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Studia Philosophica 51 /92

FRANÇOIS LEYVRAZ

Déterminisme et chaos

Commençons tout d'abord par définir ce que l'on entend par déterminisme.
Je me limiterai à considérer des systèmes physiques et leur description quantitative

en termes de modèles mathématiques. Un système physique est un
ensemble d'objets isolés de manière à pouvoir être observés. Un modèle du

système consiste en deux éléments:

- Premièrement, une description quantitative du système, c'est-à-dire une
liste de nombres (x(l),..., x(N)) dont les valeurs peuvent être déterminées de

manière suffisamment précise (mais non unique: en effet, il n'est jamais
possible de mesurer une quantité avec une précision absolue) par l'inspection

du système. Cette définition exclut donc toutes les qualités qui n'ont
pas été quantifiées. Notons bien qu'une telle description ne sera pas, en

général, une description complète du système.

- Deuxièmement, une loi permettant de déterminer certaines relations entre
les valeurs de (x(l),..., x(N)) au temps t 0 et ces mêmes valeurs à un
temps t quelconque ultérieur ou antérieur.

Je dirai qu'un modèle d'un système donné est déterministe quand cette loi
permet d'obtenir les valeurs (x(l),... ,x(N)) exactes à n'importe quel temps t,
ces valeurs étant données pour le temps 0. Le déterminisme est donc une
propriété du modèle considéré, et non point du système. Cette distinction peut
paraître pédante, mais elle permet de réduire la question du déterminisme à

une question purement mathématique. Si le système est bien décrit par un
modèle déterministe, il est bien naturel d'en conclure, cependant, qu'il existe

des lois régissant la «réalité» décrite par le modèle. Cette façon de penser est

illustrée admirablement par la célèbre remarque de Laplace: «Une intelligence
qui, pour un instant donné, connaîtrait toutes les forces dont la nature est

animée, et la situation respective des êtres qui la composent, si d'ailleurs elle

était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la
même formule les mouvements des plus grand corps de l'univers et ceux du
plus léger atome: rien ne serait incertain pour elle, et l'avenir comme le passé,

serait présent à ses yeux. L'esprit humain offre, dans la perfection qu'il a su

donner à l'Astronomie, une faible esquisse de cette intelligence. [...] La régu-
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larité que l'Astronomie nous montre dans le mouvement des comètes, a lieu
sans aucun doute pour tous les phénomènes. La courbe décrite par une simple
molécule d'air ou de vapeurs, est réglée d'une manière aussi certaine, que les

orbites planétaires: il n'y a de différences entre elles, que celles qu'y met notre
ignorance.»

Mais existe-t-il donc une autre manière de décrire la réalité en termes

scientifiques? En effet, sous l'influence des prodigieux succès de la Mécanique
Céleste (l'exemple peut-être le plus parfait d'un modèle déterministe) l'opinion

est devenue assez courante que tout modèle physique devait, en dernière

analyse se réduire à un modèle déterministe du type que je viens de décrire.

Néanmoins, il n'en a pas été ainsi, et le dix-neuvième siècle a été témoin
d'immenses progrès dans la compréhension du comportement de la matière

par des modèles de type probabiliste. Ceux-ci, renonçant explicitement à une
description même approximativement complète du système, font des prédictions

sur la probabilité d'obtenir certaines valeurs pour les quantités observées

(x(l),..., x(N)). Ces probabilités peuvent être indépendantes du temps ou non.
Deux exemples clarifieront peut-être ce que je veux dire. Tout d'abord,

considérons le système solaire. Il peut se décrire au moyen d'un modèle

mathématique fort simple, postulé par Newton dans son System of the World:

il se compose des neuf planètes avec leurs satellites. Les variables du modèle

sont les positions et les vitesses de chacun de ces corps (soleil, planètes et

satellites). Cela représente donc six nombres pour chaque corps céleste (trois
déterminant la position, disons en coordonnées cartésiennes, trois autres
déterminant la vitesse, tant en grandeur qu'en direction). Les lois décrivant
l'évolution de ces nombres dans le temps sont les lois du mouvement de

Newton, complétées par la loi de la gravitation universelle, c'est-à-dire, l'existence

d'une force entre deux masses quelconques, proportionnelle au produit
des masses et inversement proportionnelle au carré de la distance. Ce modèle
est déterministe de façon manifeste. Ceci veut dire qu'il est possible de
déterminer les valeurs des positions et des vitesses de chaque corps au moyen de ces

lois, si les valeurs au temps t 0 sont données. Ceci est un résultat fort
élémentaire de mathématique. Ce qui est bien moins évident, c'est que ce

modèle décrit les phénomènes observés avec une précision extraordinaire.
Bien sûr, il ne saurait être question de dire que les quelques nombres décrivant
les positions et vitesses des planètes soient une description complète du
système solaire. Nous avons, par exemple, négligé de spécifier la forme des

planètes. Un théorème dû à Newton permet de le faire si la distribution de la

matière de la planète est parfaitement sphériquement symétrique. Or il n'en
est rien, et il faudrait donc la décrire, en principe sans oublier la plus petite
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colline. Néanmoins, aucun de ces facteurs négligés n'a une influence appréciable

sur les positions et vitesses que l'on veut déterminer. Ainsi donc, la limitation

à une précision imparfaite est précisément ce qui nous permet d'utiliser
des modèles mathématiques simples pour décrire une réalité complexe, en
faisant abstraction de certaines de ces complexités qui n'ont pas d'influence
mesurable.

Un exemple diamétralement opposé est celui de la description d'une
substance, disons un gaz, au niveau macroscopique. Il est facile, bien entendu, de

trouver des quantités comme la pression et la température, qui obéissent à des

relations comme, par exemple:

pv RT(l)

(p est la pression, T la température, v le volume molaire et R une constante).
Dans notre terminologie, ceci représente un modèle déterministe pour la

pression et la température d'un gaz. Mais, comme on sait que les substances

sont formées d'atomes (que nous pouvons nous représenter comme de petites
boules très dures), on est amené à chercher une explication de ce comportement

en termes du comportement de ces atomes. On peut obtenir une telle

explication en supposant que les atomes se meuvent au hasard avec une
vitesse dont le carré moyen serait proportionnel à la température T, et la force

moyenne exercée sur la surface des parois proportionnelle à la pression. Cette

hypothèse permet d'obtenir l'équation (1) comme une conséquence. Ce modèle

est maintenant un modèle probabiliste, cependant. En effet, les mouvements

atomiques à partir desquels on pourra calculer la pression et la température

sont des mouvements complètement imprévisibles. A cause du très

grand nombre d'atomes dans une quantité macroscopique de substance (environ

1023 dans un gramme) l'incertitude statistique pour une quantité moyen-
née sur tous les atomes est négligeable.

Nous arrivons là pourtant à une situation quelque peu paradoxale: en effet,
le but d'un modèle atomiste est précisément de réduire le comportement des

quantités thermodynamiques (température et pression) au schéma mécanique
dont l'exemple est le modèle du système solaire. De fait, le modèle généralement

accepté est le suivant: les atomes suivent des trajectoires parfaitement
déterminées par des lois entièrement mécaniques, mais que la complexité du
mouvement qui en résulte est telle que celui-ci peut être traité comme un
mouvement aléatoire. Ceci est par ailleurs nécessaire, car il est matériellement

impossible de connaître les positions et les vitesses de 1023 particules. La
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probabilité apparaît donc ici pour pallier à une ignorance totale des conditions

initiales. La justification de cette affirmation est difficile en termes rigoureux.

Récapitulons: il existe deux sortes de modèles pour un système physique:
ceux qui permettent des prédictions définies à partir de conditions initiales
données et ceux qui ne permettent que des prédictions probabilistes. (Notons
en passant qu'il est tout à fait simple de vérifier l'exactitude d'un modèle

déterministe, mais qu'il est beaucoup moins simple de vérifier un modèle

probabiliste. Cela est dû au fait qu'il est nécessaire de préparer beaucoup de

systèmes avec des conditions initiales identiques et de vérifier que les résultats

sont distribués selon la loi de probabilité prédite par le modèle.) Les modèles

mécaniques (déterministes par définition) jouissent d'un prestige tout à fait
particulier. Ce prestige a deux causes: premièrement, l'effet du triomphe de la

mécanique céleste n'a jamais été oublié; deuxièmement, les lois générales de la

mécanique ont un domaine d'application extraordinairement vaste. C'est

pourquoi, aux yeux de la physique classique, tout modèle probabiliste de la
réalité ne peut être qu'une approximation de la description correcte, qui est

déterministe. Traditionnellement on a associé les modèles déterministes à une

description «complète» du système physique, alors que les modèles probabilistes

ont été associés à des descriptions «réduites» du système, rendues nécessaire

par notre incapacité de mesurer tous les paramètres déterminants du
mouvement. C'est là le cas, par exemple, de la théorie des gaz que j'ai déjà
mentionnée.

Entre parenthèses, il faut bien dire que cette attitude a dû changer avec
l'avènement de la mécanique quantique. Sans entrer dans des détails, la mécanique

quantique est reconnue aujourd'hui comme la théorie correcte des

phénomènes à l'échelle atomique et ne se laisse pas classifier de manière

simple dans le schéma d'une théorie probabiliste ou déterministe. Son

interprétation la plus courante donne une place irréductible et centrale au hasard.
Je ne veux pas, cependant, traiter ce sujet, qui est d'une extrême complexité.
Ce dont je voudrais parler en plus grand détail, c'est le rôle du hasard et de la

probabilité même dans les modèles apparemment parfaitement mécaniques.
Pour cela, il faut reprendre ce que nous avions dit au sujet des rapports

entre un système physique et le modèle mathématique qui le décrit. Nous
avions remarqué que la correspondance entre la configuration réelle d'un
système et sa description quantitative ne peut jamais qu'être approximative.
Cela est dû à plusieurs causes, dont la plus importante est la nécessité d'introduire

une description toujours plus complète du système. Par exemple, si nous
voulions décrire le système solaire avec une précision de trente décimales
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(encore très éloigné d'une précision «totale» qui est inatteignable même en

principe), il faudrait déterminer avec précision la position de chaque atome.
Qui plus est, il serait impossible de considérer que le système solaire est isolé,

car il est toujours possible qu'un atome imprévu vienne de l'extérieur déranger

le système. Bien entendu, cette limitation ne cause aucun problème dans la

pratique: au contraire, c'est grâce à elle qu'il est possible de faire un modèle

simple d'un système physique. Mais il reste néanmoins un problème: que se

passe-t-il si le modèle prédit que la trentième décimale des variables

(x(l),...,x(N)) au temps t 0 est nécessaire à la détermination de la première
décimale au temps t? Ceci pose un problème particulièrement grave si le temps
t nécessaire pour cette amplification de l'erreur n'est pas très grand. La remarque

a été faite par Poincaré en ces termes: «... Mais, lors même que les lois
naturelles n'auraient plus de secret pour nous, nous ne pourrions connaître la
situation qu"approximativement. Si cela nous permet de prévoir la situation
ultérieure avec la même approximation, c'est tout ce qu'il nous faut, nous
disons que le phénomène a été prévu, qu'il est régi par des lois; mais il n'en est

pas toujours ainsi, il peut arriver que de petites différences dans les conditions
initiales en engendrent de très grandes dans les phénomènes finaux; une petite
erreur sur les premières produirait une erreur énorme sur ces derniers. La
prédiction devient impossible et nous avons le phénomène fortuit.»

Nous avons déjà dit qu'il n'est pas possible de connaître les conditions
initiales d'un système avec un nombre immense de particules, comme l'est une

quantité macroscopique de gaz. Ce qui est beaucoup moins évident, c'est qu'il
existe des systèmes simples, tels que le billard de Sinai, qui montrent exactement

la sensitivité dans leur dépendance des conditions initiales dont parle
Poincaré. Le billard de Sinai est décrit dans la figure 1. Il s'agit d'une particule
ponctuelle qui se meut en ligne droite et à vitesse constante entre des murs qui
la réfléchissent de manière parfaite. La forme des murs est dessinée dans la

figure. Le mouvement de la particule a un caractère très irrégulier et les

erreurs dans les conditions initiales augmentent de façon exponentielle. Cela

veut dire qu'une erreur initiale double en un temps constant t0 et qu'elle
continue à doubler après chaque temps t0. Ceci a pour conséquence que, si

nous ignorons la trentième décimale au temps t 0, nous ne pourrons rien
dire au sujet de la position de la particule pour des temps t supérieurs à 90to.

Or comme t0 est de l'ordre du temps nécessaire pour que la particule fasse une
collision avec les murs, il n'est pas possible de prédire la position de la

particule après environ 90 collisions sans connaître les conditions initiales
avec une précision qui doit toujours rester inatteignable. Ceci n'est pas,
j'insiste, une simple limitation technique: tout d'abord, la description même de la
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réalité physique ne reste pas la même aux échelles dont il se traite. Par exemple,

à l'échelle de 10 " cm, il n'est pas sûr que l'espace ait la structure simple

que nous lui attribuons d'habitude. Mais quand même nous pourrions passer
outre à cette difficulté, il resterait le problème d'isoler le système physique de

toute influence externe capable d'influencer le système à tel niveau de précision.

Or ceci est manifestement impossible. On obtient donc une situation
quelque peu paradoxale: le système que nous considérons (billard de Sinai) est
très simple. Sa définition montre que si, par impossible, la position et la
vitesse de la particule étaient données initialement, elles pourraient se calculer

pour tous les temps. D'un autre côté, cependant, même la plus petite incertitude

sur les valeurs initiales détruit toute possibilité de prédiction après un
temps fort limité (environ cent collisions avec des erreurs dans la trentième
décimale seulement). C'est cette situation qui est connue en physique sous le

nom de chaos. Ainsi le billard de Sinai est un exemple d'un système déterministe

chaotique. Il convient de préciser qu'on n'emploie pas ce terme pour
décrire des modèles dont le caractère probabiliste est explicite.
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Mais on peut se demander si c'est là une situation caractéristique, ou s'il
s'agit au contraire d'un exemple atypique et sans importance pour le monde
réel. Il n'est pas facile de répondre à cette question. Evidemment il existe des

systèmes réguliers. Tel est, par exemple, l'orbite elliptique d'une seule planète
autour du Soleil. Dès que nous introduisons le fait qu'il y a plusieurs planètes

qui s'attirent entre elles en même temps qu'elles sont attirées par le Soleil, la

description des orbites devient très complexe. Néanmoins, il a été prouvé par
Kolmogorov, Arnold et Moser que la plupart des orbites ont une description
en termes simples, tout au moins si l'attraction entre les planètes est suffisamment

petite en comparaison à l'attraction solaire. Plus généralement, ils ont
montré qu'une petite perturbation sur un système régulier ne modifie la

régularité du mouvement que pour une petite partie des orbites du système.

Dans ce cas, l'existence d'une certaine inexactitude dans les données initiales
n'a pas de conséquences graves. Ceci est dû au fait que, dans un tel système,
les erreurs ne croissent que proportionnellement avec le temps. Cette croissance

lente permet de prédire le mouvement pendant des temps très considérables.

En particulier, en augmentant la précision d'un facteur de dix, il devient

possible de prédire le comportement du système pour un temps dix fois plus
long. Il est donc vrai que la classe des systèmes réguliers (ou prévisibles) n'est

pas vide ni exceptionnelle. En effet, les systèmes parfaitement solubles sont
exceptionnels, et la plus petite perturbation les rend insolubles. Néanmoins,
selon le théorème de Kolmogorov, Arnold et Moser, ils restent en grande
mesure réguliers, bien qu'un mouvement chaotique puisse fort bien apparaître
dans certaines régions très limitées.

Mais que dire, alors, du mouvement chaotique? Il existe certains exemples,

comme le billard de Sinai, où le chaos a pu être démontré rigoureusement. En
général, cela se fait en montrant l'existence d'une structure d'un type extrêmement

particulier qui implique la dépendance sensitive des conditions initiales

que nous venons de discuter. Cette structure est-elle stable par rapport aux
petites perturbations? Pour une classe assez générale de systèmes la réponse
est affirmative. Cela donne donc le résultat suivant: ni les systèmes réguliers ni
les systèmes chaotiques ne représentent une exception à la règle, car les deux

types de systèmes maintiennent leurs propriétés essentielles sous l'influence de

petites perturbations. Pour compliquer encore un peu le panorama, il existe

des systèmes mixtes, où le chaos coexiste avec un mouvement régulier, c'est-à-
dire que, suivant la condition initiale, la trajectoire peut se trouver être régulière

ou chaotique.
Jusqu'ici j'ai essayé d'éviter des descriptions excessivement techniques des

systèmes physiques en question. Je voudrais néanmoins tenter d'expliquer

114



l'origine de ce phénomène qu'est le chaos, pour ne pas donner l'impression
qu'il s'agit là de choses obscures, mais bien au contraire d'un phénomène dont
l'origine est simple et facilement compréhensible.

Simplifions les choses tout d'abord en ne considérant qu'un seul nombre x.
De plus, nous allons ne considérer qu'une vue «stroboscopique» du système:

nous mesurons la valeur de x, par exemple, toutes les secondes, et nous dirons

que nous connaissons une loi décrivant le système si nous pouvons calculer la
valeur à un instant à partir de la valeur à l'instant précédent. Considérons une
variable x limitée à l'intervalle entre zéro et un. La règle suivante a les propriétés

caractéristiques du chaos:

t 0 x 0.1415926563

t l x 0.415926563

t 2 x 0.15926563

t 3 x 0.5926563

t 4 x 0.926563

t= 5 x 0.26563

t 6 x 0.6563

t 7 x 0.563

t 8 x 0.63

t 9 x 0.6

t= 10 x

La règle est simple (et déterministe): déplacer le nombre d'une décimale à la

gauche. La condition initiale était donnée avec très grande précision (dix
décimales), néanmoins, après dix répétitions de la règle, la valeur de x devient

totalement indéterminée. Comme nous allons le voir, cette règle est dans un
certain sens l'exemple typique du chaos.

En effet, nous pouvons généraliser. Supposons que la variable x soit partie
d'un ensemble quelconque A. Divisons A en deux parties disjointes A0 et Ai.
Il est maintenant possible de faire une espèce d'histoire abrégée de chaque

trajectoire, dans laquelle on note si x(t) est dans l'ensemble Ao ou Ai pour
toutes les valeurs entières de t. Appelons, par exemple, Aoi l'ensemble de tous
les x qui sont en A0 au temps t O et qui sont en Ai au temps t 1. De la même

manière, on définit Aouoi comme l'ensemble des x qui se trouvent en A0 à t O

et 3, en Ai à t 1,2 et 4. Dans certains systèmes il est possible de choisir la

partition (peut-être avec plus de deux ensembles) de telle manière que la

plupart de ces ensembles ne soient pas vides (c'est-à-dire qu'il soit possible

pour au moins un x de passer par une séquence donnée de A0 et Ai, si cette
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séquence satisfait certaines conditions simples) et que les ensembles non vides
aient une «taille» comparable. Ceci revient à dire qu'environ la moitié des

éléments de A0io se trouveront dans Aoioo et l'autre dans Aoioi- Il existe
plusieurs systèmes pour lesquels on a pu prouver l'existence de telles partitions.
Mais, si nous regardons de près cette structure que nous venons de définir,
nous verrons qu'elle ressemble beaucoup à la règle un peu caricaturale définie

plus haut; en effet, la séquence de 1 et de O qui caractérise x peut être vue
comme un type de développement décimal généralisé. Il y a bien sûr des

problèmes: il ne peut pas être garanti, par exemple, qu'à chaque séquence il
existe un x. Certaines séquences seront irréalisables, et il est également possible

que d'autres laissent une ambiguïté au sujet de la valeur exacte de x. Mais
admettons qu'il existe une correspondance, tout au moins grosso modo, entre
les séquences de O et de 1 et les valeurs de x. Dans ce cas, si x a, par exemple,
la séquence 011001000110, le point correspondant à x au temps t l aura la
séquence 11001000110. Nous voyons donc que ce qui détermine le comportement

de x pour des temps t suffisamment grands sont des détails à une échelle

arbitrairement petite, à savoir la valeur de ces «décimales généralisées».
Je crois que ces considérations indiquent que le chaos est un phénomène

assez général. Son apparition est due à l'application répétée d'une règle qui
effectue une forme de «pétrissage» de l'espace décrivant les configurations du

système physique. De grandes investigations numériques ont confirmé cette

impression et ont montré qu'une très grande variété de modèles physiques
sont en effet chaotiques. Comme nous l'avions vu au début de cet article, la

précision limitée avec laquelle nous pouvons identifier les configurations réelles

d'un système physique et les valeurs des variables du modèle qui le décrit
rend toute forme de prédiction du système impossible, même pour des temps
relativement courts. C'est là une forte limitation, pour ne pas dire une négation,

de la position du déterminisme laplacien: en effet, la nature des lois reste

déterministe, mais elles ne permettent plus pour autant la prédiction même à

moyen terme. De cette manière, le mécanisme pourrait être compatible avec

l'expérience quotidienne montrant que, même avec les ordinateurs les plus
puissants (dont certains ont certainement pensé qu'ils pourraient jouer le rôle
de cette «intelligence parfaite» dont parlait Laplace) il reste beaucoup de

phénomènes dont les lois sont relativement simples mais dont le comportement

est totalement imprévisible.
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