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Studia Philosophica 51/92

FRANCOIS LEYVRAZ
Deéterminisme et chaos

Commengons tout d’abord par définir ce que ’on entend par déterminisme.
Je me limiterai 4 considérer des systémes physiques et leur description quanti-
tative en termes de modéles mathématiques. Un systéme physique est un
ensemble d’objets isolés de maniére & pouvoir étre observés. Un modéle du
systéme consiste en deux éléments:

— Premiérement, une description quantitative du systéme, c’est-a-dire une
liste de nombres (x(1),. . ., x(N)) dont les valeurs peuvent étre déterminées de
maniére suffisamment précise (mais non unique: en effet, il n’est jamais
possible de mesurer une quantité avec une précision absolue) par 1'inspec-
tion du systéme. Cette définition exclut donc toutes les qualités qui n’ont
pas été quantifiées. Notons bien qu’une telle description ne sera pas, en
général, une description compléte du systéme.

— Deuxiemement, une loi permettant de déterminer certaines relations entre
les valeurs de (x(l),..., x(N)) au temps t=0 et ces mémes valeurs 4 un

~temps t quelconque ultérieur ou antérieur.

Je dirai qu'un modé¢le d’un systéeme donné est déterministe quand cette loi
permet d’obtenir les valeurs (x(1),. . .,x(N)) exactes a n’importe quel temps t,
ces valeurs étant données pour le temps 0. Le déterminisme est donc une
propriété du modéle considéré, et non point du systéme. Cette distinction peut
paraitre pédante, mais elle permet de réduire la question du déterminisme a
une question purement mathématique. Si le systéme est bien décrit par un
modéle déterministe, il est bien naturel d’en conclure, cependant, qu’il existe
des lois régissant la «réalité» décrite par le modele. Cette fagon de penser est
illustrée admirablement par la célébre remarque de Laplace: «Une intelligence
qui, pour un instant donné, connaitrait toutes les forces dont la nature est
animee, et la situation respective des étres qui la composent, si d’ailleurs elle
¢tait assez vaste pour soumettre ces données a I’analyse, embrasserait dans la
méme formule les mouvements des plus grand corps de I'univers et ceux du
plus léger atome: rien ne serait incertain pour elle, et I'avenir comme le pass€,
serait présent a ses yeux. L'esprit humain offre, dans la perfection qu’il a su
donner a I’Astronomie, une faible esquisse de cette intelligence. [...] La régu-
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larité que I’Astronomie nous montre dans le mouvement des cométes, a lieu
sans aucun doute pour tous les phénomeénes. La courbe décrite par une simple
molécule d’air ou de vapeurs, est réglée d’'une manicre aussi certaine, que les
orbites planétaires: il n’y a de différences entre elles, que celles qu’y met notre
ignorance.»

Mais existe-t-il donc une autre maniére de décrire la réalité en termes
scientifiques? En effet, sous I'influence des prodigieux succes de la Mécanique
Céleste (I'exemple peut-étre le plus parfait d'un modéle déterministe) 1’opi-
nion est devenue assez courante que tout modele physique devait, en derniére
analyse se réduire 4 un modeéle déterministe du type que je viens de décrire.
Néanmoins, il n’en a pas été ainsi, et le dix-neuviéme siécle a été témoin
d’immenses progrés dans la compréhension du comportement de la matiére
par des modéles de type probabiliste. Ceux-ci, renongant explicitement a une
description méme approximativement compléte du systéme, font des prédic-
tions sur la probabilité d’obtenir certaines valeurs pour les quantités observées
(x(D),. .., x(N)). Ces probabilités peuvent étre indépendantes du temps ou non.

Deux exemples clarifieront peut-étre ce que je veux dire. Tout d’abord,
considérons le systéme solaire. Il peut se décrire au moyen d’un modéle
mathématique fort simple, postulé par Newton dans son System of the World:
il se compose des neuf planetes avec leurs satellites. Les variables du modéele
sont les positions et les vitesses de chacun de ces corps (soleil, planétes et
satellites). Cela représente donc six nombres pour chaque corps céleste (trois
déterminant la position, disons en coordonnées cartésiennes, trois autres dé-
terminant la vitesse, tant en grandeur qu’en direction). Les lois décrivant
I’évolution de ces nombres dans le temps sont les lois du mouvement de
Newton, complétées par la loi de la gravitation universelle, c’est-a-dire, I’exis-
tence d’une force entre deux masses quelconques, proportionnelle au produit
des masses et inversement proportionnelle au carré de la distance. Ce modele
est déterministe de fagcon manifeste. Ceci veut dire qu’il est possible de déter-
miner les valeurs des positions et des vitesses de chaque corps au moyen de ces
lois, si les valeurs au temps t=0 sont données. Ceci est un résultat fort
¢lémentaire de mathématique. Ce qui est bien moins évident, c’est que ce
modeéle décrit les phénomeénes observés avec une précision extraordinaire.
Bien siir, il ne saurait étre question de dire que les quelques nombres décrivant
les positions et vitesses des planétes soient une description compléte du sys-
téme solaire. Nous avons, par exemple, néglige de spécifier la forme des
planétes. Un théoréme dii a Newton permet de le faire si la distribution de la
matiére de la planéte est parfaitement sphériquement symétrique. Or il n’en
est rien, et il faudrait donc la décrire, en principe sans oublier la plus petite
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colline. Néanmoins, aucun de ces facteurs négligés n’a une influence apprécia-
ble sur les positions et vitesses que I’on veut déterminer. Ainsi donc, la limita-
tion a une précision imparfaite est précisément ce qui nous permet d’utiliser
des modeles mathématiques simples pour décrire une réalité complexe, en
faisant abstraction de certaines de ces complexités qui n’ont pas d’influence
mesurable.

Un exemple diameétralement opposé est celui de la description d’une sub-
stance, disons un gaz, au niveau macroscopique. Il est facile, bien entendu, de
trouver des quantités comme la pression et la température, qui obéissent a des
relations comme, par exemple:

pv=RT (1)

(p est la pression, T la température, v le volume molaire et R une constante).
Dans notre terminologie, ceci représente un modéle déterministe pour la
pression et la température d’un gaz. Mais, comme on sait que les substances
sont formées d’atomes (que nous pouvons nous représenter comme de petites
boules trés dures), on est amené a chercher une explication de ce comporte-
ment en termes du comportement de ces atomes. On peut obtenir une telle
explication en supposant que les atomes se meuvent au hasard avec une
vitesse dont le carré moyen serait proportionnel a la température T, et la force
moyenne exercée sur la surface des parois proportionnelle a la pression. Cette
hypothése permet d’obtenir I’équation (I) comme une conséquence. Ce mo-
dele est maintenant un modele probabiliste, cependant. En effet, les mouve-
ments atomiques a partir desquels on pourra calculer la pression et la tempé-
rature sont des mouvements complétement imprévisibles. A cause du trés
grand nombre d’atomes dans une quantité macroscopique de substance (envi-
ron 102 dans un gramme) I'incertitude statistique pour une quantité moyen-
née sur tous les atomes est négligeable.

Nous arrivons la pourtant a une situation quelque peu paradoxale: en effet,
le but d’'un modéle atomiste est précisement de réduire le comportement des
quantités thermodynamiques (température et pression) au schéma mécanique
dont I'exemple est le modéle du systéme solaire. De fait, le modele générale-
ment accepté est le suivant: les atomes suivent des trajectoires parfaitement
déterminées par des lois entiérement mécaniques, mais que la complexité du
mouvement qui en résulte est telle que celui-ci peut étre traité comme un
mouvement aléatoire. Ceci est par ailleurs nécessaire, car il est matériellement
impossible de connaitre les positions et les vitesses de 102 particules. La
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probabilité apparait donc ici pour pallier & une ignorance totale des condi-
tions initiales. La justification de cette affirmation est difficile en termes rigou-
reux.

Récapitulons: il existe deux sortes de modéles pour un systéme physique:
ceux qui permettent des prédictions définies a partir de conditions initiales
données et ceux qui ne permettent que des prédictions probabilistes. (Notons
en passant qu’il est tout a fait simple de vérifier I’exactitude d’un modéle
déterministe, mais qu’il est beaucoup moins simple de veérifier un modéle
probabiliste. Cela est dii au fait qu’il est nécessaire de préparer beaucoup de
systemes avec des conditions initiales identiques et de vérifier que les résultats
sont distribués selon la loi de probabilité prédite par le modéle.) Les modéeles
mécaniques (déterministes par définition) jouissent d’un prestige tout a fait
particulier. Ce prestige a deux causes: premierement, I’effet du triomphe de la
mécanique céleste n’a jamais été oublié; deuxiemement, les lois générales de la
meécanique ont un domaine d’application extraordinairement vaste. C’est
pourquoi, aux yeux de la physique classique, tout modeéle probabiliste de la
réalité ne peut étre qu'une approximation de la description correcte, qui est
déterministe. Traditionnellement on a associé les modéles déterministes a une
description «compléte» du systéme physique, alors que les modéles probabi-
listes ont été associés a des descriptions «réduites» du systéme, rendues néces-
saire par notre incapacité de mesurer tous les paramétres déterminants du
mouvement. C’est 1a le cas, par exemple, de la théorie des gaz que j’ai d¢ja
mentionnée.

Entre parentheses, il faut bien dire que cette attitude a dii changer avec
I’avénement de la mécanique quantique. Sans entrer dans des détails, la méca-
nique quantique est reconnue aujourd’hui comme la théorie correcte des
phénoménes a I’échelle atomique et ne se laisse pas classifier de maniére
simple dans le schéma d’une théorie probabiliste ou déterministe. Son inter-
prétation la plus courante donne une place irréductible et centrale au hasard.
Je ne veux pas, cependant, traiter ce sujet, qui est d’une extréme complexite.
Ce dont je voudrais parler en plus grand détail, c’est le role du hasard et de la
probabilité méme dans les modeles apparemment parfaitement mécaniques.

Pour cela, il faut reprendre ce que nous avions dit au sujet des rapports
entre un systéme physique et le modéle mathématique qui le décrit. Nous
avions remarqué que la correspondance entre la configuration réelle d’'un
systéme et sa description quantitative ne peut jamais qu’étre approximative.
Cela est di 4 plusieurs causes, dont la plus importante est la nécessité d’intro-
duire une description toujours plus complete du systeme. Par exemple, si nous
voulions décrire le systéme solaire avec une précision de trente décimales

111



(encore tres €loigne d’une précision «totale» qui est inatteignable méme en
principe), il faudrait déterminer avec précision la position de chaque atome.
Qui plus est, il serait impossible de considérer que le systéme solaire est isolé,
car il est toujours possible qu'un atome imprévu vienne de I’extérieur déran-
ger le systéme. Bien entendu, cette limitation ne cause aucun probléme dans la
pratique: au contraire, c’est grace a elle qu’il est possible de faire un modéle
simple d’un systéme physique. Mais il reste néanmoins un probléme: que se
passe-t-il si le modéle prédit que la trentiéme décimale des variables
(x(1),. . .,x(N)) au temps t =0 est nécessaire a la détermination de la premicre
décimale au temps t? Ceci pose un probléme particuliérement grave si le temps
t nécessaire pour cette amplification de I’erreur n’est pas trés grand. La remar-
que a été faite par Poincaré en ces termes: «...Mais, lors méme que les lois
naturelles n’auraient plus de secret pour nous, nous ne pourrions connaitre la
situation qu’approximativement. Si cela nous permet de prévoir la situation
ultérieure avec la méme approximation, c’est tout ce qu’il nous faut, nous
disons que le phénomeéne a été prévu, qu’il est régi par des lois; mais il n’en est
pas toujours ainsi, il peut arriver que de petites différences dans les conditions
initiales en engendrent de trés grandes dans les phénomeénes finaux; une petite
erreur sur les premieres produirait une erreur énorme sur ces derniers. La
prédiction devient impossible et nous avons le phénoméne fortuit.»

Nous avons déja dit qu’il n’est pas possible de connaitre les conditions
initiales d’un systéme avec un nombre immense de particules, comme I’est une
quantité macroscopique de gaz. Ce qui est beaucoup moins évident, c’est qu’il
existe des systémes simples, tels que le billard de Sinai, qui montrent exacte-
ment la sensitivité dans leur dépendance des conditions initiales dont parle
Poincaré. Le billard de Sinai est décrit dans la figure 1. Il s’agit d’une particule
ponctuelle qui se meut en ligne droite et a vitesse constante entre des murs qui
la réfléchissent de maniere parfaite. La forme des murs est dessinée dans la
figure. Le mouvement de la particule a un caractére tres irrégulier et les
erreurs dans les conditions initiales augmentent de fagon exponentielle. Cela
veut dire qu’une erreur initiale double en un temps constant t, et qu’elle
continue a doubler aprés chaque temps t,. Ceci a pour conséquence que, si
nous ignorons la trentiéme décimale au temps t=0, nous ne pourrons rien
dire au sujet de la position de la particule pour des temps t supérieurs a 90t,.
Or comme t, est de I’ordre du temps nécessaire pour que la particule fasse une
collision avec les murs, il n’est pas possible de prédire la position de la
particule aprés environ 90 collisions sans connaitre les conditions initiales
avec une précision qui doit toujours rester inatteignable. Ceci n’est pas, j’in-
siste, une simple limitation technique: tout d’abord, la description méme de la
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réalité physique ne reste pas la méme aux échelles dont il se traite. Par exem-
ple, a I’échelle de 103 cm, il n’est pas siir que ’espace ait la structure simple
que nous lui attribuons d’habitude. Mais quand méme nous pourrions passer
outre a cette difficulté, il resterait le probléme d’isoler le systéme physique de
toute influence externe capable d’influencer le systéme a tel niveau de préci-
sion. Or ceci est manifestement impossible. On obtient donc une situation
quelque peu paradoxale: le systéme que nous considérons (billard de Sinai) est
trés simple. Sa définition montre que si, par impossible, la position et la
vitesse de la particule étaient données initialement, elles pourraient se calculer
pour tous les temps. D’un autre c6té, cependant, méme la plus petite incerti-
tude sur les valeurs initiales détruit toute possibilité de prédiction aprés un
temps fort limité (environ cent collisions avec des erreurs dans la trentiéme
decimale seulement). C’est cette situation qui est connue en physique sous le
nom de chaos. Ainsi le billard de Sinai est un exemple d’un systéme détermi-
niste chaotique. Il convient de préciser qu'on n’emploie pas ce terme pour
décrire des modéles dont le caractére probabiliste est explicite.

Fig. 1
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Mais on peut se demander si c’est 1a une situation caractéristique, ou s’il
s’agit au contraire d’un exemple atypique et sans importance pour le monde
réel. Il n’est pas facile de répondre a cette question. Evidemment il existe des
systemes réguliers. Tel est, par exemple, I’orbite elliptique d’une seule planéte
autour du Soleil. Dés que nous introduisons le fait qu’il y a plusieurs planétes
qui s’attirent entre elles en méme temps qu’elles sont attirées par le Soleil, la
description des orbites devient trés complexe. Néanmoins, il a été prouvé par
Kolmogorov, Arnold et Moser que la plupart des orbites ont une description
en termes simples, tout au moins si 'attraction entre les planétes est suffisam-
ment petite en comparaison a I’attraction solaire. Plus généralement, ils ont
montré qu’une petite perturbation sur un systéme régulier ne modifie la
régularité du mouvement que pour une petite partie des orbites du systéme.
Dans ce cas, I’existence d’une certaine inexactitude dans les données initiales
n’a pas de conséquences graves. Ceci est di au fait que, dans un tel systéme,
les erreurs ne croissent que proportionnellement avec le temps. Cette crois-
sance lente permet de prédire le mouvement pendant des temps trés considéra-
bles. En particulier, en augmentant la précision d’un facteur de dix, il devient
possible de predire le comportement du systéme pour un temps dix fois plus
long. Il est donc vrai que la classe des systémes réguliers (ou prévisibles) n’est
pas vide ni exceptionnelle. En effet, les systémes parfaitement solubles sont
exceptionnels, et la plus petite perturbation les rend insolubles. Néanmoins,
selon le théoréme de Kolmogorov, Arnold et Moser, ils restent en grande
mesure réguliers, bien qu'un mouvement chaotique puisse fort bien apparaitre
dans certaines régions tres limitées.

Mais que dire, alors, du mouvement chaotique? Il existe certains exemples,
comme le billard de Sinai, ou le chaos a pu étre démontré rigoureusement. En
général, cela se fait en montrant ’existence d’une structure d’un type extréme-
ment particulier qui implique la dépendance sensitive des conditions initiales
que nous venons de discuter. Cette structure est-elle stable par rapport aux
petites perturbations? Pour une classe assez génerale de systémes la réponse
est affirmative. Cela donne donc le résultat suivant: ni les systémes réguliers ni
les systémes chaotiques ne représentent une exception a la régle, car les deux
types de systémes maintiennent leurs propriétés essentielles sous I'influence de
petites perturbations. Pour compliquer encore un peu le panorama, il existe
des systémes mixtes, ou le chaos coexiste avec un mouvement régulier, c’est-a-
dire que, suivant la condition initiale, la trajectoire peut se trouver étre régu-
liere ou chaotique. :

Jusqu’ici j’ai essayé d’éviter des descriptions excessivement techniques des
systemes physiques en question. Je voudrais néanmoins tenter d’expliquer
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'origine de ce phénoméne qu’est le chaos, pour ne pas donner 'impression
qu’il s’agit 1a de choses obscures, mais bien au contraire d’un phénomene dont
'origine est simple et facilement compréhensible.

Simplifions les choses tout d’abord en ne considérant qu’un seul nombre x.
De plus, nous allons ne considérer qu'une vue «stroboscopique» du systéme:
nous mesurons la valeur de x, par exemple, toutes les secondes, et nous dirons
que nous connaissons une loi décrivant le systéme si nous pouvons calculer la
valeur a un instant a partir de la valeur a 'instant précédent. Considérons une
variable x limitée a 'intervalle entre zéro et un. La regle suivante a les proprié-
tés caractéristiques du chaos:

t=0 x=0.1415926563
t=1 x=0.415926563
t=2 x=0.15926563
t=3 x=0.5926563
t=4 x=0.926563
t=5 x=0.26563

t=6 x=0.6563

t=7 x=0.563

t=8 x=0.63

t=9 x=0.6

t=1

La régle est simple (et déterministe): déplacer le nombre d’une décimale a la
gauche. La condition initiale était donnée avec trés grande précision (dix
décimales), néanmoins, apres dix répétitions de la regle, la valeur de x devient
totalement indéterminée. Comme nous allons le voir, cette régle est dans un
certain sens I’exemple typique du chaos.

En effet, nous pouvons généraliser. Supposons que la variable x soit partie
d’un ensemble quelconque A. Divisons A en deux parties disjointes Aq et A;.
Il est maintenant possible de faire une espeéce d’histoire abrégée de chaque
trajectoire, dans laquelle on note si x(t) est dans I’ensemble A, ou A, pour
toutes les valeurs entiéres de t. Appelons, par exemple, Ay I’ensemble de tous
les x qui sont en Ay au temps t=0 et qui sont en A, au temps t=1. De la méme
maniére, on définit Ag 10 comme I'ensemble des x qui se trouventen Agat=0
et 3, en A, a t=1,2 et 4. Dans certains systémes il est possible de choisir la
partition (peut-étre avec plus de deux ensembles) de telle maniére que la
plupart de ces ensembles ne soient pas vides (c’est-a-dire qu’il soit possible
pour au moins un x de passer par une séquence donnée de A, et A, si cette
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séquence satisfait certaines conditions simples) et que les ensembles non vides
aient une «taille» comparable. Ceci revient a dire qu’environ la moitié des
¢léments de Ao se trouveront dans Ay et I'autre dans Agio. Il existe plu-
sieurs systémes pour lesquels on a pu prouver l’existence de telles partitions.
Mais, si nous regardons de prés cette structure que nous venons de définir,
nous verrons qu’elle ressemble beaucoup a la régle un peu caricaturale définie
plus haut; en effet, la séquence de 1 et de O qui caractérise x peut étre vue
comme un type de développement décimal généralisé. Il y a bien siir des
problémes: il ne peut pas étre garanti, par exemple, qu’a chaque séquence il
existe un x. Certaines séquences seront irréalisables, et il est également possi-
ble que d’autres laissent une ambiguité au sujet de la valeur exacte de x. Mais
admettons qu’il existe une correspondance, tout au moins grosso modo, entre
les séquences de O et de 1 et les valeurs de x. Dans ce cas, si x a, par exemple,
la séquence 011001000110, le point correspondant a x au temps t=1 aura la
séquence 11001000110. Nous voyons donc que ce qui détermine le comporte-
ment de x pour des temps t suffisamment grands sont des détails a une échelle
arbitrairement petite, a savoir la valeur de ces «décimales généraliséesy.

Je crois que ces considérations indiquent que le chaos est un phénoméne
assez genéral. Son apparition est due a I’application répétée d’une régle qui
effectue une forme de «petrissage» de ’espace décrivant les configurations du
systéme physique. De grandes investigations numeériques ont confirmé cette
impression et ont montré qu’une trés grande variété de modeles physiques
sont en effet chaotiques. Comme nous I’avions vu au début de cet article, la
précision limitée avec laquelle nous pouvons identifier les configurations réel-
les d’un systéme physique et les valeurs des variables du modéle qui le décrit
rend toute forme de prédiction du systéme impossible, méme pour des temps
relativement courts. C’est 1a une forte limitation, pour ne pas dire une néga-
tion, de la position du déterminisme laplacien: en effet, la nature des lois reste
déterministe, mais elles ne permettent plus pour autant la prédiction méme a
moyen terme. De cette maniéere, le mécanisme pourrait étre compatible avec
I’expérience quotidienne montrant que, méme avec les ordinateurs les plus
puissants (dont certains ont certainement pensé qu’ils pourraient jouer le role
de cette «intelligence parfaite» dont parlait Laplace) il reste beaucoup de
phénoménes dont les lois sont relativement simples mais dont le comporte-
ment est totalement imprévisible.
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