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MULTIDIMENSIONALE ANALYSE
VON KATEGORIALEN DATEN : LOG-LINEARE MODELLE

Eine Einfiihrung und ein Beispiel
aus der Epidemiologie des Drogenkonsums

Johann Binder
Psychiatrische Universitatsklinik Ziirich

ZUSAMMENFASSUNG

Das von Leo Goodman entwickelte Verfahren der Analyse log-linearer Modelle erweist sich als
geeignet, bei der Analyse mehrdimensionaler Kreuztabellen Korrelationen und Interaktionen
héherer Ordnung zu identifizieren und ihre relative Stirke abzuschitzen. In vorliegendem
Aufstatz wird versucht, das Verfahren in moglichst einfacher Weise darzustellen. Dabei wird
auf strukturelle Ahnlichkeiten zur Mehrweg-Varianzanalyse hingewiesen und das Verfahren
wird anhand einer sechsdimensionalen Tabelle aus der Epidemiologie des Drogenkonsums
vordemonstriert.

RESUME

Pour analyser des données distribuées sur plusieurs dimensions, la méthode dite d’““analyse _
des modéles log-linéaires” mise au point par Leo Goodman s’est avérée efficiente dans I'identi-
fication de corrélations et d’interactions d’un niveau plus élevé, ainsi que dans la déterr‘r{inatic\m
du poids fonctionnel relatif de ces derniéres. L’article expose cette méthode de maniere tres
simple. Dans ce but ont été mises en évidence les analogies avec les analyses multifactorielles
de la variance et la méthode a été appliquée a des données empruntées a I’épidémiologie de la
toxicomanie et distribuées sur un tableau a six entrées.

1. PROBLEMSTELLUNG UND ZIELSETZUNG

In den Sozialwissenschaften fallen hiufig mehrdimensionale Kreuztabellen
von kategorialen oder ordinalen Daten an. Solche Tabellen mit drei und mehr
Dimensjonen werden sehr rasch uniibersichtlich und konnen ohne komplexe stati-
sche Methoden nicht zuverlassig interpretiert werden. Die sequentielle Analyse
aller bivariaten Zusammenhange erweist sich als untaugliches Vorgehen, weil damit
Scheinkorrelationen oder Interaktionseffekte zwischen mehreren Variablen nicht
Zuverlassig aufgedeckt werden konnen. Bei der Interpretation solcher mehrdimen-
Sionaler Tabellen sind vor allem die folgenden Fragen von Bedeutung:

(1) Zwischen welchen Variablen bestehen Zusammenhange ? oder :

(1a) Falls eine der Variablen als abhingige Variable betrachtet wird : wie
hingt die abhingige Variable von den iibrigen, als unabhangig betrachteten Varia-
blen ab?

(2) Wie stark sind die Zusammenhinge, die zwischen den einzelnen Variablen
bestehen?

In den letzten Jahren sind mehrere solcher multivariater Verfahren fir die
Analyse von Nominal- und Ordinaldaten entwickelt worden, so etwa gewichtet_e
Regression (Grizzle, Starmer, Koch, 1969), multivariate nominal scale analysis
(Andrews, Messenger, 1973), das DIEC-Verfahren von Kiichler (1976) sowie die
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von Leo Goodman entwickelte Methode der log-linearen Modelle. Mit der zuneh-
menden Beriicksichtigung dieser Verfahren in allgemein verfiigbaren Statistik-
programmpaketen wird die Verwendung dieser Verfahren stark erleichtert.

Die zuletzt genannte Methode der log-linearen Modelle erfreut sich seit
einigen Jahren zunehmender Beliebtheit, wenn man die Anzahl von Publika-
tionen in vorwiegend amerikanischen Fachzeitschriften betrachtet, in denen sie
angewendet worden ist. Hierzulande scheint die Methode jedoch noch wenig
beachtet zu werden. Aus diesem Grunde méochte ich mit diesem Aufsatz die
Methode derlog-linearen Modelle (und den wichtigen Spezialfall des Logit-Modells)
in moglichst “untechnischer” Sprache bekanntmachen und einige elementare
Grundbegriffe erkldren, soweit sie zu einem intuitiven Verstindnis der Methode
notwendig sind. Nicht beabsichtigt is eine statistisch fundierte Diskussion oder
eine kritische Wiirdigung dieses Verfahrens im Vergleich zu anderen Methoden.
Dazu sei auf die reichlich vorhandene Spezialliteratur verwiesen : Bischop et al.,
1975; Goodman, 1972, 1973, 1976, Davis, 1974 und als Einfitihrung Fienberg,
1977. Das Verstandnis der Methode soll weiter dadurch erleichtert werden, dass
an mehreren Stellen auf die den log-linearen Modellen eigene strukturelle Ahnlich-
keit zur Mehrweg-Varianzanalyse hingewiesen wird und indem in Abschnitt 5 ein
Beispiel fir die Anwendung dargestellt wird.

2. GRUNDBEGRIFFE

Die zum Verstiandnis der Methode notwendigen Grundbegriffe sollen anhand
der folgenden dreidimensionalen Kontingenztafel dargestellt werden;es fallt nicht
schwer, diese Begriffe auf den vier- oder mehrdimensionalen Fall zu verallgemein-
ern. Wir betrachten im folgenden drei dichotome Variablen:

A Einkommen der Eltern,
B Geschlecht,
C Drogenerfahrung.

Tabelle 1.

A Einkommen den Eltern A =1 (tief) A =2 (hoch)

B Geschlecht B=1 B=2 B=1 B=2
C Drogenerfahrung (Mann) (Frau) (Mann) (Frau)
LC =1 (ja) : 1036 160 699 248
LC =2 (nein) 3659 1141 1978 952

Die Zahlen in den einzelnen Zellen sind die beobachteten Haufigkeiten der
jeweiligen Konfiguration von Merkmalsausprigungen in den drei Variablen. F,,,
bezeichnet die Anzahl der Beobachtungen mit der Merkmalsausprigung A = 1,
B=2,C=2,d.h. der Frauen ohne Drogenerfahrung, deren Eltern ein tiefes Ein-
kommen haben. Im Beispiel ist Fy,, = 1141.
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Unter einer Randverteilung (marginal distribution) versteht man diejenige
Kreuztabelle, die sich ergibt, wenn man iiber eine oder mehrere Variablen in der
vollstindigen mehrdimensionalen Kreuztabelle summiert. Die Randverteilung von
B und C im obigen Beispiel erhilt man etwa, wenn man die Werte fiir A =1 und
A =2 zusammenzahlt. Dies ist der Zusammenhang zwischen Geschlecht und Dro-
generfahrung, wenn man das Einkommen der Eltern nicht beriicksichtigt.

Tabelle 2.

B Geschlecht B=1 B=2 Total
C Drogenerfahrung (Mann) (Frau)

C=1 (ja) 1735 408 2143
C =2 (nein) 5637 2093 7730

Die Randver'teilung von C erhalt man, wenn man zusatzlich liber die Werte
von B summiert. Dies ist die einfache Haufigkeitsauszahlung der Variable C, Dro-
generfahrung (s. rechten Tabellenrand).

Odds ratios.

Unter einem odds ratio versteht man das Verhiltnis der Haufigkeiten der
beiden Kategorien einer dichotomen Variablen (bzw. einer bestimmten Kategorie
Zu allen tbrigen Kategorien bei polytomen Variablen). Das odds ratio fiir die
Variable Drogenkonsum ist 2143/7730 =0.277. Die Angabe der Verteilung einer
dichotomen Variablen als Verhiltniszahl der beiden Kategorien zueinander scheint
Zundchst etwas uniiblich; sie kann aber bei Bedarf immer in eine entsprechende
relative Haufigkeit iibergefithrt werden (21,7 % der Stichprobe haben Drogener-
fahrung),

Ein bedingtes odds ratio ist ein odds ratio bei einer bestimmten Bedingung,
beispielsweise das odds ratio fiir C unter der Bedingung B=1:1735/5637 =0.308.

Ein odds ratio zweiter Ordnung ist der Quotient zweier bedingter odds ratios,
Z.B. das odds ratio von C fiir Mdnner (B = 1) dividiert durch das odds ratio von C
fir Frauen (B=2):(1735/5637)/(408/2093) =1.579.

Ein odds ratio zweiter Ordnung ldsst sich als Korrelation interpretieren.
Wenn das odds ratio zweiter Ordnung =1 ist, dann besteht keine Korrelation zwi-
Schen den beiden involvierten Variablen. Ein odds ratio dritter Ordnung ist der
Quotient zweier odds ratios zweiter Ordnung usf.

Modelle

Es lasst sich zeigen, dass die Hiufigkeit einer Zellenbesetzung Fy;y fiir A =1,
B=j, C=k immer durch einen Produktausdruck der folgenden Art dargestellt wer-
den kann

. — ... A..B, C._ AB,_AC,_BC,_ABC1
Fijk = n-74 Ti*Tx'T% "Tik "Tjk T ijk -

" Bei den Koeffizienten 7,log 7, A, bezeichnet das Superskript (A,B,0) gje Variable, das
Subskript (i,5,% die Merkmalsauspragung.
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Dabei ist n das geometrische Mittel der Zellenhaufigkeiten, 1' das odds ratio
von A=i, T AJB das odds ratio zweiter Ordnung von A =i, B=j, usw

Die obige Formel kann auch anders geschrieben werden, wenn man logarith-
miert; aus dem Produkt ergibt sich nun eine Summe von Logarithmen :

log Fuy = Iogn+]og7‘ +log'r +logr +10g1r +logr +log7'§’f
+logT Ai S(C .
Verwendet man nun noch Abkiirzungen 6 =logn, A =logr fiir die Logarith-
menausdriicke, so kann man die Formel fiir den Logarithmus einer Zellenhaufigkeit
als eine gewohnliche Summe schreiben :

log Fijc = 0 + 2% +A% +AL + 4B+ E + 0 58 +0%C

Ein solcher Ausdruck fiir den Logarithmus der Zellenhﬁufigkeit wird als log-
lineares Modell fiir die Zellenhaufigkeit bezeichnet. Im Prinzip besteht fiir jede ein-
zelne Zelle F;j, ein solches Modell. Da aber Z A =0 fiir alle i, usw. gilt, vereinfa-
chen sich die verschiedenen Modelle fiir die einzelnen Zellenhaufigkeiten.
Insbesondere gilt fiir dichotome Variablen: )\‘l\ =— 7\‘2.

Effekte,

Die einzelnen Summanden in der obigen Gleichung bezeichnen wir als Effekt-
parameter. Als Haupteffekte bezeichnen wir die Effekte mit einem Subskript, z.B.
7\A als Interaktionseffekte zweiter Ordnung jene mit zwei Subskripten, z.B. k]k .
und als Interaktioneffekte dritter Ordnung jene m1t drei Subskripten: AAUBkC.

Ein Interaktionseffekt zweiter Ordnung A & K C1isst sich als Beziehung (Korre-
latlon) zwischen B and C interpretieren. Ein [nteraktlonseffekt dritter Ordnung
XABC ijk 1St zu interpretieren als ein Zusammenhang zwischen B und C, dessen Starke
von der Auspragung der Variable A abhingig ist.

Ein log-lineares Modell fiir eine n-dimensionale Tabelle, das alle méglichen
Effekte erster, zweiter bis n-ter Ordnung enthilt nennen wir ein saturiertes Modell.
Wie bereits erwahnt, lassen sich die Effektparameter des saturierten Modells aus
den beobachteten Werten einer beliebigen mehrdimensionalen Kreuztabelle direkt
berechnen. Dabei besteht immer eine perfekte Ubereinstimmung zwischen den
Daten in der Krauztabelle und den Werten F;jy, die sich durch das log-lineare Modell
berechnen lassen; das saturierte Modell ist mithin nur eine andere Darstellung der
mehrdimensionalen Kreuztabelle. Da das saturierte Modell dieselbe Information
enthilt wie die Kreuztabelle, eignet es sich allerdings ebenso wenig zur Interpreta-
tion. Vor allem die Interaktionen héherer Ordnung machen das Modell rasch
uniibersichtlich.

Die Suche nach einfacheren Modellen.

Das Ziel der Analyse von Kreuztabellen mit Hilfe log-linearer Modell ist
deshalb, durch Weglassen maglichst vieler Effekte des saturierten Modells ein ein-
facheres (sparsameres) Modell zu bilden, das noch hinreichend gut mit den beo-
bachteten Daten ilibereinstimmt. Ein solches Modell kénnte etwa so aussehen :
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log Fij = 0+NF +A% +AL +0GP+0C

In diesem Modell sind gegeniiber dem saturierten Modell die Effekte

MRS N
weggefallen. Dies bedeutet : es besteht ein Zusammenhang zwischen B und C
(Geschlecht und Drogenerfahrung) und einer zwischen B und A (Geschlecht und
Einkommen der Eltern). Hingegen besteht kein Zusammenhang zwischen A und
C (Einkommen der Eltern und Drogenerfahrung) und der Zusammenhang zwischen
A und B ist auch nicht abhingig von C (Drogenerfahrung). Die Techniken der
Analyse log-linearer Modelle und die entsprechenden Computerprogrammq_(Dixon,
1976) dienen dazu, solche einfacheren Modelle zu finden und sie auf ihre Uber-
einstimmung mit den Daten zu priifen.

Zusammenhang zwischen angepassten Randverteilungen und beriicksichtig-
ten Effekten.

Es besteht eine eineindeutige Zuordnung zwischen jenen Effekten, die in
eieem Modell beriicksichtigt worden sind und jenen Randverteilungen, die durch
das Modell exakt wiedergegeben werden ( fitted marginals). Im obigen Modell, das
die Effekte A2, ABC enthalt, sind die Randverteilungen AB und BC exakt ent-
halten. Wegen dieser eineindeutigen Zuordnung kann man ein Modell statt durch
die darin enthaltenen Effekte auch dadurch beschreiben, dass man angibt, welche
Randverteilungen im Modell exakt angepasst sind. Im obigen Modell sind dies :

A, B, C, AB, BC.

Das hierarchische Prinzip.

Eine grundlegende Eigenschaft der log-linearen Modelle ist ihre hierarchische
Struktur. Wenn ein Modell einen Effekt n-ter Ordnung enthalt, so impliziert dies,
dass alle darin enthaltenen Effekte geringerer Ordnung im Modell ebenfalls vor-
kommen miissen. Kommt der Interaktionseffekt dritter Ordnung ABC vor, so
heisst das, dass die Interaktionen AB, AC und BC im Modell ebenfalls enthalten
sein miissen. Der Interaktionseffekt ABC enthilt also nur jenen Effekt, der uber
das hinausgeht, was die Interaktionseffekte AB, AC und BC zusammen erkldren.
Dieses hierarchische Prinzip ist unmittelbar einsichtig, wenn man an die eineindeu-
tige Zuordnung von Effekten und angepassten Randverteilungen denkt : aus der
Randverteilung der drei Variablen A B C kann man alle darin enthaltenen Randver-
teilungen berechnen; aus diesem Grunde impliziert das Vorhandensein des Effek-
tes 7\Aiﬁ(c auch das Vorhandensein folgender Effekte:

A 3B 3C yAB 3AC yBC
N A NG A N A
Die Existenz des hierarchischen Prinzips bei den log-linearen Modellen .
€rlaubt es iibrigens, die in einem Modell enthaltenen Effekte abgekiirzt durch d1t_3
angepassten Randverteilungen hochster Ordnung zu beschreiben : ein Modell, bei
dem die Randverteilungen ABC und CD angepasst sind, enthilt folgende Effekte

AB,C,D, AB,AC,BC,CD, ABC.
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3. DIE ZWEI HAUPTSCHRITTE IN DER ANALYSE

Das Verfahren der log-linearen Modelle impliziert zwei Analyseschritte, die
nacheinander auszufiihren sind :

(1) Die Suche nach dem optimalen Modell, d.h. nach einem Modell, das eine
ausreichende Erklirungskraft bei moglichst einfacher Form und moglichst guter
theoretischer Interpretierbarkeit bietet. Das optimale Modell ist bestimmt, wenn
man weiss, welche Effekte in diesem Modell enthalten sind und welche nicht.

Die Schitzung der Modellparameter, d.h. der im Modell aufgenommenen
Effekte. Beinicht saturierten Modellen lassen sich die Effektparameter nicht direkt
durch Umformung der Ausgangsdaten gewinnen. Vielmehr sind maximum-likeli-
hood-Schitzmethoden notwendig (Fienberg, 1977).

Aus den Effektparametern kann auch auf die relative Starke der einzelnen
im Modell vorhandenen Effekte geschlossen werden. Ausserdem konnen die Resul-
tate in einer Weise dargestellt werden, die es erlaubt, die relative Erklirungskraft
eines Modells oder einzelner Effekte eines Modells in Beziehung zu setzen mit
einem Basismodell. Das Basismodell entspricht der Nullhypothese und ist in der
Regel jenes Modell, das das Fehlen von Zusammenhéngen zwischen den Variablen
postuliert.

3.1 Identifikation eines Modells

Die Anpassung (fit) eines Modells an die Daten wird durch die Abweichung
der auf Grund des Modelles geschitzten Zellenwerte von den beobachteten Zellen-
werten mittels eines verallgemeinerten Chiquadrattests gepriift; es handelt sich um
das likelihood ratio-Chiquadrat. Besteht eine signifikante Abweichung zwischen
Modell und Daten, so ist das Modell nicht adiquat 2

Meist geht es nicht darum, ein theoretisch erwartetes Modell anhand von
Daten zu iiberpriifen, sondern man mochte aus den vorhandenen Daten ein Modell
erschliessen, das die Daten optimal erklart. Wie erwahnt heisst optimal : moglichst
einfach bei hinreichend guter Ubereinstimmung mit den Daten. Es besteht keine
eindeutige Suchstrategie fiir das optimale Modell. In jedem Fall wird die Suchstra-
tegie in einer schrittweisen Analyse bestehen, indem ein bestimmtes Modell mit
verschiedenen “benachbarten’” Modellen verglichen wird. Dabei sind Vorwarts-
und Riickwirtsstrategien moglich, d.h. ein Vergleich mit Modellen, die jeweils
einen Effekt mehr bzw. weniger enthalten. Falls zwischen zwei Modellen keine

?In der Literatur werden keine minimalen Zellenbesetzungen fiir die mehrdimensionalen
Kreuztabellen gefordert. Besondere Aufmerksamkeit ist jedoch dem Vorhandensein von
leeren Zellen zu schenken. Dabei ist zu unterscheiden zwischen definitionsgemiss leeren
Zellen (structural zeros — beispielsweise militdrischer Grad von Frauen) und zufillig
leeren Zellen (sampling zeros), die deshalb zustande kommen, weil von einer seltenen
Merkmalskombination keine Einkeit in der Stichprobe enthalten ist. Die zufillig leeren
Zellen sind solange nicht problematisch, als sie nicht die Berechnung von erwarteten
Zellenwerten von Null erzwingen. In diesem Falle sowie bei definitionsgemiiss leeren
Zellen muss eine Korrektur der Freiheitsgrade angebracht werden. Fiir eine eingehende
Diskussion s. Fienberg, 1977, Kap. 8.
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signifikante Differenz in der Erklarungskraft besteht, wird das einfachere Modell
bevorzugt. Falls in Modell signifikant mehr Abweichung erklirt, so wird jenes
Modell mit der grosseren Erklarungskraft gewahlt (genaues Vorgehen : es werden
die Differenzen zwischen zwei likelihood ratio-Chiquadraten auf ihre Signifikanz
gepriift).

Aus praktischen Erwiagungen ist es nicht moglich, alle theoretisch existier-
enden Modelle miteinander zu vergleichen. Zwei Strategien sind geeignet, das
Optimale Modell zielstrebig zu identifizieren.

3.1.1 Methode der Effekte gleicher Ordnung

Zunichst werden nur jene Modelle miteinander verglichen, bei denen alle
Effekte gleicher Ordnung enthalten sind. Im obigen Beispiel mit drei Variablen
wirde das bedeuten, dass die folgenden Modelle miteinander verglichen werden :

(DA,B,C  :logFy = 0+ A8 4]
(2) AB,AC,BC :log Fjj, = 0+ M43 +A§ + NP0 A5
(3) ABC :log Fyppe = 6428 +A8 42 +MP+04C +25C +aABC,

Durch diesen Vergleich wird man das Modell hochster Ordnung, das die
Abweichung noch ungeniigend erklirt, identifizieren, und das Modell niedrigster
Ordnung, das fiir eine geniigende Anpassung ausreicht. Es kann nun angenommen
Werden, dass das optimale Modell zwischen diesen beiden Modellen liegt. Durch
Systematische Hinzunahme bzw. Elimination von Effekten wird man das optimale
Modell finden.

3.1.2. Methode der standardisierten Effekte

Ausgehend vom saturierten Modell berechnet man alle standardisierten
Effektparameter (Effektparameter dividiert durch den Standardfehler). Diese geben
¢inen Hinweis auf den relativen Einfluss jedes einzelnen Effekts. Als erste Néhe-
rung wird man nun ein Modell wihlen, in dem nur die grossten Effekte enthalten
Sind. Von diesem ersten Modell aus wird man durch Vergleich mit “benachbarten”
Modellen eine Anndherung ans optimale Modell anstreben.

3.2. Vergleich der Stirke der einzelnen Effekte im Modell

In multivariaten Verfahren ist man daran interessiert, die relative Starke der
€inzelnen Zusammenhinge abzuschitzen. Bei den log-linearen Modellen bieten
sich hierzu zwei Moglichkeiten.

3.2.1. Vergleich der Effektparameter
Die eine besteht darin, die im Modell vorhandenen Effektparameter A mit-

€inander zu vergleichen. Dabei empfiehlt es sich, die standardisierten Effektpara-
Meter zu verwenden (Effektparameter dividiert durch den Standardfehler). Je
8r0ssen ein Effektparameter ist, desto grosser auch der Einfluss des entsprechen-

Tl



J. Binder

den Effektes im Modell. Die Effektparameter konnen nur innerhalb eines Modells
in bezug auf ihre Stirke miteinander verglichen werden. Ein weiterer Nachtteil bei
der Betrachtung von Effektparametern liegt darin, dass fiir die Variablen mit mehr
als zwei Merkmalsausprigungen kein einheitlicher Effektparameter berechnet wird,
sondern je einer fiir jede Merkmalsausprigung bzw. fiir jede Kombination von
Markmalsausprigungen bei Interaktionen héherer Ordnung, was ziemlich rasch zu
uniibersichtlichen Resultaten fiihrt. Bei dichotomen Merkmalen unterscheiden
sich die Effektparameter fiir die beiden Kategorien nur durch das Vorzeichen, des-
halb geniigt die Angabe des Effektparameters fir eine Kategorie.

Die unstandardisierten Effektparameter lassen sich in Analogie zu den adjus-
tierten Mittelwertsabweichungen der Mehrweg-Varianzanalyse leicht interpretieren :
Sie geben an, um wieviel sich der Logarithmus einer Zellenhdufigkeit Fjj dndert
durch den entsprechenden Effekt, da ja die Summe aller Effekte gerade gleich
dem geschitzten Wert fiir den Logarithmus der Zellenhéufigkeit Fj; ist.

3.2.2. Determinationskoeffizienten

Wie bereits erwihnt, misst das likelihood ratio Chiquadrat die Abweichung
eines bestimmten Modells von den beobachteten Daten. Das likelihood-ratio
Chiquadrat eines bestimmten Modelles kann in mehrere additive Komponenten
aufgeteilt werden, die den im Modell enthaltenen Effekten zugeordet werden
konnen. Auf diese Weise ist es moglich, die “Abweichung” eines bestimmten
Modells von den Daten in dhnlicher Weise wie bei der Varianzanalyse auf einzelne
Komponenten aufzuteilen. Tabelle 3 gibt ein Beispiel hierfiir, das sich auf ver-
schiedene Modelle fiir die in Tabelle 1 gezeigte dreidimensionale Kreuztabelle
bezieht.

Goodman (1972, S. 42) schligt ausserdem die Berechnung eines Determina-
tionskoeffizienten als Mass fiir die Giite eines Modells vor (goodness of fit). Der
Determinationskoeffizient hat eines strukturelle Ahnlichkeit zum quadrierten
multiplen Korrelationskoeffizienten (Mass fiir die erklarte Varianz) in der varianz-
analytischen Statistik. Anstelle des Begriffs der Varianz tritt hier allerdings der
Begriff der Abweichung des Modells von den beobachteten Daten.

Wihrend in der varianzanalytischen Statistik die totale Varianz einer Varia-
blen als Bezugsgrosse fiir die erklare Varianz dient, verwendet man beim Deter-
minationskoeffizienten in der Analyse log-linearer Modelle die Abweichung des
Modells von den Daten bei einer Nullhypothese. Die Nullhypothese wird meist ein
Modell sein, bei dem das Fehlen von Beziehungen zwischen den Variablen postu-
liert wird. In unserem Drei-Variablen-Beispiel also die Abweichung: X? (Modell 1).
Das Modell M 4 (AB, AC, BC) bewirkt eine geringere Abweichung von den Daten.
Die Differenz zwischen den beiden Chiquadrats

X? (Modell 1) — X? (Modell 4)

kann als Verbesserung der Anpassung des Modells M 4 gegeniiber dem Modell M 1
gelten. Diese Verbesserung in der Uebereinstimmung kann in Form eines Quotien-
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Tabelle 3.
Nr. Modell likelihood df p
ratio X2
1 A, B, C, 632.71 4 0.0
2 A, BC 346.10 3 0.0
3 AC, BC 125.15 2 0.0000
4 AB, AC, BC 10.35 1 0.0000
S ABC 0 0 1.0

Analyse der “Abweichung” in der dreidimensionalen Kreuztabelle ABC (Tabelle 1)

Quelle der Abweichung Nr. d. Modells df  likelihood-
ratio X?

1. Abweichung aufgrund aller

Interaktionseffekte (1) 4 632.71
2. durch Modell (3) nicht

erklirte Abweichung (3) 2 125.15
3. durch Modell (3) erklirte

Abweichung (1)-(3) 2 507.56

Aufteilung von 2.
2a. durch Modell (4) nicht
erklirte Abweichung (4) 1 10.35

2b. durch Effekt AB in
Modell (4) erklirte
Abweichung (3)-(4) 1 114.80

ten in Beziehung gesetzt werden zur Abweichung unter der Nullhypothese. Diese
Grosse bezeichnet Goodman als Determinationskoeffizient :

X2 (M1)— X* (M 4)

Der Begriff der erklirten Abweichung kann in analoger Weise verwendet
werden, um die Erkldrungskraft eines einzelnen Effekts in einem Modell zu bestim-
men : Der partielle Determinationskoef{fizient ist ein Mass dafiir, wieviel ein ein-
zelner Effekt erklirt, wenn man alle iibrigen Effekte des Modells mit gleicher oder
geringerer Ordnung konstant hélt. Im Zahler steht die Differenz in der Abweichung
zwischen zwei Modellen, die sich nur durch den interessierenden Effekt unter-
scheiden. Im Nenner steht wiederum die totale zu erklirende Abweichung, d.h.
die Abweichung unter der Nullhypothese®. So ist der partielle Determinations-

3 Die Bezugsgrosse im Nenner wird bei Goodman (1972) anders definiert. Die hier ver-
wendete Definition wird aber von verschiedenen Autoren in der Literatur verwendet
(Duncan-Jones, 1976; Hauser et al., 1975; Stolzenberg et al., 1977). Die Verwgndung
der Abweichung unter der Nullhypothese im Nenner weist eine grossere Analogie zum
partiellen Korrelationskoeffizienten auf.
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koeffizient von ABC:
X2 (M4) - X%*(M5)
X2 (M1)

4. LOGIT-MODELLE UND ODDS RATIOS

Bis hierin haben wir in unseren Uberlegungen nicht zwischen abhingigen
und unabhingigen Variablen unterschieden, sondern die Beziehungen zwischen
allen Variablen in einer mehrdimensionalen Kreuztabelle untersucht. Ein wichtiger
Spezialfall der log-linearen Modelle bezieht sich nun auf den Fall einer beliebigen
Anzahl unabhingiger Variablen und einer abhingigen Variable, die nur zwei Aus-
prigungen kennt, etwa C in unserem Beispiel : Drogenerfahrung ja/Drogenerfahrung
nein. Dieser Spezialfall, der als Logit-Modell bezeichnet wird, vereinfacht das
Arbeiten mit log-linearen Modellen.

Wihrend in der bisherigen Betrachtung Beziehungen zwischen beliebigen
Variablen interessiert haben, werden beim Logit-Modell nur Beziehungen zwischen
den unabhingigen Variablen einerseits und der abhdngigen Variable andererseits
betrachtet. Die Beziehungen unter den unabhingigen Variablen interessierten
nicht. Aus diesem Grund wird beim Logit-Modell nicht versucht, ihre Struktur
aufzukliren, sondern die Beziehungen unter den unabhéngigen Variablen werden
als fix angenommen und durch das saturierte Submodell fiir die unabhingigen
Variablen dargestellt.

Anstelle der relativen Haufigkeit des Auftretens eines dichotomen Merkmals
(z.B. 21,7 % Personen mit Drogenerfahrung in Tabelle 2) kann dquivalent das odds
ratio fiir diese Kategorie angegeben werden (2143/7730 = 0,28 ist das odds ratio,
Drogenerfahrung zu haben). Beim Logit-Modell geht es darum, ein Modell fiir das
odds ratio der Zellenfrequenzen der abhangigen Variable zu gewinnen — und nicht
wie bisher ein Modell fiir die einzelnen Zellenfrequenzen. Es resultiert folgende
Gleichung:

log Fij'l = log Fyj; —log Fijz = 0 + AT +AT+AT+MB +0AC 4 ABC +
" FNABC— (6 + 03+ 0B 428 + MAB +
+ M5 + A5 +aABC
Da bei dichotomen Variablen die Parameter fiir die beiden Kategorien sich
nur durch das Vorzeichen unterscheiden, kann wie folgt vereinfacht werden :

F.;

log—= = A +2-NAC+2-ABE +2-MABC
ij2

Ersetzt man 2 X\ =, so vereinfacht sich die Gleichung fiir Logit-Modell zu

Fss

il

log—— = g$ +84C +p5C +848°C.
ij2
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Tabelle 4
YEAR SEX ORTGR BILDUNG EINKVAT | DROGKONTI(O)
u ] E | JA NEIN
1
T1. MANN <10000 TIEF TIEF I 104 717
HOCH I 21 58
I
HOCH TIEF I 104 458
HOCH I 74 135
———————— e [-mmmmm == e -
>10000 TIEF TIEF I 89 371
HOCH I 20 44
1
HOCH TI1EF | 101 324
HOCH 1 75 118
__________________ ) T T
TUERICH TIEF TIEF | 132 377
HOCH 1 18 41
1
HOCH TIEF 1 222 408
HOCH [ 92 145
______ mmmmm e mem= e ————————m o,
--------------------------- [~— e e m et
FRAU <10000 TIEF TIEF [ S 39
HOCH I Q 0
I
HOCH TIEF I 11 119
HOCH I 10 49
------------------ [==—mmmme = tme e em =
>10000 TIEF TI1EF 1 2 32
HOCH 1 0 4
I
HOCH TIEF | 10 17
HOCH I 7 37
—————————————————— l-—------—-a [ ———
LUERICH TIEF TIEF [ 7 56
HOCH I 1 5
I
HOCH TIEF [ 29 138
HOCH [ 19 52
................ Rl Bttt
__________________________ [======mm i e e =
—————————————————————————————————— [-.—--—---——— ——
18, MANN <10000 TIEF TIEF | 43 259
HOCH 1 48 206
I
HOCH TIEF I 39 154
HOCH I 104 147
__________________ I—-—-—-—-—--— -
>10000 TIEF TIEF I 58 207
HOCH I 39 186
I
HOCH 11EF I 40 135
HOCH I 92 338
- . - - — s - - - [ _______________ -
TUERICH TIEF T1EF I 62 152
HOCH I 50 119
I
HOCH T1EF | 42 97
HOCH 1 66 241
s e a8 s = e . Sn e . I ———————————————————
___________________________ 'l.-_‘—--———— - -
FRAU <10000 TIEF TIEF 1 B | 132
HOCH I 14 68
[
HOCH TI1EF [ 12 95
HOCH I 65 172
__________________ | el e Dt
>10000 TLEF TIEF I 14 115
HOCH | 13 83
I
HOCH TIEF 1 18 97
HOCH 1 33 197
______________ I I P
ZUERICH TIEF TIEF [ 13 99
HOCH I 17 65
I
HOCH TIEF | 28 142
HOCH 1 69 220
1
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Dieser Spezialfall des Logit-Modells weist die grosste Analogie zur multiplen
Regression auf, wie Goodman (1972) eingehend dargelegt hat.

5. BEISPIEL FUR EIN LOGIT-MODELL: DIE VERANDERUNG DES
DROGENKONSUMS IM KANTON ZURICH 1971/1978

Die in Tabelle 4 dargestellten Daten sind der Untersuchung von Binder et al.
(1979) entnommen. 1971 und 1978 wurden teils in Vollerhebungen, teils anhand
von reprisentativen Stichproben, 19- bis 20-jahrige Mdnner und Frauen im Kanton
Ziirich mit einem schriftlichen Fragebogen u.a. iiber ihren Konsum von illegalen
Drogen befragt?. Im folgenden wird als Drogenerfahrung (DROGKONT) die min-
destens einmalige Einnahme eines der folgenden Stoffe verstanden: Haschisch,
Halluzinogene, Weckamine, Opiate. Die Drogenerfahrung ist in Tabelle 4 wie folgt
aufgegliedert :

Y — YEAR (Erhebungsjahr): 1971/1978;
S — SEX (Geschlecht): mannlich/weiblich
U— ORTGR (Urbanisierung des Wohnorts) : bis 10000 Einwohner/
10001-100000/iiber 100000 Einwohner = Stadt Ziirich;
B — BILDUNG (Schulbildung): tief = Ober- und Realschule
hoch = Sekundar- u. Mittelschule;

E — EINKVAT (Einkommen der Eltern): tief = bis Fr. 2000.—,

hoch = uber Fr. 2000.—;
D — DROGKONT (Drogenerfahrung): ja/nein.

Die Fragen, die bei der Analyse dieser Tabelle zu beantworten sind, lauten:
1. Hat sich die Héaufigkeit von Drogenerfahrungen von 1971 bis 1978 verdndert ?
2. Hat sich der Zusammenhang zwischen Drogenerfahrung und sozialen Hinter-
grundsvariablen im selben Zeitraum verindert ?

Die Untersuchung von Binder et al. (1979) konnte durch konventionellen
Vergleich von Kreuztabellen in verschiedenen Untergruppen zeigen, dass sich
weniger die Verbreitung der Drogenerfahrung insgesamt als vielmehr der soziale
Hintergrund der Personen mit Drogenerfahrungen im Laufe der Untersuchungs-

periode veriandert hat. Eine exakte Beurteilung erlaubt aber erst die mehrdimen-
sionale Kreuztabellenanalyse wie sie im folgenden durchgefiihrt wird.

Tabelle §

Nr. Modell " likelihood- df p
ratio X?

(1) YSUBE, YSD, YED, SED, UED, BD 41.24 36 0.25

(2) YSUBE, YSED, UED, YBD 31.58 34 0.586

(3) YSUBE,D 348.67 47 0.0

(4) YSUBE, YSD, YED, SED, UED, YBD 36.80 35 0.38

* Die Studien wurden durch den Schweizerischen Nationalfonds unterstiitzt.
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Wir gehen aus vom Anfangsmodell (1), das wir mit dem Screening-Test von
Brown als erstes Naherungsmodell identifiziert haben. Dieses Modell enthélt nur
Zwei-Weg-Interaktionen®> Durch systematisches Hinzufiigen signifikanter und
Eliminieren nicht-signifikanter Effekte erreichen wir schliesslich das optimale
Modell (2). Der Determinationskoeffizient fiir dieses Modell ergibt sich aus der
Differenz zwischen den Abweichungen des Modells ohne Pradiktoren (3) und des
optimalen Modells (2) dividiert durch die Abweichung beim Modell ohne Pridik-
toren (3):

Determinationskoeffizient Modell (2) =0.909

Der partielle Determinationskoeffizient fiir den Effekt YSED ergibt sich als
Differenz zwischen der Abweichung des Modells (4), das den Effekt nicht enthalt
und der Abweichung des optimalen Modells (2) dividiert durch das Nullmodell (3):

partieller Determinationskoeffizient YSED =0.014.

Tabelle 6. Effekte im optimalen Modell: YSUBE, YSED, UED, YBD

Effekt g stand. g8 part. Determ.-
koeffizient
Grand mean ({3?) —1.436 —43.914
Y (78) —0.036 1.116 0.033
S (Mann) 0.316 8.576  0.200
U (-10000) -0.192 - 3.710
(10-100 000) -0.074 — 1.594 0.225
(Ziirich) 0.266 6.702
B (hoch) 0.138 4.212 0.082
E (hoch) 0.216 6.588 0.105
Y (78) S (Mann) -0.102 -~ 3.100 0.020
Y (78) (hoch) —-0.054 1.660 0.012
Y (78) E (hoch) —0.080 2422  0.060
S (Mann) E (hoch) —0.090 - 2.744 0.038
E (hoch) U (—10000) 0.204 3.934
(10-100 000) —0.066 - 1414 0.100
(Ziirich) -0.138 — 3.456
Y (78) S (Mann) E (hoch) —0.080 2.476 0.014

Bei der Beurteilung der Grésse der einzelnen Effekte im Modell halten wir
uns an die Rangfolge der Determinationskoeffizienten. Diese zeigt, dass der Urba-
nisierungsgrad den grossten Einfluss hat auf die Drogenerfahrung, es folgt das
Geschlecht, der soziale Status der Eltern, dann bereits der erste Interaktionseffekt
zwischen Urbanisierung und Einkommen der Eltern usw. Auffallend ist der relativ
geringe Effekt des Erhebungsjahres, d.h. der gesamte Drogenkonsum hat sich in

SIm Logit-Modell, wo eine Variable als abhingige angesehen wird, bezeichnen wir Effekt
zwischen einer unabhingigen und der abhingigen Variable als Haupteffekte, !nterak-
tionen zwischen zwei unabhingigen und der abhiangigen Variable als Interaktionseffekte
zweiter Ordnung usw.
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der Vergleichsperiode nur wenig geindert. Es ist noch zu bemerken, dass die Rang-
folge der Determinationskoeffizienten nicht vollstandig mit der Rangreihenfolge
der standardisierten Effektparameter iibereinstimmt. Dies ist darauf zuriickzufiih-
ren, dass bei Variablen mit mehr als zwei Ausprigungen je nach Kategorie ver-
schiedene Effektparameter berechnet werden, die keine eindeutige Aussage iiber
den Gesamteffekt der Variablen erlauben.

Die einzelnen Effekte des Modells konnen wie folgt interpretiert werden.
Der Anteil der 19 -jihrigen mit Drogenerfahrung ist im Jahr 1978 um einen mini-
men Betrag zuriickgegangen. Manner haben wesentlich hédufiger Drogenerfahrun-
gen. Drogenerfahrungen sind in der Stadt am verbreitesten, in Gemeinden mit
weniger als 10 000 Einwohner am seltensten. Hohere Schulbildung fithrt generell
zu mehr Drogenerfahrung, und Kinder von Eltern mit hoherem Einkommen haben
ebenfalls haufiger Drogenerfahrung. Bei all diesen Beziehungen ist anzumerken,
dass sie unter Kontrolle aller iibrigen Beziehungen berechnet sind, d.h. z.B. dass
hohe Schulbildung und hoher Status der Eltern einen unabhéngigen Effekt auf
den den Drogenkonsum der Jugendlichen haben. Die bisher besprochenen Bezie-
hungen sind fiir beide Jahre 1971 und 1978 giiltig. Die im folgenden zu bespre-
chenden Interaktionen zwischen dem Erhebungsjahr, sozialen Daten und Drogen-
konsum zeigt hingegen Anderungen in den Beziehungen zwischen sozialem Hinter-
grund und Drogenerfahrung im untersuchten Zeitintervall an. Das Ueberwiegen
von Minnern bei Jugendlichen mit Drogenerfahrung hat im Jahre 1978 abgenommen
(Effekt YS). Ebenso hat der Zusammenhang zwischen Drogenerfahrung und
Schulbildung bzw. sozialem Status der Eltern sich 1978 abgeschwicht (Interak-
tionseffekte YB bzw. YE sind negativ).

Die Variable “Einkommen der Eltern” ist in zwei weiteren Interaktions-
effekten enthalten: der Effekt SE lasst sich dahingehend interpretieren, dass der
Zusammenhang zwischen hohem sozio-6konomischen Status der Eltern und der
Drogenerfahrung fiir Minner schwicher ist als fiir Frauen. Betrachtet man auch
noch den Interaktionseffekt YSE, so zeigt sich, dass die Abschwichung dieses
Zusammenhangs bei den Mannern 1978 besonders deutlich war. Addiert man die
Effekte SE und YSE, so zeigt sich, dass bei den Madnnern 1978 der Effekt des
elterlichen Status durch die beiden genannten Interaktionseffekte beinahe aufge-
hoben wird. Dies stimmt iiberein mit dem Befund in Binder ez al. (1979), wo mit
einfacheren statistischen Methoden ebenfalls festgestellt worden ist, dass 1978 bei
den Médnnern kaum mehr ein Zusammenhang zwischen Drogenerfahrung und
sozialem Status der Eltern besteht. Der Interaktionseffekt EU kann dahingehend
interpretiert werden, dass in den wenig urbanisierten Gemeinden vor allem die
Jugendlichen aus hoheren sozialen Schichten Drogenerfahrungen haben, wihrend
in der Stadt Drogenerfahrung eher ein Verhaltensmuster der Jugendlichen aus
unteren sozialen Schichten ist. '

Gesamthaft fiihrt die Interpretation der sechsdimensionalen Kreuztabelle
beziglich sozialer Variablen und Drogenkonsum fiir zwei Erhebungszeitpunkte
zur Schlussfolgerung, dass in der beobachteten Erhebungsperiode praktisch kein
Riickgang der Drogenerfahrung stattgefunden hat. Hingegen haben sich die sozialen
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Merkmale der Jugendlichen mit Drogenerfahrungen stark verdndert : Jugendliche
aus hoheren sozialen Schichten haben keinen Vorsprung mehr beziiglich Drogener-
fahrungen : tendenziell kann also von einer Nivellierung des Drogenkonsums bezii-
glich des Geschlechts und auch beziiglich des sozio-6konomischen Status gespro-

chen werden.

6. ABSCHLIESSENDE BEMERKUNGEN

In dieser Arbeit ist es darum gegangen, die praktische Anwendung des
Verfahrens der log-linearen Modelle zur Analyse mehrdimensionaler Kreuztabelle
zu demonstrieren. Absichtlich wurde darauf verzichtet, einen Vergleich mit an-
deren multivariaten Analyseverfahren fiir kategoriale Daten durchzufiihren (vgl.
dazu Kiichler, 1978; Kershner et al., 1976; Goodman, 1976), oder auf Verbesser-
ungen, Erweiterungen und spezielle Anwendungen des Verfahrens einzugehen. Mit
dem Hinweis auf einige dieser neueren Entwicklungen soll jedoch dem Leser gezeigt
werden, dass mit den hier demonstrierten Anwendungen die Moglichkeiten der
Analyse von Kreuztabellen mit log-linearen Modellen noch keineswegs erschopft
sind :

(1) Das Verfahren ist auch anwendbar fiir mehrdimensionale Kreuztabellen
mit strukturellen leeren Zellen (Fienberg, 1977, Kap. 8).

(2) Das Verfahren erlaubt nicht nur die Analyse von kategorialen sondern
auch von ordinalen Daten. Dabei entsteht ein Informationsgewinn gegentiber der
Behnadlung von ordinalen Variablen als kategorialen (Fienberg, 1977, Kap. 4).

(3) Das Verfahren der log-linearen Modelle eignet sich auch zur Kausalana-
lyse in einer Form, die rein dusserlich der konventionellen Pfadanalyse sehr dhn-

lich ist (Goodman, 1973).
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