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Schweiz.Z.Soziol./Rev. suisse sociol., 5 (1979) 365-380

MULTIDIMENSIONALE ANALYSE
VON KATEGORIALEN DATEN : LOG-LINEARE MODELLE

Eine Einführung und ein Beispiel
aus der Epidemiologie des Drogenkonsums

Johann Binder
Psychiatrische Universitätsklinik Zürich

ZUSAMMENFASSUNG
Das von Leo Goodman entwickelte Verfahren der Analyse log-linearer Modelle erweist sich als

geeignet, bei der Analyse mehrdimensionaler Kreuztabellen Korrelationen und Interaktionen
höherer Ordnung zu identifizieren und ihre relative Stärke abzuschätzen. In vorliegendem
Aufstatz wird versucht, das Verfahren in möglichst einfacher Weise darzustellen. Dabei wird
auf strukturelle Ähnlichkeiten zur Mehrweg-Varianzanalyse hingewiesen und das Verfahren
wird anhand einer sechsdimensionalen Tabelle aus der Epidemiologie des Drogenkonsums
vordemonstriert.

Résumé
Pour analyser des données distribuées sur plusieurs dimensions, la méthode dite d'"analyse
des modèles log-linéaires" mise au point par Leo Goodman s'est avérée efficiente dans l'identification

de corrélations et d'interactions d'un niveau plus élevé, ainsi que dans la détermination
du poids fonctionnel relatif de ces dernières. L'article expose cette méthode de manière très
simple. Dans ce but ont été mises en évidence les analogies avec les analyses multifactorielles
fie la variance et la méthode a été appliquée à des données empruntées à l'épidémiologie de la

toxicomanie et distribuées sur un tableau à six entrées.

E PROBLEMSTELLUNG UND ZIELSETZUNG

In den Sozialwissenschaften fallen häufig mehrdimensionale Kreuztabellen

von kategorialen oder ordinalen Daten an. Solche Tabellen mit drei und mehr

Dimensionen werden sehr rasch unübersichtlich und können ohne komplexe statische

Methoden nicht zuverlässig interpretiert werden. Die sequentielle Analyse
aller bivariaten Zusammenhänge erweist sich als untaugliches Vorgehen, weil damit

Scheinkorrelationen oder Interaktionseffekte zwischen mehreren Variablen nicht

zuverlässig aufgedeckt werden können. Bei der Interpretation solcher mehrdimensionaler

Tabellen sind vor allem die folgenden Fragen von Bedeutung :

(1) Zwischen welchen Variablen bestehen Zusammenhänge? oder :

(la) Falls eine der Variablen als abhängige Variable betrachtet wird.wie
hängt die abhängige Variable von den übrigen, als unabhängig betrachteten Variablen

ab?

(2) Wie stark sind die Zusammenhänge, die zwischen den einzelnen Variablen

bestehen?

In den letzten Jahren sind mehrere solcher multivariater Verfahren für die

Analyse von Nominal- und Ordinaldaten entwickelt worden, so etwa gewichtete
Regression (Grizzle, Starmer, Koch, 1969), multivariate nominal scale analysis

(Andrews, Messenger, 1973), das DIEC-Verfahren von Küchler (1976) sowie die
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von Leo Goodman entwickelte Methode der log-linearen Modelle. Mit der
zunehmenden Berücksichtigung dieser Verfahren in allgemein verfügbaren
Statistikprogrammpaketen wird die Verwendung dieser Verfahren stark erleichtert.

Die zuletzt genannte Methode der log-linearen Modelle erfreut sich seit

einigen Jahren zunehmender Beliebtheit, wenn man die Anzahl von Publikationen

in vorwiegend amerikanischen Fachzeitschriften betrachtet, in denen sie

angewendet worden ist. Hierzulande scheint die Methode jedoch noch wenig
beachtet zu werden. Aus diesem Grunde möchte ich mit diesem Aufsatz die

Methode der log-linearen Modelle (und den wichtigen Spezialfall des Logit-Modells)
in möglichst "untechnischer" Sprache bekanntmachen und einige elementare

Grundbegriffe erklären, soweit sie zu einem intuitiven Verständnis der Methode

notwendig sind. Nicht beabsichtigt is eine statistisch fundierte Diskussion oder
eine kritische Würdigung dieses Verfahrens im Vergleich zu anderen Methoden.
Dazu sei auf die reichlich vorhandene Spezialliteratur verwiesen : Bischop et al.,

1975; Goodman, 1972, 1973,1976; Davis, 1974 und als Einführung Fienberg,
1977. Das Verständnis der Methode soll weiter dadurch erleichtert werden, dass

an mehreren Stellen auf die den log-linearen Modellen eigene strukturelle Ähnlichkeit

zur Mehrweg-Varianzanalyse hingewiesen wird und indem in Abschnitt 5 ein

Beispiel für die Anwendung dargestellt wird.

2. GRUNDBEGRIFFE

Die zum Verständnis der Methode notwendigen Grundbegriffe sollen anhand
der folgenden dreidimensionalen Kontingenztafel dargestellt werden; es fällt nicht
schwer, diese Begriffe auf den vier- oder mehrdimensionalen Fall zu verallgemeinern.

Wir betrachten im folgenden drei dichotome Variablen :

A Einkommen der Eltern,
B Geschlecht,
C Drogenerfahrung.

Tabelle 1.

A Einkommen den Eltern A 1 (tieD A 2 (hoch)
B Geschlecht B 1 B 2 B 1 B 2
C Drogenerfahrung (Mann) (Frau) (Mann) (Frau)

LC 1 (ja) 1 036 160 699 248

LC 2 (nein) 3 659 1 141 1 978 952

Die Zahlen in den einzelnen Zellen sind die beobachteten Häufigkeiten der
jeweiligen Konfiguration von Merkmalsausprägungen in den drei Variablen. F122

bezeichnet die Anzahl der Beobachtungen mit der Merkmalsausprägung A 1,

B 2, C 2, d.h. der Frauen ohne Drogenerfahrung, deren Eltern ein tiefes
Einkommen haben. Im Beispiel ist F122 1141.
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Multidimensionale Analyse von kategorialen Daten

Unter einer Randverteilung (marginal distribution) versteht man diejenige
Kreuztabelle, die sich ergibt, wenn man über eine oder mehrere Variablen in der
vollständigen mehrdimensionalen Kreuztabelle summiert. Die RandVerteilung von
B und C im obigen Beispiel erhält man etwa, wenn man die Werte für A 1 und
A 2 zusammenzählt. Dies ist der Zusammenhang zwischen Geschlecht und
Drogenerfahrung, wenn man das Einkommen der Eltern nicht berücksichtigt.

Tabelle 2.

B Geschlecht B 1 B 2 Total
C Drogenerfahrung (Mann) (Frau)

C 1 (ja) 1 735 408 2143
C 2 (nein) 5 637 2 093 7 730

Die Randverteilung von C erhält man, wenn man zusätzlich über die Werte
von B summiert. Dies ist die einfache Häufigkeitsauszählung der Variable C,

Drogenerfahrung (s. rechten Tabellenrand).

Odds ratios.
Unter einem odds ratio versteht man das Verhältnis der Häufigkeiten der

beiden Kategorien einer dichotomen Variablen (bzw. einer bestimmten Kategorie
zu allen übrigen Kategorien bei polytomen Variablen). Das odds ratio für die
Variable Drogenkonsum ist 2143/7730 0.277. Die Angabe der Verteilung einer
dichotomen Variablen als Verhältniszahl der beiden Kategorien zueinander scheint
zunächst etwas unüblich; sie kann aber bei Bedarf immer in eine entsprechende
relative Häufigkeit übergeführt werden (21,7% der Stichprobe haben Drogenerfahrung).

Ein bedingtes odds ratio ist ein odds ratio bei einer bestimmten Bedingung,
beispielsweise das odds ratio für C unter der Bedingung B 1: 1735/5637 0.308.

Ein odds ratio zweiter Ordnung ist der Quotient zweier bedingter odds ratios,
Z-B. das odds ratio von C für Männer (B 1) dividiert durch das odds ratio von C
für Frauen (B 2): 1735/5637)/(408/2093) 1.579.

Ein odds ratio zweiter Ordnung lässt sich als Korrelation interpretieren.
Wenn das odds ratio zweiter Ordnung 1 ist, dann besteht keine Korrelation zwi-
schen den beiden involvierten Variablen. Ein odds ratio dritter Ordnung ist der
Quotient zweier odds ratios zweiter Ordnung usf.

Modelle
Es lässt sich zeigen, dass die Häufigkeit einer Zellenbesetzung Fjjk für A i,

® É C k immer durch einen Produktausdruck der folgenden Art dargestellt werben

kann

F-.. „.-A._B._C._AB._AC._BC .„ABC 1

rijk 1? T i T j rk T jj T ik T jk T ijk

1 Bei den Koeffizienten r, log r, bezeichnet das Superskript (A>B>C) die Variable, das
Subskript ^ j k^ die Merkmalsausprägung.
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Dabei ist 77 das geometrische Mittel der Zellenhäufigkeiten, ta das odds ratio
von A i, t AB das odds ratio zweiter Ordnung von A i, B j, usw.

Die obige Formel kann auch anders geschrieben werden, wenn man logarith-
miert; aus dem Produkt ergibt sich nun eine Summe von Logarithmen :

log Fjjk log 17 + log T
A + log T

B + log7"£ +logT^jB + logT^f + log T B£

+ logr^.
Verwendet man nun noch Abkürzungen 0 logrç, X logr für die Logarith-

menausdrücke, so kann man die Formel für den Logarithmus einer Zellenhäufigkeit
als eine gewöhnliche Summe schreiben :

log Fijk 0 + XA + XB + X£ + XAB + XAkc + X Bkc + XABC

Ein solcher Ausdruck für den Logarithmus der Zellenhäufigkeit wird als

loglineares Modell für die Zellenhäufigkeit bezeichnet. Im Prinzip besteht für jede
einzelne Zelle Fjjk ein solches Modell. Da aber SX^ 0 für alle i, usw. gilt, vereinfachen

sich die verschiedenen Modelle für die einzelnen Zellenhäufigkeiten.
Insbesondere gilt für dichotome Variablen : XA - XA.

Effekte.
Die einzelnen Summanden in der obigen Gleichung bezeichnen wir als

Effektparameter. Als Haupteffekte bezeichnen wir die Effekte mit einem Subskript, z.B.
XA, als Interaktionseffekte zweiter Ordnung jene mit zwei Subskripten, z.B. XBkc,

und als Interaktioneffekte dritter Ordnung jene mit drei Subskripten : XAjBkc.

Ein Interaktionseffekt zweiter Ordnung X Bk lässt sich als Beziehung (Korrelation)

zwischen B and C interpretieren. Ein Interaktionseffekt dritter Ordnung
X^j®0 ist zu interpretieren als ein Zusammenhang zwischen B und C, dessen Stärke

von der Ausprägung der Variable A abhängig ist.

Ein log-lineares Modell für eine n-dimensionale Tabelle, das alle möglichen
Effekte erster, zweiter bis n-ter Ordnung enthält nennen wir ein saturiertes Modell.
Wie bereits erwähnt, lassen sich die Effektparameter des saturierten Modells aus

den beobachteten Werten einer beliebigen mehrdimensionalen Kreuztabelle direkt
berechnen. Dabei besteht immer eine perfekte Übereinstimmung zwischen den
Daten in der Krauztabelle und den Werten Fjjk, die sich durch das log-lineare Modell
berechnen lassen; das saturierte Modell ist mithin nur eine andere Darstellung der

mehrdimensionalen Kreuztabelle. Da das saturierte Modell dieselbe Information
enthält wie die Kreuztabelle, eignet es sich allerdings ebenso wenig zur Interpretation.

Vor allem die Interaktionen höherer Ordnung machen das Modell rasch

unübersichtlich.

Die Suche nach einfacheren Modellen.
Das Ziel der Analyse von Kreuztabellen mit Hilfe log-linearer Modell ist

deshalb, durch Weglassen möglichst vieler Effekte des saturierten Modells ein
einfacheres (sparsameres) Modell zu bilden, das noch hinreichend gut mit den
beobachteten Daten übereinstimmt. Ein solches Modell könnte etwa so aussehen :
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logFijk =0 + Xf+X?+X£+x^+XBf.
In diesem Modell sind gegenüber dem saturierten Modell die Effekte

\ A BC V AC
A ijk ' A ik

weggefallen. Dies bedeutet : es besteht ein Zusammenhang zwischen B und C

(Geschlecht und Drogenerfahrung) und einer zwischen B und A (Geschlecht und

Einkommen der Eltern). Hingegen besteht kein Zusammenhang zwischen A und
C (Einkommen der Eltern und Drogenerfahrung) und der Zusammenhang zwischen

A und B ist auch nicht abhängig von C (Drogenerfahrung). Die Techniken der

Analyse log-linearer Modelle und die entsprechenden Computerprogramme (Dixon,
1976) dienen dazu, solche einfacheren Modelle zu finden und sie auf ihre

Ubereinstimmung mit den Daten zu prüfen.

Zusammenhang zwischen angepassten Randverteilungen und berücksichtigten

Effekten.
Es besteht eine eineindeutige Zuordnung zwischen jenen Effekten, die in

eieem Modell berücksichtigt worden sind und jenen RandVerteilungen, die durch

das Modell exakt wiedergegeben werden fitted marginals). Im obigen Modell, das

die Effekte XA.B, XB,f enthält, sind die Randverteilungen AB und BC exakt
enthalten. Wegen dieser eineindeutigen Zuordnung kann man ein Modell statt durch

die darin enthaltenen Effekte auch dadurch beschreiben, dass man angibt, welche

Randverteilungen im Modell exakt angepasst sind. Im obigen Modell sind dies :

A, B, C, AB, BC.

Das hierarchische Prinzip.
Eine grundlegende Eigenschaft der log-linearen Modelle ist ihre hierarchische

Struktur. Wenn ein Modell einen Effekt n-ter Ordnung enthält, so impliziert dies,

dass alle darin enthaltenen Effekte geringerer Ordnung im Modell ebenfalls
vorkommen müssen. Kommt der Interaktionseffekt dritter Ordnung ABC vor, so

heisst das, dass die Interaktionen AB, AC und BC im Modell ebenfalls enthalten

sein müssen. Der Interaktionseffekt ABC enthält also nur jenen Effekt, der über

das hinausgeht, was die Interaktionseffekte AB, AC und BC zusammen erklären.

Dieses hierarchische Prinzip ist unmittelbar einsichtig, wenn man an die eineindeu-

fige Zuordnung von Effekten und angepassten Randverteilungen denkt : aus der

Randverteilung der drei Variablen ABC kann man alle darin enthaltenen Randver

teilungen berechnen; aus diesem Grunde impliziert das Vorhandensein des Effek-

tes ^AjfkC auch das Vorhandensein folgender Effekte :

lA >B -xC A B -vAC "x BC
i > Aj xk, X y X ik xjk.

Die Existenz des hierarchischen Prinzips bei den log-linearen Modellen

erlaubt es übrigens, die in einem Modell enthaltenen Effekte abgekürzt durch ie

angepassten Randverteilungen höchster Ordnung zu beschreiben : ein Modell, bei

dem die Randverteilungen ABC und CD angepasst sind, enthält folgende Effekte

A,B,C,D, AB,AC,BC,CD, ABC.
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3. DIE ZWEI HAUPTSCHRITTE IN DER ANALYSE

Das Verfahren der log-linearen Modelle impliziert zwei Analyseschritte, die
nacheinander auszuführen sind :

(1) Die Suche nach dem optimalen Modell, d.h. nach einem Modell, das eine

ausreichende Erklärungskraft bei möglichst einfacher Form und möglichst guter
theoretischer Interpretierbarkeit bietet. Das optimale Modell ist bestimmt, wenn
man weiss, welche Effekte in diesem Modell enthalten sind und welche nicht.

Die Schätzung der Modellparameter, d.h. der im Modell aufgenommenen
Effekte. Bei nicht saturierten Modellen lassen sich die Effektparameter nicht direkt
durch Umformung der Ausgangsdaten gewinnen. Vielmehr sind maximum-likeli-
hood-Schätzmethoden notwendig (Fienberg, 1977).

Aus den Effektparametern kann auch auf die relative Stärke der einzelnen

im Modell vorhandenen Effekte geschlossen werden. Ausserdem können die Resultate

in einer Weise dargestellt werden, die es erlaubt, die relative Erklärungskraft
eines Modells oder einzelner Effekte eines Modells in Beziehung zu setzen mit
einem Basismodell. Das Basismodell entspricht der Nullhypothese und ist in der

Regel jenes Modell, das das Fehlen von Zusammenhängen zwischen den Variablen
postuliert.

3.1 Identifikation eines Modells
Die Anpassung (fit) eines Modells an die Daten wird durch die Abweichung

der auf Grund des Modelles geschätzten Zellenwerte von den beobachteten Zellenwerten

mittels eines verallgemeinerten Chiquadrattests geprüft; es handelt sich um
das likelihood ratio-Chiquadrat. Besteht eine signifikante Abweichung zwischen
Modell und Daten, so ist das Modell nicht adäquat.2

Meist geht es nicht darum, ein theoretisch erwartetes Modell anhand von
Daten zu überprüfen, sondern man möchte aus den vorhandenen Daten ein Modell
erschliessen, das die Daten optimal erklärt. Wie erwähnt heisst optimal: möglichst
einfach bei hinreichend guter Übereinstimmung mit den Daten. Es besteht keine

eindeutige Suchstrategie für das optimale Modell. In jedem Fall wird die Suchstrategie

in einer schrittweisen Analyse bestehen, indem ein bestimmtes Modell mit
verschiedenen "benachbarten" Modellen verglichen wird. Dabei sind Vorwärts-
und Rückwärtsstrategien möglich, d.h. ein Vergleich mit Modellen, die jeweils
einen Effekt mehr bzw. weniger enthalten. Falls zwischen zwei Modellen keine

2 In der Literatur werden keine minimalen Zellenbesetzungen für die mehrdimensionalen
Kreuztabellen gefordert. Besondere Aufmerksamkeit ist jedoch dem Vorhandensein von
leeren Zellen zu schenken. Dabei ist zu unterscheiden zwischen definitionsgemäss leeren
Zellen (structural zeros — beispielsweise militärischer Grad von Frauen) und zufällig
leeren Zellen (sampling zeros), die deshalb zustande kommen, weil von einer seltenen
Merkmalskombination keine Einkeit in der Stichprobe enthalten ist. Die zufällig leeren
Zellen sind solange nicht problematisch, als sie nicht die Berechnung von erwarteten
Zellenwerten von Null erzwingen. In diesem Falle sowie bei definitionsgemäss leeren
Zellen muss eine Korrektur der Freiheitsgrade angebracht werden. Für eine eingehende
Diskussion s. Fienberg, 1977, Kap. 8.
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signifikante Differenz in der Erklärungskraft besteht, wird das einfachere Modell
bevorzugt. Falls in Modell signifikant mehr Abweichung erklärt, so wird jenes
Modell mit der grösseren Erklärungskraft gewählt (genaues Vorgehen : es werden
die Differenzen zwischen zwei likelihood ratio-Chiquadraten auf ihre Signifikanz
geprüft).

Aus praktischen Erwägungen ist es nicht möglich, alle theoretisch existierenden

Modelle miteinander zu vergleichen. Zwei Strategien sind geeignet, das

optimale Modell zielstrebig zu identifizieren.

3.1.1 Methode der Effekte gleicher Ordnung
Zunächst werden nur jene Modelle miteinander verglichen, bei denen alle

Effekte gleicher Ordnung enthalten sind. Im obigen Beispiel mit drei Variablen
würde das bedeuten, dass die folgenden Modelle miteinander verglichen werden :

(1) A,B,C :logFijk 0+\t+\®+x£
(2) AB, AC, BC : log Fijk 0 + Xf -+ X® 4- x£ + X^B+ X jkc + X?kc

(3) ABC : log Fjjk 0 + Xf + XB + \ck + XAB + X*kc + XBkc + XAyBkc

Durch diesen Vergleich wird man das Modell höchster Ordnung, das die

Abweichung noch ungenügend erklärt, identifizieren, und das Modell niedrigster
Ordnung, das für eine genügende Anpassung ausreicht. Es kann nun angenommen
werden, dass das optimale Modell zwischen diesen beiden Modellen liegt. Durch
systematische Hinzunahme bzw. Elimination von Effekten wird man das optimale
Modell finden.

3.1.2. Methode der standardisierten Effekte
Ausgehend vom saturierten Modell berechnet man alle standardisierten

Effektparameter (Effektparameter dividiert durch den Standardfehler). Diese geben
einen Hinweis auf den relativen Einfluss jedes einzelnen Effekts. Als erste Näherung

wird man nun ein Modell wählen, in dem nur die grössten Effekte enthalten
sind. Von diesem ersten Modell aus wird man durch Vergleich mit "benachbarten"
Modellen eine Annäherung ans optimale Modell anstreben.

2. Vergleich der Stärke der einzelnen Effekte im Modell
In multivariaten Verfahren ist man daran interessiert, die relative Stärke der

einzelnen Zusammenhänge abzuschätzen. Bei den log-linearen Modellen bieten
sich hierzu zwei Möglichkeiten.

3-2.1. Vergleich der Effektparameter
Die eine besteht darin, die im Modell vorhandenen Effektparameter X

miteinander zu vergleichen. Dabei empfiehlt es sich, die standardisierten Effektpara-
meter zu verwenden (Effektparameter dividiert durch den Standardfehler). Je

flössen ein Effektparameter ist, desto grösser auch der Einfluss des entsprechen-
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den Effektes im Modell. Die Effektparameter können nur innerhalb eines Modells
in bezug auf ihre Stärke miteinander verglichen werden. Ein v/eiterer Nachtteil bei
der Betrachtung von Effektparametern liegt darin, dass für die Variablen mit mehr
als zwei Merkmalsausprägungen kein einheitlicher Effektparameter berechnet wird,
sondern je einer für jede Merkmalsausprägung bzw. für jede Kombination von
Markmalsausprägungen bei Interaktionen höherer Ordnung, was ziemlich rasch zu
unübersichtlichen Resultaten führt. Bei dichotomen Merkmalen unterscheiden
sich die Effektparameter für die beiden Kategorien nur durch das Vorzeichen,
deshalb genügt die Angabe des Effektparameters für eine Kategorie.

Die unstandardisierten Effektparameter lassen sich in Analogie zu den
adjustierten Mittelwertsabweichungen der Mehrweg-Varianzanalyse leicht interpretieren :

Sie geben an, um wieviel sich der Logarithmus einer Zellenhäufigkeit Fjjk ändert
durch den entsprechenden Effekt, da ja die Summe aller Effekte gerade gleich
dem geschätzten Wert für den Logarithmus der Zellenhäufigkeit Fyk ist.

3.2.2. Determinationskoeffizienten
Wie bereits erwähnt, misst das likelihood ratio Chiquadrat die Abweichung

eines bestimmten Modells von den beobachteten Daten. Das likelihood-ratio
Chiquadrat eines bestimmten Modelles kann in mehrere additive Komponenten
aufgeteilt werden, die den im Modell enthaltenen Effekten zugeordet werden
können. Auf diese Weise ist es möglich, die "Abweichung" eines bestimmten
Modells von den Daten in ähnlicher Weise wie bei der Varianzanalyse auf einzelne

Komponenten aufzuteilen. Tabelle 3 gibt ein Beispiel hierfür, das sich auf
verschiedene Modelle für die in Tabelle 1 gezeigte dreidimensionale Kreuztabelle
bezieht.

Goodman (1972, S. 42) schlägt ausserdem die Berechnung eines
Determinationskoeffizienten als Mass für die Güte eines Modells vor (goodness of fit). Der
Determinationskoeffizient hat eines strukturelle Ähnlichkeit zum quadrierten
multiplen Korrelationskoeffizienten (Mass für die erklärte Varianz) in der
varianzanalytischen Statistik. Anstelle des Begriffs der Varianz tritt hier allerdings der

Begriff der Abweichung des Modells von den beobachteten Daten.
Während in der varianzanalytischen Statistik die totale Varianz einer Variablen

als Bezugsgrösse für die erkläre Varianz dient, verwendet man beim
Determinationskoeffizienten in der Analyse log-linearer Modelle die Abweichung des

Modells von den Daten bei einer Nullhypothese. Die Nullhypothese wird meist ein
Modell sein, bei dem das Fehlen von Beziehungen zwischen den Variablen postuliert

wird. In unserem Drei-Variablen-Beispiel also die Abweichung: X2 (Modell 1).
Das Modell M 4 (AB, AC, BC) bewirkt eine geringere Abweichung von den Daten.
Die Differenz zwischen den beiden Chiquadrats

X2 (Modell 1)-X2 (Modell 4)

kann als Verbesserung der Anpassung des Modells M 4 gegenüber dem Modell M 1

gelten. Diese Verbesserung in der Uebereinstimmung kann in Form eines Quotien-
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Tabelle 3.

Nr. Modell likelihood df p
ratio X2

1 A, B, C, 632.71 4 0.0
2 A, BC 346.10 3 0.0
3 AC, BC 125.15 2 0.0000
4 AB, AC, BC 10.35 1 0.0000
5 ABC 0 0 1.0

Analyse der "Abweichung" in der dreidimensionalen Kreuztabelle ABC (Tabelle 1)

Quelle der Abweichung Nr. d. Modells df likelihood-
ratio X2

1. Abweichung aufgrund aller
Interaktionseffekte

2. durch Modell (3) nicht
erklärte Abweichung

3. durch Modell (3) erklärte
Abweichung

Aufteilung von 2.
2a. durch Modell (4) nicht

erklärte Abweichung
2b. durch Effekt AB in

Modell (4) erklärte
Abweichung

(1) 4 632.71

(3) 2 125.15

(1) — (3) 2 507.56

(4) 1 10.35

(3)-(4) 1 114.80

ten in Beziehung gesetzt werden zur Abweichung unter der Nullhypothese. Diese

Grösse bezeichnet Goodman als Determinationskoeffizient :

X2(M1)-X2(M4)
X2 (M 1)

Der Begriff der erklärten Abweichung kann in analoger Weise verwendet

werden, um die Erklärungskraft eines einzelnen Effekts in einem Modell zu bestimmen:

Der partielle Determinationskoeffizient ist ein Mass dafür, wieviel ein

einzelner Effekt erklärt, wenn man alle übrigen Effekte des Modells mit gleicher oder

geringerer Ordnung konstant hält. Im Zähler steht die Differenz in der Abweichung

zwischen zwei Modellen, die sich nur durch den interessierenden Effekt
unterscheiden. Im Nenner steht wiederum die totale zu erklärende Abweichung, d.h.

die Abweichung unter der Nullhypothese3. So ist der partielle Determinations-

3 Die Bezugsgrösse im Nenner wird bei Goodman (1972) anders definiert. Die hier
verwendete Definition wird aber von verschiedenen Autoren in der Literatur verwendet

(Duncan-Jones, 1976; Hauser et al., 1975; Stolzenberg et al., 1977). Die Verwendung
der Abweichung unter der Nullhypothese im Nenner weist eine grössere Analogie zum

partiellen Korrelationskoeffizienten auf.
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koeffizient von ABC :

X2 (M 4) — X2 (M 5)

X2 (Ml)

4. LOGIT-MODELLE UND ODDS RATIOS

Bis hierin haben wir in unseren Überlegungen nicht zwischen abhängigen
und unabhängigen Variablen unterschieden, sondern die Beziehungen zwischen
allen Variablen in einer mehrdimensionalen Kreuztabelle untersucht. Ein wichtiger
Spezialfall der log-linearen Modelle bezieht sich nun auf den Fall einer beliebigen
Anzahl unabhängiger Variablen und einer abhängigen Variable, die nur zwei
Ausprägungen kennt, etwa C in unserem Beispiel: Drogenerfahrung ja/Drogenerfahrung
nein. Dieser Spezialfall, der als Logit-Modell bezeichnet wird, vereinfacht das

Arbeiten mit log-linearen Modellen.
Während in der bisherigen Betrachtung Beziehungen zwischen beliebigen

Variablen interessiert haben, werden beim Logit-Modell nur Beziehungen zwischen
den unabhängigen Variablen einerseits und der abhängigen Variable andererseits
betrachtet. Die Beziehungen unter den unabhängigen Variablen interessierten
nicht. Aus diesem Grund wird beim Logit-Modell nicht versucht, ihre Struktur
aufzuklären, sondern die Beziehungen unter den unabhängigen Variablen werden
als fix angenommen und durch das saturierte Submodell für die unabhängigen
Variablen dargestellt.

Anstelle der relativen Häufigkeit des Auftretens eines dichotomen Merkmals
(z.B. 21,7 % Personen mit Drogenerfahrung in Tabelle 2) kann äquivalent das odds

ratio für diese Kategorie angegeben werden (2143/7730 0,28 ist das odds ratio,
Drogenerfahrung zu haben). Beim Logit-Modell geht es darum, ein Modell für das

odds ratio der Zellenfrequenzen der abhängigen Variable zu gewinnen — und nicht
wie bisher ein Modell für die einzelnen Zellenfrequenzen. Es resultiert folgende
Gleichung :

log log Fjj, - log Fij2 0 + X^ + X? + XÇ + XV + XA,C + \B.Ç +

+ XAif,c - (0 + XA + X? + X£ + XAB +

+ X*ac+X»Ç + XAifaC

Da bei dichotomen Variablen die Parameter für die beiden Kategorien sich

nur durch das Vorzeichen unterscheiden, kann wie folgt vereinfacht werden :

log — xÇ + 2-XA,c+2-XBjf+ 2-XAf1c
Fij2

Ersetzt man 2 X ß, so vereinfacht sich die Gleichung für Logit-Modell zu

log ßf + + 0 J
+ ß'ViC

f* ij 2
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Tabelle 4

YEAR SEX ORTGR BILOUNG einkvat I DROGKON T(01
V S U 8 E I JA NE IN

71. MANN <10000 TIEF TIEF I 104 717
HOCH I 21 58

HOCH TIEF I 104 458
HOCH I 74 135

>10000 TIEF TIEF I 89 371
HOCH I 20 44

HOCH TIEF I 101 324
HOCH I 75 118

ZUERICH TIEF TIEF I 132 377
HOCH I 18 41

HOCH TIEF I 222 408
HOCH I 92 145

FRAU <10000 TIEF TI EF I 5 39
HOCH I 0 0

HOCH TIEF I 11 119
HOCH I 10 49

>10000 TIEF TIEF I 2 32
HOCH I 0 4

HOCH TIEF I 10 77
HOCH I 7 37

ZUERICH TIEF TIEF I 7 56
HOCH I 1 5

HOCH T I EF I 29 138
HOCH I 19 52

78. MANN <10000 TIEF TIEF I 43 259
HOCH I «a 206

HOCH TIEF I T) 156
HOCH I 106 367

>10000 TIEF TIEF I 58 207
HOCH I 39 186

HOCH TIEF I 40 135
HOCH I 92 338

ZUERICH TIEF TIEF I 62 152
HOCH I 50 119

HOCH TIEF I 42 97
HOCH I 66 241

< 10000 TIEF TIEF 1 11 132
HOCH I 14 68

HOCH TIEF I 12 95
HOCH I 65 172

>10000 TIEF TIEF I 14 115
HOCH I 13 83

HOCH T 1 EF I 10 97
HOCH I 33 197

ZUER ICH TIEF II EF I 13 99
HOCH 1 17 65

HOCH TIFF 1 28 142
HOCH I 69 220
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Dieser Spezialfall des Logit-Modells weist die grösste Analogie zur multiplen
Regression auf, wie Goodman (1972) eingehend dargelegt hat.

5. BEISPIEL FÜR EIN LOGIT-MODELL : DIE VERÄNDERUNG DES
DROGENKONSUMS IM KANTON ZÜRICH 1971/1978

Die in Tabelle 4 dargestellten Daten sind der Untersuchung von Binder et al.

(1979) entnommen. 1971 und 1978 wurden teils in Vollerhebungen, teils anhand

von repräsentativen Stichproben, 19- bis 20-jährige Männer und Frauen im Kanton
Zürich mit einem schriftlichen Fragebogen u.a. über ihren Konsum von illegalen

Drogen befragt4. Im folgenden wird als Drogenerfahrung (DROGKONT) die
mindestens einmalige Einnahme eines der folgenden Stoffe verstanden : Haschisch,

Halluzinogene, Weckamine, Opiate. Die Drogenerfahrung ist in Tabelle 4 wie folgt
aufgegliedert :

Y — YEAR (Erhebungsjahr): 1971/1978;
S — SEX (Geschlecht) : männlich/weiblich
U— ORTGR (Urbanisierung des Wohnorts): bis 10 000 Einwohner/

10001 -100000/über 100 000 Einwohner Stadt Zürich;
B — BILDUNG (Schulbildung): tief Ober- und Realschule

hoch Sekundär- u. Mittelschule;
E — EINKVAT (Einkommen der Eltern): tief bis Fr. 2000.—,

hoch über Fr. 2 000.-;
D — DROGKONT (Drogenerfahrung): ja/nein.

Die Fragen, die bei der Analyse dieser Tabelle zu beantworten sind, lauten :

1. Hat sich die Häufigkeit von Drogenerfahrungen von 1971 bis 1978 verändert?
2. Hat sich der Zusammenhang zwischen Drogenerfahrung und sozialen
Hintergrundsvariablen im selben Zeitraum verändert?

Die Untersuchung von Binder et al. (1979) konnte durch konventionellen
Vergleich von Kreuztabellen in verschiedenen Untergruppen zeigen, dass sich

weniger die Verbreitung der Drogenerfahrung insgesamt als vielmehr der soziale

Hintergrund der Personen mit Drogenerfahrungen im Laufe der Untersuchungsperiode

verändert hat. Eine exakte Beurteilung erlaubt aber erst die mehrdimensionale

Kreuztabellenanalyse wie sie im folgenden durchgeführt wird.

Tabelle 5

Nr. Modell likelihood- df P
ratio X2

(1) YSUBE, YSD, YED, SED, UED, BD 41.24 36 0.25
(2) YSUBE, YSED, UED, YBD 31.58 34 0.586
(3) YSUBE, D 348.67 47 0.0
(4) YSUBE, YSD, YED, SED, UED, YBD 36.80 35 0.38

4 Die Studien wurden durch den Schweizerischen Nationalfonds unterstützt.
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Wir gehen aus vom Anfangsmodell (1), das wir mit dem Screening-Test von
Brown als erstes Näherungsmodell identifiziert haben. Dieses Modell enthält nur
Zwei-Weg-Interaktionen.5 Durch systematisches Hinzufügen signifikanter und
Eliminieren nicht-signifikanter Effekte erreichen wir schliesslich das optimale
Modell (2). Der Determinationskoeffizient für dieses Modell ergibt sich aus der
Differenz zwischen den Abweichungen des Modells ohne Prädiktoren (3) und des

optimalen Modells (2) dividiert durch die Abweichung beim Modell ohne Prädiktoren

(3):

Determinationskoeffizient Modell (2) 0.909

Der partielle Determinationskoeffizient für den Effekt YSED ergibt sich als

Differenz zwischen der Abweichung des Modells (4), das den Effekt nicht enthält
und der Abweichung des optimalen Modells (2) dividiert durch das Nullmodell (3) :

partieller Determinationskoeffizient YSED 0.014.

Tabelle 6. Effekte im optimalen Modell: YSUBE, YSED, UED, YBD

Effekt ß stand, ß part. Determ.-
koeffizient

pGrand mean ((5j -1.436 -43.914
Y (78) -0.036 1.116 0.033
S (Mann) 0.316 8.576 0.200

U(- 10 000) -0.192 - 3.710
(10-100 000) -0.074 - 1.594 0.225
(Zürich) 0.266 6.702

B(hoch) 0.138 4.212 0.082
E(hoch) 0.216 6.588 0.105
Y (78) S (Mann) -0.102 - 3.100 0.020
Y (78) (hoch) -0.054 1.660 0.012
Y (78) E (hoch) -0.080 2.422 0.060
S (Mann) E (hoch) -0.090 - 2.744 0.038
E (hoch) U(-10 000) 0.204 3.934

(10-100 000) -0.066 - 1.414 0.100
(Zürich) -0.138 - 3.456

Y (78) S (Mann) E (hoch) -0.080 2.476 0.014

Bei der Beurteilung der Grösse der einzelnen Effekte im Modell halten wir

uns an die Rangfolge der Determinationskoeffizienten. Diese zeigt, dass der

Urbanisierungsgrad den grössten Einfluss hat auf die Drogenerfahrung, es folgt das

Geschlecht, der soziale Status der Eltern, dann bereits der erste Interaktionseffekt

zwischen Urbanisierung und Einkommen der Eltern usw. Auffallend ist der relativ

geringe Effekt des Erhebungsjahres, d.h. der gesamte Drogenkonsum hat sich in

5 Im Logit-Modell, wo eine Variable als abhängige angesehen wird, bezeichnen wir Effekt
zwischen einer unabhängigen und der abhängigen Variable als Haupteffekte, Interaktionen

zwischen zwei unabhängigen und der abhängigen Variable als Interaktionseffekte
zweiter Ordnung usw.
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der Vergleichsperiode nur wenig geändert. Es ist noch zu bemerken, dass die Rangfolge

der Determinationskoeffizienten nicht vollständig mit der Rangreihenfolge
der standardisierten Effektparameter übereinstimmt. Dies ist darauf zurückzuführen,

dass bei Variablen mit mehr als zwei Ausprägungen je nach Kategorie
verschiedene Effektparameter berechnet werden, die keine eindeutige Aussage über
den Gesamteffekt der Variablen erlauben.

Die einzelnen Effekte des Modells können wie folgt interpretiert werden.
Der Anteil der 19-jährigen mit Drogenerfahrung ist im Jahr 1978 um einen mini-
men Betrag zurückgegangen. Männer haben wesentlich häufiger Drogenerfahrungen.

Drogenerfahrungen sind in der Stadt am verbreitesten, in Gemeinden mit
weniger als 10 000 Einwohner am seltensten. Höhere Schulbildung führt generell
zu mehr Drogenerfahrung, und Kinder von Eltern mit höherem Einkommen haben
ebenfalls häufiger Drogenerfahrung. Bei all diesen Beziehungen ist anzumerken,
dass sie unter Kontrolle aller übrigen Beziehungen berechnet sind, d.h. z.B. dass

hohe Schulbildung und hoher Status der Eltern einen unabhängigen Effekt auf
den den Drogenkonsum der Jugendlichen haben. Die bisher besprochenen
Beziehungen sind für beide Jahre 1971 und 1978 gültig. Die im folgenden zu
besprechenden Interaktionen zwischen dem Erhebungsjahr, sozialen Daten und
Drogenkonsum zeigt hingegen Änderungen in den Beziehungen zwischen sozialem Hintergrund

und Drogenerfahrung im untersuchten Zeitintervall an. Das Ueberwiegen
von Männern bei Jugendlichen mit Drogenerfahrung hat im Jahre 1978 abgenommen

(Effekt YS). Ebenso hat der Zusammenhang zwischen Drogenerfahrung und

Schulbildung bzw. sozialem Status der Eltern sich 1978 abgeschwächt
(Interaktionseffekte YB bzw. YE sind negativ).

Die Variable "Einkommen der Eltern" ist in zwei weiteren Interaktionseffekten

enthalten: der Effekt SE lässt sich dahingehend interpretieren, dass der
Zusammenhang zwischen hohem sozio-ökonomischen Status der Eltern und der

Drogenerfahrung für Männer schwächer ist als für Frauen. Betrachtet man auch
noch den Interaktionseffekt YSE, so zeigt sich, dass die Abschwächung dieses

Zusammenhangs bei den Männern 1978 besonders deutlich war. Addiert man die
Effekte SE und YSE, so zeigt sich, dass bei den Männern 1978 der Effekt des

elterlichen Status durch die beiden genannten Interaktionseffekte beinahe
aufgehoben wird. Dies stimmt überein mit dem Befund in Binder et al. (1979), wo mit
einfacheren statistischen Methoden ebenfalls festgestellt worden ist, dass 1978 bei
den Männern kaum mehr ein Zusammenhang zwischen Drogenerfahrung und
sozialem Status der Eltern besteht. Der Interaktionseffekt EU kann dahingehend

interpretiert werden, dass in den wenig urbanisierten Gemeinden vor allem die

Jugendlichen aus höheren sozialen Schichten Drogenerfahrungen haben, während
in der Stadt Drogenerfahrung eher ein Verhaltensmuster der Jugendlichen aus

unteren sozialen Schichten ist.
Gesamthaft führt die Interpretation der sechsdimensionalen Kreuztabelle

bezüglich sozialer Variablen und Drogenkonsum für zwei Erhebungszeitpunkte
zur Schlussfolgerung, dass in der beobachteten Erhebungsperiode praktisch kein
Rückgang der Drogenerfahrung stattgefunden hat. Hingegen haben sich die sozialen
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Merkmale der Jugendlichen mit Drogenerfahrungen stark verändert : Jugendliche
aus höheren sozialen Schichten haben keinen Vorsprung mehr bezüglich
Drogenerfahrungen : tendenziell kann also von einer Nivellierung des Drogenkonsums bezüglich

des Geschlechts und auch bezüglich des sozio-ökonomischen Status gesprochen

werden.

6. ABSCHLIESSENDE BEMERKUNGEN

In dieser Arbeit ist es darum gegangen, die praktische Anwendung des

Verfahrens der log-linearen Modelle zur Analyse mehrdimensionaler Kreuztabelle
zu demonstrieren. Absichtlich wurde darauf verzichtet, einen Vergleich mit
anderen multivariaten Analyseverfahren für kategoriale Daten durchzuführen (vgl.
dazu Küchler, 1978; Kershner et al., 1976; Goodman, 1976), oder auf Verbesserungen,

Erweiterungen und spezielle Anwendungen des Verfahrens einzugehen. Mit
dem Hinweis auf einige dieser neueren Entwicklungen soll jedoch dem Leser gezeigt
werden, dass mit den hier demonstrierten Anwendungen die Möglichkeiten der

Analyse von Kreuztabellen mit log-linearen Modellen noch keineswegs erschöpft
sind :

(1) Das Verfahren ist auch anwendbar für mehrdimensionale Kreuztabellen
mit strukturellen leeren Zellen (Fienberg, 1977, Kap. 8).

(2) Das Verfahren erlaubt nicht nur die Analyse von kategorialen sondern

auch von ordinalen Daten. Dabei entsteht ein Informationsgewinn gegenüber der

Behnadlung von ordinalen Variablen als kategorialen (Fienberg, 1977, Kap. 4).
(3) Das Verfahren der log-linearen Modelle eignet sich auch zur Kausalanalyse

in einer Form, die rein äusserlich der konventionellen Pfadanalyse sehr ähnlich

ist (Goodman, 1973).
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