner Eigenschaften
wegen, auch den Namen _Zahl“ geben. Es wire ein logischer
Fehler, wenn man die zu definirende Grosse gleich der Summe setzen
wollte, weil eben die Summe einer unendlichen Menge von rationalen
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Grossen noch nicht definirt ist. Wir werden zwar den Begriff der Summe
auch einfuhren, aber erst, nachdem wir bereits eine Reihe von Eigen-
schaften der neuen Grossen kennen; vorher werden wir zeigen, wann «
unendlich oder endlich ist, wie man zwel neue Grossen unter sich und
mit rationalen Zahlen vergleichen kann, wir werden vor der Einfuhrung
des Begriffs der ,Summe“ die Addition und Multiplikation und die Gul-
tigkeit der entsprechenden Fundamentalgesetze nachweisen. Weierstrass
gebuhrt das Verdienst, den genannten logischen Fehler zum erstenmal
konsequent vermieden zu haben. Cantor ist der Uberzeugung, dass alle
Schwierigkeiten, die man friher in dem Begriffe des Irrationalen gefunden
habe, mit diesem logischen Fehler zusammenhangén; ,wird er vermieden,“
sagt Cantor, ,so wird sich die irrationale Zahl mit der gleichen Klar-
heit, Deutlichkeit und Bestimmtheit in unserm Geiste festsetzen, wie die
rationale, ja wie die natirliche Zahl“. _

12. Ich gebe nun kurz den Gedankengang der Weierstrassschen
Theorie. '

Definirt ist die neue Grisse durch das Aggregat (a; +as+ a3+ ... .).
‘Weierstrass untersucht zunéchst, wann diese Grosse einen endlichen Wert
hat und findet: « ist endlich, wenn 1. kein @ unendlich ist, 2. kein end-
liches @ unendlich oft vorkommt und 3. jeder Bestandteil endlich ist. Es

werden nur endliche Grossen betrachtet. Wir zeigen, wie man zwei
Grossen
a=a,+ay,+a3+.... und B=b+b+b3+..

miteinander vergleichen kann. Dass die Begriffe des Gleich-,
Grosser- und Kleinerseins neu definirt werden miissen, ist klar. Rationale
Zahlen werden verglichen, indem man die sie darstellenden Bruche gleich-
namig macht und die Zihler vergleicht. Eine solche Vergleichung ist
hier unmoglich, weil eine unendliche Anzahl gemeiner Bruche gleich-
namig zu machen wire. s ist

a = 3, wenn die Einheit und jeder Stammbruch |in « und g gleich
oft vorkommen (wenn jeder Bestandteil von « auch Bestandteil von g ist);

« > f#, wenn mindestens ein Stammbruch in « oOfters vorkommt
als in 3;

a < B, wenn mindestens ein Stammbruch in 3 ofters vorkommt
“als in a

Jetzt definiren wir die Summe (« 4+ 8) und das Produkt a== 8
zweier Grossen; man versteht darunter bez. die Grossen, definirt durch
die Aggregate

a =+ 8= (a;4 b)) 4 (a4 by) 4+ (a3 + bg) - . .

@B =ay. b+ (aby+ agby) + (a1bs+ a5 by +a3b1) e o



201

Durch Addition und Multiplikation neuer Grossen erhilt man Grossen
gleicher Art; die entsprechenden Fundamentalgesetze bleiben erhalten.

Erst jetzt, nachdem wir mehrere Eigenschaften der neuen Grossen
kennen, ,nachdem sie in unserm Geiste eine bestimmte Realitiit erlangt
haben“ (Cantor), erst jetzt wird die ,Summe“ der unendlichen Reihe
_ definirt. Wir gelangen dazu in folgender Weise. Wir hilden die sog.
Summenglieder oder Partialsummen

S1=ay, Ss=a;F 0y s3—=a,+ a3+ 03,.... s = ¢yt a4 a54...an,-...
und fithren einen Fundamentalbegriff der Analysis, den Lim es-Begriff
ein. Wir .sagen:

Die Grossen s;, sy, Sg,..... Sn,... konvergiren gegen die Grisse s,
wenn, nach Annahme einer (beliebig kleinen) positiven Grosse e, der Index
n so gewihlt werden kann, dass

|s—s»l < &, wenn 22> n;
oder wenn sich das Summenglied s, mit wachsendem #n von s beliebig
wenig unterscheidet. s heisst der Grenzwert der Grissen s, so, S3,.....

Nun werden die Sitze bewiesen:

Ist die durch das Aggregat (a4 a4 a3 ...) definirte Grisse «
endlich (wofur die Bedingungen angegeben wurden), so konvergiren die
Grossen s, 8, S3,...., und man nennt den Grenzwert s die Summe der
unendlichen Menge rationaler Zahlen.

Umgekehrt: Konvergiren die s, so ist die durch (g —|— a2 -|— az—4 ..
eine endliche Grosse definirt.

Unter der Summe der unendlichen Menge rationaler
Zahlen a, a9, @3,.... ver stehen wir somit den Grenzwert s,
gegen welchen die Summenglieder

S;=ay,8s=a,+ay Ss—=a,+ata....5 =a;+astag+...4ay--.

konvergiren.

Setzt man die Grossen a;, ag, a3, ... als positiv voraus und nimmt
man an, dass die Summenglieder e, @, a5,/ @; 4 a3+ ag,... endlich
bleiben, S0 ist s» eine konvergente Funktion von n; ist lim s, nicht rational,

so definirt er eine neue Grosse, eine irrationale Zahl. Oder, indem
wir die ¢ ganz aus dem Spiele lassen: Ist eine unendliche Menge
positiver rationaler Zahlen gegebhen, die béstéind_ig wach-
sen, aber nicht ins Unendliche wachsen, so wird durch
diese Zahlenfolge eineallgemeine, alsoeinerationale oder
eineirrationaleZahl dargestellt,nimlich die, nach welchen
die s, konvergiren.
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Naher konnen wir hier auf die Weierstrasssche Theorie der Irrational-
zahlen, die offenbar mit der Lehre von der unendlichen Reihe aufs engste
im Zusammenhange steht, nicht eintreten; wir gehen zur Cantorschen
Theorie uber.?)

: 13. Wie bereits bemerkt, legt auch Cantor seiner Definition der
Irrationalzahl eine bestimmte arithmetische Darstellung derselben zu
grunde. Er definirt vor allem die ,Fundamentalreihe®. ;

Eine unendliche Reihe rationaler Zahlen heisst eine
Fundamentalreihe, wenn, nach Annahme einer beliebig
kleinen positiven Grosse &, ein Index n so gewidhlt werden
kann, dass die Differenz zweier beliebiger Glieder, deren
Index hoher ist als n, dem absoluten Betrage nach kleiner
ist als e. :

Bilden die Zahlen

Os O thay oo o s s
eine Fundamentalreihe und ist ¢ eine beliebig kleine positive Grosse, so lisst
sich ein # so angeben, dass :
: Jat —an| << &, wenn % und &> n.
Durch Unterdriickung der » ersten Glieder kann die Schwankung der
noch ubrig bleibenden Glieder beliebig klein gemacht werden.
3; 3,1; 3,14; 3,141; 3,1415; 3,14159;....

ist eine Fundamentalreihe. Setzt man « = so hat man =23 zu

1
_ 100°
nehmen.
Eine besondere Fundamentalreihe ist die Elementarreihe. Nach
E. Heine versteht man darunter eine Fundamentalreihe, deren Glieder
sich von 0 mit wachsendem Index # immer Weniger unterscheiden; oder
genaner: Eine Fundamentalreihe ist eine Elementarreihe,
wenn nach Annahme einer positiven Grosse ¢ ein Index =
so gewiahlt werden kann, dass der absolute Betrag jedes
Gliedes, dessen Index hdher ist als =z, kleiner ist als ¢
wenn also
lex] < &, wenn k> n.
Ein Beispiel : :
1; 0,1; 0,01; 0,001; 0,0001; 0,00001;....
14. Wir definiren die Grundoperationen mit Fundamental
reihen. Gegeben sind die beiden Fundamentalreihen
=@y Gg; By Byjic o5 Gy viio) -und
B=(by bo, b3, by . ... bu....).
1) Nacb Vorlesungen von Hrn. Prof. Hurwitz.
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Die Summe, die Differenz, das Produkt und der Quotient sind definirt
durch :
a+ B8=(40b, a3+ by a3 4b ... awtba,...)
a—ﬁ:(al—bl, 02'——62,03_b3,...au—bn,..-),
a-6:(Gl-b1,a2-52,03-1)3,...(1;,,-21,,,...),

L
sl e )

Nun lisst sich der Satz beweisen: Die Grundoperationen mit Fundamental-
reihen sind unter allen Umstinden ausfithrbare Operationen, ausgenommen
die Division durch eine Elementarreihe; das Resultat ist wieder éine
Fundamentalreihe. Die Grundgesetze bleiben erhalten.

_ Lassen Sie mich z. B. zeigen, dass die Summe zweier Fundamental-
reihen wieder eine solche ist. Es ist zu zeigen, dass

|(antbn)—(artbr)] < -

a ist eine Fundamentalreihe, somit | ax — az | < %;

8 ist eine Fundamentalreihe, somit | b — bz | << i;

Weil der absolute Betrag der Summe kleiner oder hochstens gleich
ist der Summe der absoluten Betrige der einzelnen Summanden, folgt:

[(er—ar) 4+ (ba—0br)] <e
oder |(@a=-bs) — (@ar+bz)] <e& wW. z. b,
Die Summe der beiden Fundamentalreihen
=314 <14k 1414 ;.. ;) und
B=(3;3 3143 141 ;)
ist atB8=C(4; 4,5; 4,55; 4,555;....),
offenbar wieder eine Fundamentalreihe.

15. Nun teilen wir die Fundamentalreihen in Gruppen ein nach fol-
gender Festsetzung: Zwei Fundamentalreihen sollen dann und nur dann
der gleichen Gruppe angehoren, wenn ihre Differenz eine Elementarreihe
ist. Ich schreibe einige Fundamentalreihen auf, die wir sodann nach
dieser Festsetzung einteilen wollen.

e—1s 14 BAL; 14145 ...«
8=1(3:-81;314; 3141 ... ;)
w45 3.2 3105 8,142, L L)
Nur 8 und y gehéren in die gleiche Gruppe, denn ihre Differenz
=== 1(1;01;:-0,01; 0,001;.-...)

ist eine Elementarreihe.
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Die Gesamtheit der Fundamentalreihen, die einer
Gruppe angehéren, betrachten wir als neues Objekt und
bezeichnen es als allgemeine Zahl

Wie definirt also Georg Cantor die allgemeine Zahl? Er versteht
darunter den Inbegriff der Fundamentalreihen einer Gruppe, den Inbegriff
der Fundamentalreihen, deren Differenzen Elementarreihen sind. Jedes
Individuum der Gruppe ,stellt die allgemeine Zahl dar“ Eine
allgemeine Zahl besitzt unendlich viele Darstellungen. Die rationale
Zahl r wird dargestellt durch die Reihe (r, r, r,....). Ist die allgemeine
Zahl nicht rational, so heisst sie irrational. Alle Elementarreihen gehdoren
derselben Gruppe an; sie stellen alle die Zahl O dar.

16. Wie konnen wir mit allgemeinen Zahlen rechnen? Wir stellen
jede allgemeine Zahl durch eine Fundamentalreihe dar, fihren mit diesen
die Operationen aus und erhalten als Resultat eine Fundamentalreihe, die
eine allgemeine Zahl, das Resultat, darstellt. Soll z. B. berechnet werden
V2. V3, so stellt man dar:

V2 durch (1; 1,4; 1,41; 1414;...),
Vi3 o o A1 008 i3

multiplizirt man die Fundamentalreihen, so kommt

V2'V3=(01-1;14-17; 1,41 - 1,73; 1,414 » 1,732;....)
V2 V3=(1; 24;245; 2,449;....).

Dem vorhin ausgesprochenen Satze iiber Fundamentalreihen entspricht
der folgende Satz uber allgemeine Zahlen: Im Reiche der allgemeinen
Zahlen sind die Grundoperationen unter allen Umstinden ausfuhrbare
Operationen, ausgenommen die Division durch O; das Resultat der Rech-
nung ist wieder eine allgemeine Zahl. Die Grundgesetze bleiben erhalten?).

17. Wie werden zwei allgemeine Zahlen miteinander ver-
glichen? Wir beweisen den Satz: Die Glieder einer Fundamentalreihe,
die keine Elementarreihe ist, sind von einem bestimmten Index an ent-
weder alle positiv oder alle negativ; man sagt, die. Fundamentalreihe
habe im ersten Falle positiven, im zweiten Falle negativen Charakter.
Denn wiren die Glieder einer Zahlenreihe, wie weit nach rechts man auch
gehen mag, bald positiv, bald negativ, so wiren entweder die Schwan-
kungen nicht beliebig klein, oder die Glieder wiirden sich beliebig wenig
von der O unterscheiden. Im ersten Falle ist die Reihe keine Funda-
mentalreihe, im zweiten Falle ist sie eine Elementarreihe. Alle Fundamental-
reihen der gleichen Gruppe haben den gleichen Charakter. Eine allgemeine

1) Vergl. Cahen, a. a. O., p. 155.
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Zahl heisst positiv oder negativ, je nachdem die Fundamentalreihen der
sie definirenden Gruppe positiven oder negativen Charakter haben.
Sollen die beiden allgemeinen Zahlen
- a = (a;, a4, a3, ...) und
8= (by, by, by, - . )
miteinander verglichen werden, so bilden wir die Differenz o — 8.
Nun heisst

a =38, wenn o« — 3 eine Elementarreihe ist;
a>p, , a—pB , Fundamentalreihe pos. Charakters ist;

a <B: s By » neg. » nie
Beispiel :

a=01s 14141 L4145 . 0.2,

B 1751085 10825 .00,

= (25 10 1425 14155 .0

Es ist:

a<fB; denn «a —8=(0; —0,3; —0,32; —0,318;...) ist eine Fun-
damentalreihe negativen Charakters.

a=y, dentn «a —y=(—1; —0,1; —0,01; —0,001;...) ist eine
Elementarreihe.

18. Endlich fihren wir den Limes-Begriff ein. Die Grossen a.,
a9, @3, . ... jeder Fundamentalreihe bilden eine konvergente Reihe, und
der Limes ist gleich der allgemeinen Zahl, welche durch die Fundamental-
reihe dargestellt wird. Umgekehrt: Eine unendliche Reihe von Zahlen
ist dann und nur dann konvergent, wenn sie die charakteristische Eigen-
schaft der Fundamentalreihe besitzt. Auch hier sei noch hervorgehoben,
dass Cantor die Irrationalzahl nicht definirt als Grenzwert der unendlichen
Menge rationaler Zahlen. Es wire dies der gleiche logische Fehler, auf
den wir bei der Weierstrassschen Theorie schon aufmerksam machten.
Die Existenz dieses Grenzwertes muss abgeleitet werden aus den Eigen-
schaften der die allgemeine Zahl definirenden unendlichen Menge rationaler
Zahlen. In der Enzyklopidie der mathematischen Wissenschaften sagt
Pringsheim daruber: ,Wesentlich ist, dass die zu definirende allgemeine
reelle Zahl (welche je nach Umstinden eine rationale oder irrationale
sein kann) nicht etwa als ,Summe“ einer unendlichen Anzahl von Ele-
menten oder als ,unendlich entferntes Glied“ einer Reihe durch irgend
welchen nebelhaften Grenzprozess gewonnen wird“.

19. Zum Schlusse will ich die drei Theorien noch kurz mit-
einander vergleichen.

Dedekind definirt die allgemeine Zahl durch einen Schnitt in die
Menge der rationalen Zahlen, Weierstrass durch das Prinzip der Summen-
bildung, Cantor durch Fundamentalreihen, also

Dedekind. ......... Schnitt,
Weierstrass . .. ..... Summenbildung,
GoGahlor .0 o s Fundamentalreihe.
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Das Gemeinsame aller drei Definitionsformen besteht einmal darin,
dass jede eine unendliche Menge rationaler Zahlen zu grunde legt und
Bedingungen stellt, die die rationalen Zahlen erfiillen miissen, damit sie
als Grundlage der Definition einer allgemeinen Zahl dienen kénnen.

Ferner treten in allen Theorien Fundamentalreihen auf. Cantor
definirt die allgemeine Zahl durch eine Gruppe von Fundamentalreihen,
jede allgemeine Zahl wird durch unendlich viele Fundamentalreihen dar-
gestellt. Weierstrass leitet den Satz ab, dass die Summenglieder s, $,,
83, . . . . bestindig wachsen, aber nicht ins Unendliche wachsen ; sie bilden
eine sog. monotone Fundamentalreihe. Und wenn Sie sich an die Be-
rechnung von ¥ 2 auf Grund der Dedekindschen Definition der Irrational-
zahl erinnern, so entdecken Sie dort zwei Fundamentalreihen: Die
Niiherungswerte < ¥/2 bilden eine ansteigende, die Ndherungswerte > V' 2
eine absteigende Fundamentalreihe, oder, wie Paul Bachmann sagt,
»Zwel gegeneinander konvergirende Zahlenreihen“.1) ;

Bei der Berechnung der Irrationalzahlen durch Entwickelung in
Dezimalbriiche oder Kettenbriiche treten immer Fundamentalreihen auf.
Bei Kettenbruchentwicklungen bilden die Niherungswerte geraden Ranges
eine absteigende, die Niherungswerte ungeraden Ranges eine ansteigende
Fundamentalreihe.]

Einen Unterschied der drei Theorien haben wir bereits genannt.
Withrend Dedekind die Irrationalzahl ohne einen arithmetischen Ausdruck
definirt, kniipfen Weierstrass und Cantor ihre Definitionen an eine formale
Darstellung der Irrationalzahl an.

Der Hauptunterschied der drei Definitionen liegt in den Bedingungen,
welche die Menge der rationalen Zahlen erfillen muss, damit sie der
Definition der allgemeinen Zahl zu grunde gelegt werden kann. Dedekind
braucht zur Definition einer Irrationalzahl stets alle rationalen Zahlen,
Weierstrass und Cantor nur einen Teil (aber doch unendlich viele) der-
selben. Dagegen sind die Bedingungen, die Weierstrass und Cantor
stellen, viel engere als die, welche Dedekind voraussetzt. Eine und dieselbe
allgemeine Zahl wird durch einen und nur einen Dedekindschen Schnitt,
dagegen durch unendlich viele Weierstrasssche Summen und unendlich viele
Cantorsche Fundamentalreihen dargestellt. Die Ubersicht tiber die Menge
der reellen Zahlen lisst, sofern diese durch Schnitte definirt werden, nichts
zu wiinschen ubrig.

20. In der mir zur Verfugung stehenden Zeit war es mir unmoglich,
die drei Theorien der Irrationalzahlen nur einigermassen erschépfend zu
behandeln. Vieles konnte ich nur andeuten, anderes nur durch Beispiele
zum Ausdruck bringen. Wer sich mit dem einen oder andern Punkt
genauer befassen will, findet die notigen Literaturangaben in der Enzy-
klopidie der mathematischen Wissenschaften (I A 1). Fur
die Behandlung der Irrationalzahlen auf der Mittelschule
seien zum Studium empfehlen: Hocever, Lehrbuch der Arithmetik und
Algebra (Wien und Prag, Tempsky, 1902) und — besonders in geo-
metrischer Hinsicht — Thieme, Leitfaden der Mathematik, II. Teil (Leipzig,
Freytag, 1902).

1) P, Bachmann, Vorlesungen iber die Natur der Irrationalzahlen. Leipzig,
Teubner 1892.
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