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Une nouvelle technique dlexploration statistique:

LIANALYSE SIMULTANEE DES VARIABLES ET DES UNITES.

Jean-Pierre Schellhorn

RESUME

L'analyse en composantes principales (ACP), l'analyse des
corrélations canoniques (ACC) et l'analyse factorielle des
correspondances (AFC) sont de plus en plus utilisées en
sciences sociales. Aprés avoir indiqué que ces trois tech-
niques sont des cas spéciaux d'une seule et méme méthode,
l'analyse par transformations simultanées, cet article pré-
sente en grand détail un quatriéme cas spécial de la métho-
de générale.

Partant de l'unique décomposition singuliere que posseéde
toute matrice de donné&es (rectangulaire), on construit de
ce fait une procédure "universelle". La représentation gra-
phique associée est étudiée de facon approfondie, car c'est
elle qui détermine 1'intérét pratique de cette nouvelle
technique exploratoire.

Cet article est écrit pour un lecteur qui posséde le bagage
mathématique usuel en sciences sociales. Le résumé mathéma-
tique, dans l'appendice, compléte l'exposé pour ceux qui
aimeraient faire exé&cuter les calculs et graphiques néces-
saires par un centre de calcul.

ZUSAMMENFASSUNG

Hauptkomponentenanalyse (ACP), kanonische Korrelationsrech-
nung (ACC) und Korrespondenzenanalyse (AFC) werden als Spe-
zialfalle einer einzigen Methode, der sogenannten "Analyse
durch gleichzeitige Transformationen" eingefilthrt. Der Haupt-
teil des Artikels wird einem vierten, neuen Spezialfall ge-
widmet, der auf der singuldren Dekomposition einer Matrix
entstammt. Da diese Dekomposition fir jede (auch nicht
Quadrat-)Matrix eindeutig definiert ist, ist diese neue Da-
tenanalyse universell anwendbar. Um die Methode wirklich
praktisch zu machen, wird auf die naheliegende graphische
Darstellung grosses Gewicht gelegt. Im Anhang findet der
Datenverarbeiter die vollstandige Sammlung von mathemati-
schen Formeln.
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LA METHODE DES TRANSFORMATIONS SIMULTANEES

Pour partir d'un exemple aussi simple gue possible, suppo-
sons que nous ayons a analyser les relations entre cing
variables qui se répartissent naturellement en deux grou-
pes; appelons (x., x., x,) les variables du premier groupe
et (yl, y2) les Variables du second groupe. Supposons
aussi, polur fixer les idées, que le coefficient utilisé
pour mesurer l'intensité de 1'association entre deux quel-
conques de ces cing variables soit leur covariance.

La matrice P des covariances a la forme suivante:

X X X yl y2

£ f
%, | Py; P1p Pis i T2

£ £ B F
X, | Pyy Poa Paz| a1 22

' £
Xy [ by Pyy Pyg iy fa

v =
oY fa fa P Pae = ,
Yo | 12 fa2 fa2|Pi2 P22 |
Par exemple: b22 = variance de X,
hll = variance de yl
f21 = covariance de X, et Yq

La seule information disponible se réduit essentiellement

a cette matrice P. Pour analyser les relations entre les
deux groupes de variables, il convient d'y substituer de
nouvelles variables qui fassent apparaltre, sous une forme
plus simple ou plus directement interprétable, la "position
relative" de ces deux groupes. C'est ce que 1l'on fait d'une
manicére un peu particuliére en ACC (voir le paragraphe sui-
vant) , et que 1l'on peut se fixer comme objectif plus géné-
ral (cf. le paragraphe 3).

Dans 1l'analyse en variables canoniques (ACC) , on remplace
les cing variables initiales r X.3 Y., Y.) par de
nouvelles variables, les deux p%lres de”"variables cano-
niques" (£,, n;), (£;, n,) et une cinquiéme variable £&;
dont la définition importe peu ici (cf. Schellhorn, 1976).

La matrice I des covariances des nouvelles variables a la
forme suivante:
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El €2 53 ny n,
El 1 0 0 sl 0

0 1 0 0] A
*2 T2 L

Par exemple: covariance de £, et &,
covariance de n, et n,
variance de £,
variance de n.
covariance dejgl et n, =
covariance de £, et n,

It

il
oOn HE oo

Les nombres positifs s; et s, sont appelés les deux coeffi-
cients de corrélation canonique entre le groupe (Xl' x2, x3)
et le groupe (yl, yz).
Nous exprimerons ce résultat en disant que le but de 1'ACC
est de transformer simultanément

(x

x x.) en (x.*, x_*, X3*)

1" 72 73 1 2
* *
(yl. yz) en (yl r ¥y )

afin de remplacer la structure compliquée (car quelcongue)

A
B F ; B 3 [To
P = par la structure simple Il = .
F'| H ' I
A ol "2

Le résultat mathématique intéressant est gu'une paire de
transformations simultanées (essentiellement) unique ré-
sout ce probléme; c'est la paire (x,* = £,, x.* = £,,

* = * = % — ]. 2
X3 - €3) et (Yl i nll y2 g nZ) .

Passons au principe général, énoncé sans démonstration (on
trouvera celle-ci dans mon étude citée plus haut).

Si deux groupes de variables (x,,...,x ) et (y,,...,y.) pos-
sédent une matrice de covariancé (ou ufie matrile de cOrré-
lation, ou une matrice de coefficients d'association) de
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forme générale

xl G XP Yl . e Yq

*y

. eid B F

X

p

¥y

—— B! H
Yq

on peut trouver deux paires de transformations simultanées

(Xl""' xp) - (xl*,..., xp*) (respectivement (21,..., ip)
* * ] 7 7
(yl,..., yq) - (yl PR yq ) (respectivement (yl,..., yq)

telles gque les matrices correspondantes des xl*,..., y ¥
(resp. des il,..., ?q) soient de forme q

x* x* * i ;: - ~
1 et yl . 5o yq g v R yl G s yq
x> X
1 1
36 F* - "3
* ~
X X
P p
* el
¥y 41
t
— Cg 3 -
y " y
a q

ou ® ety (resp.3z ) peuvent Etre fixés a priori, et oll F*
(resp. B et H) ont des structures précisées dans 1'appen-
dice & cet article; la seule restriction est essentielle-
ment que le rang des matrices %, y et J (notion définie
ci-dessous) ne soit pas supérieur au rang de la matrice
B, H et F respectivement.
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On peut évidemment atteindre au moyen de la méme paire de
transformations simultanées le double objectif ®, Y et 3
si ces trois matrices sont "compatibles"

Dans la présentation usuelle de 1l'analyse des corrélations
canonigues, on détermine séquentiellement les paires (&,
ni)s, (E,,n,), etc. de variables canoniques par des proprié-
tés de corrélation nulle (entre &, et £, , entre n,et n

i ;1 ; 1 k'’
entre £, et n, ) et de corrélation maximum (entre g et 1
c'est dTailleurs cette corrélation sk entre gk etrk que E on
appelle la ki€mMeé cporrélation canonigie.

La définition simultanée (et non séquentielle) de paires

(£, ,n, ), comme elle a été introduite au paragraphe 2, est
connue des spécialistes depuis plusieurs années. Il est re-
grettable qu'elle n'ait pas acquis droit de cité dans les
manuels de statistique, car elle me semble plus intuitive
que la définition de type séquentiel.

L'ACC peut donc é&tre considérée comme le cas spécial de la
méthode générale du paragraphe 3, ol les objectifs &= Ip,

1= Iq et j = 819 sont compatibles.
olo

L'analyse factorielle des correspondances (AFC) sert & ana-
lyser des tables de contingence, des fonctions de probabi-
lité bidimensionnelles ou, plus généralement, n'importe
quelle matrice (rectangulaire) C de nombres non négatifs
c,.. On peut la considérer comme l'analyse des corrélations
caﬂonlques entre variables dichotomiques (cf., par exemple,
Escoufier, 1971; ou Hill, 1974).

Si L (respectivement K) désigne la matrice diagonale dont
les éléments diagonaux sont les totaux de lignes (resp. de
colonnes) de la matrice C, alors la matrice

. A =
LML E en ACC.

oTR] en AFC, joue le rdle de la matrice S e

C'est donc bien un cas particulier de la méthode générale
du paragraphe 3.

L'analyse en composantes principales (ACP) sert & simpli-
fier la description d'un seul groupe de variables (xl,...,
xp). On peut cependant la présenter comme 1'ACC.

Appelons B la matrice des variances et covariances de va-
riables x.,,...,X_; c'est une matrice (symétrique et dé&fi-
nie positive) quglconque.

Il est facile de montrer que si p = q et si le groupe de
variables (y.,...,¥ ) n'est gqu'une "copie" du groupe (x
...,xp), alors 1'ACP sert a remplacer la structure compii—
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B| B ;

quée P = 5 B par la structure simple II = ;, g,
old W est une matrice a lignes non-corrélées deux a deux et
ol la matrice V est diagonale. V contient les variances des
nouvelles variables (x_ *,...,Xx *), variables gque l1l'on ap-

pelle les composantes principages du groupe (x .,xp).

’

17

Cette définition de type simultané me semble plus intéres-
sante que la définition usuelle, oG x_*,...,x * sont défi-
nies séquentiellement par des proprié%és de cBrrélation
nulle (entre x.* et x *) et de variance maximum (pour cha-
que x, *) & K

k

En conclusion, 1'ACP est le cas particulier de la méthode
générale des transformations simultanées ou B = F = H, et
gu l'objeetif egt X'= 'V &Lt Y = B.

Dans le reste de cet article, nous allons développer un cas
particulier gui nous semble encore plus important que les
précédents, et qui n'a été étudié que récemment (Gabriel,
1971; Schellhorn, 1976).

Il s'agit du cas d'une matrice quelconque

10
a0 | o0 | % L
A = aes PR o0 = - = Cl . Cm
5% 1,
1 | - ®nn n
a n lignes ll',...,ln‘ et m colonnes Cpre--sC -

Pour ne pas multiplier les interprétations possibles des
formules mathématiques, nous nous occuperons du cas le

plus courant ol chaque colonne c, représente n mesures
d'une variable, et ol chaque ligﬁe 1. représentent une uni-
té statistique ol l1l'on a mesuré les M variables.

Dans la section intitulée "La décomposition singuliére
d'une matrice", nous rappellerons gque A peut &tre représen-
tée de fagcon unique sous la forme d'une somme de matrices
de rang un aux propriétés intéressant 1l'analyse de données.
Cette propriété - encore trop peu connue et trop peu uti-
lisée - permet de construire une paire de transformations
simultanées

A= 1L |]...11 1" U= [u a ("effets des unités")
1 n 1 n

A'= [c.]...Jc|'"—> Vv'= [v.[|...[v |' ("effets des varia-
1 m 4 n bles™)
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telle que
\
AA'! A(z) ug! uv'!
P = R soit transformée en I = ot
A A'A vu' (ATA
AA' = n x (matrice des "similarités brutes" entre unités) ;
A'A = n x (matrice des variances et covariances empiriques)
lorsque les variables sont centrées; nVV' = A'A.
UV' = A (la matrice originale, dont chague &l&ment est donc

représenté comme le produit "scalaire" d'un "effet
unité" par un "effet variable");

UU' = n x (matrice de "projection des moindres carrés")
= n x (matrice des similarité&s entre unités).
Les (u,,;...,u ) et (v,,...,v_) sont analysés dans la sec-

tion iftitulées "Varia%les et unités statistiques"; en outre,
ils se prétent bien & une représentation graphique trés
utile gqui est présentée dans la derniére section de cet
article.

LA DECOMPOSITION SINGULIERE D'UNE MATRICE

Toute matrice A posséde une unigue "décomposition singu-
liere" (terminologie mathématigque traditionnelle, assez
malheureuse, sinon ... singuliére; les psychométriciens
l'appellent la décomposition d'Eckart-Young); nous allons
voir en détail ce que cela signifie au moyen d'un exemple
de taille minimum (4 lignes et 3 colonnes).

Supposons que la mesure de 3 variables chez 4 "sujets"
fournisse les 12 nombres suivants:

o
A = -1 7 7
3 3 9
11 1 7
Les lignes ll' = -—l Poeee g 14' = [ll : 1 ; 7]

représentent les 4 sujets (ou untités statistiques);
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-1 13 1
-1 7 7
les colonnes cl = 3| c2 = 3l v Cy = 9
1l 1 7

représentent les 3 wariables

A est égale & la somme des trois matrices suivantes:

A=A+ A + A

o 2 3

(par exemple, en premié&re ligne et seconde colonne, 13 =

6 + 6 + 1).

3 ® 6 -6 (6 -3 2 @ -2

3 6 6 -2 2 -1 -2 =1 2
M= lg g g] R | wB =i B

3 6 6 6 -6 3 2 1 =2
Les matrices Al, A2 et A3 sont construites comme suit:

18 [0,5;0,5;0,5;0,5]* [0,3;0,6;0,6]

B, =
= 1
s, 9, d;
A, = 13,4164 [-0,6708;-0,2236;0,2236;0,6708] ' [0,6;-0,6;0,3]
- %2 92 | 4
a, = 6 [0,5;-0,5;-0,5;0,5]" [0,6;0,3;-0,6]
= S, 95 d3

Les trois nombres s. = 18, s. = 13,4164 (= 3/20) et s_ = 6
s'appellent les valéurs singuliéres de la matrice Aj; 8n les
regroupe dans la matrice S suivante:

3

0
0
s
0

o © O w
ol o m ©

Les valeurs singuliéres sont des nombres positifs ou nuls.
On appelle matrice des vecteurs singuliers "d gauche" (de A)
la matrice G suivante (il y a 4 vecteurs g, car il y a 4



167

lignes dans la matrice A): .
0,5 -0,6708 (=-3/v20) 0,5 -0,2236 (=-1/v20)
G = 0,5 -0,2236 (=-1/v20) -0,5 0,6708 (= 3/v20) =l 5 |&
1 3174
0,5 0,2236 (= 1/v20) =05 -0,6708 (=-3/v20Q)
G,5 0,6708 (= 3/v20) 0,5 0,2236 (= 1/v/20)
On appelle matrice des vecteurs singuliers "4 droite” (de A)

la matrice D suivante

colonnes dans la matrice A):

(il y a 3 vecteurs d,

2/3
-2/3
1/3

2/3
1/3 | =
-2/3

1/3
D =1|2/3

2/3
Dans

cet exemple,

Dt

=g

ce n'est en général pas le cas.

Les produits matriciels figurant ci-dessus (gldl',gzd !

car il y a 3

la matrice D est égale a sa transposée

2 r

g.d.'), et qui permettent de déterminer A_, A2 et A. Fes-
pgc%ivement, se calculent comme on le mon%re pour Al (ce
qui suffit):
0,5 (0,5)-(0,6) | (0,5)-(0,3) | (0,5 (-0,6)
- i = u - (0,6 . - (0,3 -0,5) - (-0,6
A3==6 0,5 0,6;0,3;-0,6 6 (0,5)(0,6) (-0,5) - ( _) ( )+ “)
-0,5 (-0,5) - (0,6) | (-0,5)+(0,3) | (-0,5)"(-0,6)
0,5 (0,5)-(0,6) | (0,5)+(0,3) | (0,5)-(-0,6)
6-(0,3) 6-(0,16) 6-(-0,3) 2 1} -2
_| 60,3 | 6-(-0,16) | 6-(-0,3) | _|-2 [ -1 | 2
6°(-0,3) | 6-(-0,16) | 6-(-0,3) 2| -1] 2
6:(0,3) | 6-(0,18) | 6-(-0,3) 2 | 1 <::i
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Une matrice construite comme l'est A_, c'est-a-dire au moyen
de deux vecteurs g, et d_, est dite matrice de rang = 1; A
et A_ sont donc aussi deg matrices de rang = 1. Les matricés
dont“tous les éléments sont nuls sont dites matrices de rang
= 0. Toutes les autres matrices sont de rang supérieur a 1;
plus exactement, le rang d'une matrice est &gal au nombre de
ses valeurs singuliéres non nulles; par exemple, la matrice
A est de rang = 3. Le rang d'une matrice M ne peut pas dé-

passer le plus petit des deux nombres suivants:
(nombre des lignes de M) et (nombre des colonnes de M).

Le rang est ainsi une mesure assez simple de la complexité

d'une matrice; c'est exactement un "nombre de dimensions"

ou "nombre de degrés de liberté". Donc les matrices de rung
= 1 sont les matrices (non nulles) de complexité minimum.

On remarquera aussi que le mode de formation de A_ (ou A_,
ou A,) détaillé ci-dessus correspond a une agnalysé multi=
plicative de A, (alors que les calculs d'analyse de variance
correspondent & une analyse agdditive):

- la 3éme valeur singuliére s, = 6 égquivaut a une mesure
d'importance globale ("effe? global");

= le 3&me vecteur singulier a gauche g, = [045 =0, 55~0 ,5;0,5]"
comprend les 4 "effets de ligne";

(2/3;1/3;-2/3)"

- le 3éme vecteur singulier d droite d
n 7 . " 3
comprend les 3 "effets de colonne".
C'est ainsi que le nombre -2, qui figure a l'intersection-
de la 4éme ligne et de la 3éme colonne de la matrice A3,
est é&gal au produit:

(effet global=6)X (effet de la 4e ligne=0,5)x (effet de la 3e colonne=—0,g).

La décomposition singuliére de la matrice A est cette re-
présentation sous forme d'agrégat de trois analyses multi-
plicatives

A =s gld

1 1 A =s g.d. 1 , A, = s_l|g.d.'

]
1 : 2 2 22 33

dont chacune explore une nouvelle "direction" en augmentant
de 1 le rang de la matrice somme-partielle:

= -+ —
A Al A2 + A3 rang (Al) =1
rang (Al + A2) = 2
rang (Al + A, + A3) = rang (A) = 3
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Un lecteur familiarisé avec le produit matriciel remarquera
gue l'on peut aussi écrire A = G S D', ce gui est une forme
équivalente de la décomposition singuliére de A.

La décomposition singulié&re ne peut étre obtenue pratique-
ment gue par un ordinateur (probléme des valeurs propres

et vecteurs propres de deux matrices symétriques; cf. 1'ap-
pendice); mais ses propriétés remarquables (I & VI ci-des-
sous), en font un instrument indispensable en analyse des
données multidimensionnelles.

I La décomposition singuliére existe toujours; elle est
essentiellement unique.

II A, est la matrice de rang = 1 a distance minimum de A
(C'est donc la meilleure approximation B de rang = 1
au sens des moindres carrés, l'approximation dont 1la
matrice résiduelle A-B est la plus petite possible).

De méme A, + A_ est la matrice de rang = 2 & distance
minimum d&é la fiatrice A:

3-6 6+6 6-3 ~3 12 3

3-2 6+2 6-1 1 8 5
Al4—A2 - =

3+2 6-2 6+l 5 4 ¥

3+6 6-6 6+3 9 0 9
Plus généralement si M +M est la décomposition
singuliére d'une matrlce ﬁ alorg M., +M +...+MS (s<r)
est la meilleure approximation de rang = s de”la ma-
trice M,

ITI Lorsque M = M _+...+M_ est une matrice "carrée" (autant
de lignes gque de colgnnes), 1'approximation M_+...+M
(s<r) vérifie en méme temps une propriété de wmaximum
parmi toutes les transformations simultanées de M; cet-
te propriété, qui est énoncée exactement dans 1'appen-
dice, comprend comme cas spéciaux les propriétés de
variance maximum des composantes principales et les
propriétés de corrélation maximum des variables cano-
niques.

IV Les propriétés II et III ci-dessus sont valables pour
autant que les valeurs singuliéres aient &té rangées
dans leur ordre décroissant: Sl >s, >0 (ce qui

a &€té fait dans l'exemple numerlque? En outre:
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2
S
1L (= 60% dans notre exemple) mesure la qualité
< 2+52+5 2 de 1'approximation de A par la matrice Al de

1 2 3 rang = 1;

= 93% dans notre exemple) mesure la qualité

2 2 2 de 1l'approximation de A par la matrice A, +A
s, +s +s3 Hs .2

1 2 rang = 2;
(etc.)
A4 Les vecteurs singuliers & gauche g.,, 9,, 9,5, g9, sont
normés ( “g n = 1) et perpendiculdires deux a deux
(g.*g, = 0). Voici deux vérifications, parmi les dix

gul sont nécessaires:

sy = /10,97 + 0.9 + -0,5° v (0,57 = ETET= =1

(-3/v/20) + (0,5)+(-1/v/20) - (-0,5)+ (1//20) - (-0,5)+ (3/+/20) - (0,5)
(3/v/20) -0 + (1//20)-0 = 0 .

1
9, 93

Les vecteurs singuliers a droite d., d2, d3 sont aussi
normés et perpendiculaires deux a éeux.

Cette propriété de perpendicularité est précieuse en

statistique, car cela signifie que si X_,X_,X_,X ,Y_,
Y.,Y et ¥, sont des variables de méme VarIanCe (par

eXemple des variables réduites) et non corrélées deux
a deux, alors les variables dérivées

(—3//56)xl + (~1//§6)x2 + (1//56)x3 + (3//56)x4 et

(O,S)Yl + (-0,5)Y2 + (*O,S)Y3 * (O,S)Y4

sont non corrélées.

VI On peut définir facilement des fonctions de la matrice
et c'est essentiellement la seule facgcon de le faire.
Voici quelques exemples:

log(a) =1 a ']+ 1 ' p B
og (a) og(sl) 9,9, og(sz) g2d2 + log(sB) g3d3 ;
A Sl ; 52 s
= I - ]+ 3 : ;
e e gldl e gzd2 e ‘g3d3 H
A(k) =8 ¥ a'|+ s k a'| + & d'| (x > 0)
A g | % 9% By (B3 .
(-k) -k -k -k
A = d e d T+ ! . 2
s; (% s, 595 s, [d39;,7] k200
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(puissances de l'inverse généralisé A' = A de
Moore-Penrose) ;
1
N a5, . a9, |+ —[349;
Vsl i V52 V53

VARIABLES ET UNITES STATISTIQUES

Les unités statistiques et les variables correspondent res-
pectivement aux lignes et aux colonnes de la matrice de
données A.

Nous montrons d'abord que les vecteurs singuliers a droite
(colonnes de D) sont des vecteurs dérivés des lignes de A

et que les vecteurs singuliers a gauche (colonnes de G) sont
des vecteurs dérivés des colonnes de A. C'est la premiére
interprétation des matrices G et D, qui fournissent donc
respectivement une meilleure représentation des variables

et des unités statistiques (par des vecteurs perpendiculai-
res deux a deux).

Mais on peut aller plus loin, grace a la décomposition sin-
guliére, et définir une paire de transfcrmations simultandes
des unités et variables en "effets des unités" et "effets
des vartables'.

Les vecteurs singuliers a droite d sont dérivés des unités;
chague d' est une combinaison linéaire des lignes 1' de la
matrice A. Considérons, par exemple, le troisiéme vecteur
singulier a4 droite d

3¢
Symboliquement
g
2 1 2 Q3 31 .
T == . — ¢ =0 —|= — |- T — 1
d3 3 f g 3 ¥ 513 3 1 - 1
3
g
-0,5 32
- X
+ 6 158 713 7 5 [ 12
3
g
-0,5 33
r < - lr
+ e 33 3;9 - 3
3
g
S 34
+6+ 11 5 L3 7 ., 14'
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Ce qu'il y a d'intéressant dans ce résultat, c'est que les
numérateurs g des coefficients sont les composantes du
troistéme Vecégur singulier & gauche g_, alors que les diE-
nominateurs sont tous égaux & la troisiéme valeur singuliére

S,. Schématiquement, pour les trois vecteurs singuliers a
droite:
T 1/36 3
1 1
36

“'llllllll. 20
1 \
"2 “.'Illi"’ ~2460
L 6
1/60 d2

&, ‘ _3/€9

/

V2

1. " 1/12 d

Figure 1

2. Les trois premiers vecteurs singuliers a gauche g sont dé-
rivés des variables; chacun de ces g est une combinaison
linéaire des colonnes ¢ de la matrice A.

Considérons, par exemple, le second vecteur singulier a
gauche 9,

- 3/v20 -1 13

- 1/V20 | _ 2/3 | -1 |, =23 7|, L3
9, = = 3/ 3/2
2 | 30 3/20° V20"

W
N WO N

3/v20 L1 1

Symboliquement : | g, |= e |+ — e, 7T
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On observe de nouveau que les numérateurs d des coeffi-
cients sont les composantes du second vectelir singulier &
droite d,, alors que les dénominateurs sont tous égaux a
la sccon%e valeur singuliére 8,

Schématiquement, pour les trois premiers vecteurs singu-
liers & gauche:

J 18

Figure 2

3. Désignons par n le nombre d'unités statistiques, c'est-a-
dire le nombre de lignes de la matrice A (dans notre cas,
n=4)).

Les lignes " 2/2 ; - 6/V/20 ; 2/2 ; - 2/v20)
w' o= [2/2 5 - 2/v2075-2/2 ;  6//20]
u'o= [2/2 2/V/20" ;-2/2 ; - 6//20
wt = |22 6/Y20° ; 2/2 ;  2/V/20

de la matrice v/n G, au contraire des colonnes g. , représen-
tent des effets des unités statistiques (ce sont les "ef-
fets de ligne" introduits plus haut, mais amplifiés par un
facteur v/n').

De méme, les colonnes V,, V., Ty de la matrice (l1/vn) SD' —
c'est—-a-dire, dans notré ca%, de ¥ x le produit matriciel
de la matrice S par la transposée de la matrice D —, soit:
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51/6 3 251/6 6 251/6 6

2s,/6| |/20 -2s,/6| [-/20 s,/6| V2072

"3 2s_/6 ) 2 2 s_ /6 i 1 3 -2s5_/6 i -2
3 3 3

0 0 0] 0 0 0

représentent des effets des variables (ce sont les "effets
de colonne" introduits plus haut, mais transformés par un
facteur sk//ﬁ).

En effet, de ces définitions, il découle (comme l'ont re-

marqué quelques auteurs, dont Gabriel, 1971) les interpré-
tations suivantes:

a) Tout élément a,, de la matrice est &gal au produit (sca-

laire) d'un effdt "unité statistique" u, par un effet
"variable" v,. =

P = = '
ar exemple al'2 13 u, v,y donc

a

5 i (2/2)(2sl/6)+(~6//56)(—252/6)+(2/2>(53/6>+(~2//§6)(o)

Cette représentation est d'autant plus intéressante que,
comme tout produit scalaire, ul' v, se laisse interpré-
ter par un triple produit:

= X x
uy v, (longueur de ul) (longueur de vz)

(cosinus de 1l'angle entre les directions u1 et v2)

2 X 7,55 %X cos (30° 34" 37'").

/ 2 2 2 : 7
La "longueur" de uy =Hul”= (2/2) + (-6//20) + (2/2) + (-2//20) =
V4 = 2 est une mesure de “1'importance“.de l'unité 1 (cf. ci-

dessous) .

v, = 7,55 est une mesure de "l'importance" de la varia-
b%e 2 (cf. ci-dessous).

cos (30O 34" 37'') = 0,86 est une mesure du degré "d'as-
sociation" entre unité 1 et variable 2; cette associa-

tion est maximum lorsque cos = * 1, minimum lorsque
cos = 0.
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bl L'effet différenttel u,~u, (entre unitce. 1l et 2},
La différence a.,—a ént¥e les unités 1 et 2, en ce qui
concerne la variable™ 3, vaut aussi

- — _ 1
313 7 353 7 (uy mu)t vy

1l

”ul—uzu-“v3“- cos (angle entre effet ul—u2 et effet v3).

c) L'effet différentiel v, -v_ (entre variakles 1 et 2).
La différence a_..-a ent¥e les variables 1 et 2, pour

32

l1'unité 3, wvaut™ dussi

- = ' =
331 T B35 T Y3 vy mvy)

"u3"'”vl-v2"- cos (angle entre effet u_ et effet vl—v2).

3

d) L'effet d'interaction entre patre d'unités et paire de
variables. En analyse de variance, la combinaison liné-
aire suivante est appelée l'effet d'interaction entre
paire (u u2) et paire (vl, v_):

iy 2
31173178 0y T 8y T ) vy Yy
="u1—u2ﬂ°"vl-v2”- cos (angle entre les deux).

e) Si les variables sont centrées (c'est-a-dire si la somme
de chaque colonne ck de la matrice A est nulle), alors:

i) la variance empirique de la k"€ variable est égale
au carré “Vk"2 de la longueur du vecteur vk;

. ' . . éme éme .
ii) la covariance empirique entre les i et k varta-

bles est égale au produit scalaire vi' Vi

iii) le coefficient de corrélation empirique entre les va-
riables i et k est égal & (v ' v )/(Nvi|.“vk"), soit

le cosinus de 1'angle entre les directions vi et vk.

iv) la distance euclidienne lkg—v ﬂ entre effets de va-
riables est pr0portionnellé d la distance euclidienne
Hci-ck“ entre colonnes de la matrice A:



5

1.7:6

”Vi_vk" "Ci-ck” / V1 ; en outre,

"v_—vk” écart-type de la variable "(variable i) -
i

(variable k)".

Les interprétations du paragraphe précédent correspondent
aux propriétés intrinséques de nos trois variables; aux
propriétés intrinséques de nos quatre unités statistiques
(cf. ci-dessous les points ¢, d et e) correspondent des
propriétés "extrinségues" des trois variables (essentielle-
ment le fait gque ces trois variables déterminent la matrice
Q introduite ci-dessous). C'est ce que nous allons expliquer
dans ce paragraphe avant de poursuivre (au paragraphe 6) la
liste des interprétations des effets uy et Vi

Supposons que nos quatre unités statistiques nous fournis-
sent des informations non seulement sur nos trois variables,
mais aussi sur d'autres variables vy, z, ...; il suffira de
considérer le cas d'une unique variable y. Nous disposons
donc d'un vecteur (colonne) y de guatre observations:

Nous allons aussi changer 1l'optique de recherche adoptée
jusqu'a présent, soit 1'étude des relations entre les trois
variables; nous voulons maintenant étudier L'impact de nos
trois variables sur la variable y =—— on pourrait aussi dire
que nous voulons "prédire” y au moyen de nos trois variables.

Les variables du début jouent maintenant le r&le de trois
vartables "exogénes" (ou variables "prédictrices", "indé-
pendantes", "prédéterminées"), alors que y est une variable
dite "endogéene"” (ou variable "critére", "dépendante").

La méthode des moindres carrés permet de trouver la combinai-
son ¥ de trois variables exogénes qui est la plus proche du
vecteur d'observation y; elle montre que cette meilleure ap-
proximation s'interpréte géométriquement comme une projection
(perpendiculaire, et non oblique):

g MO
S N
Ky K KD KD
N I S
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et, ce qui est plus important, gque chaque composante ¥y, du
vecteur "ajusts" ¢ s'obtient par combinaison linéaire Ees
composantes Yy du vecteur original y:

(y,)

= ' = +
P =iy e v)) ru s lyp) e gy ety

k k kl

Dans notre cas, le pro,jecteur des moindres carrés est la
matrice Q suivante:

1 l o
w, 9 3 3 1
' =
w, " 3 11 9 3
B ow T 5@
w," -3 9 11 3
3
' -
w, 1 3 3 19

Ainsi, la meilleure approximation {(ou "valeur ajustée")

de y, est ?l = [18%; # 3y, = 3y, + Y,) / 20,
de y, est 92 = (3yl + lly2 + 9y5 - 3Y4) / 208,
de y, est §, = (=3y; + 9y, + 1lly, + 3y,) / 20,
de y, est ¢, = (yl = 3y2 + 3y3 + l9y4) $ 20,

Les propriétés matricielles de Q figurent en appendice;
les propriétés plus directement utilisables dans notre
analyse de données sont les suivantes:

a) Le carré de la longueur de chaque vecteur-ligne wi'
(ou vecteur-colonne, puisque O est toujours symétrique)
est €gal a 1'élément q;; sur la diagonale de la matrice.

Exemple de la seconde ligne:
o, )? = 372002 + (11/200% + (9/20)% + (-3/20)% = 11/20.

b) Le produit scalaire des vecteurs w,' et w

i est égal a
1'élément d;, en ligne i1 et colocnne k.

k

Exemple des lignes 3 et 4:

(-3/20) (1/20) + (9/20) (-3/20) + (11/20) (3/20)
+ (3/20) (19/20)

3/20.

€
Il

c) Le rang de la matrice A (= 3 dans notre exemple) est
égal & la somme des &léments diagonaux de la matrice
Q(:19+£+£.+£

2D 20 20 50 dans notre exemple); ces
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éléments diagonaux qg.., représentent la contribution in-
dividuelle de chaque unité statistigue i 4 La complexitsd
totale de notre matrice de donndes A.

Ainsi, dans notre exemple,
sont les unités 1 et 4.

les deux "gros contribuables"

d) Chacun des éléments diagonaux g de Q est aussi une me-
sure de la sensibilité de l'ajustzment lors de modifica-
tion (erreur, changement, etc.) de Yy -

Exemple de la deuxiéme composante:

Si y, est remplacé par y., + ¢, alors tous les ¥. sont
remp%acés par des y.* (gue l'on calculera au moyen des
formules ci-dessus pour 9., en substituant y, + c a y2);
le nouveau vecteur ajusté y* = [y *; o ¥ y3z; y4*]'

est alors a la distance ||§ - y*| de 1'Zncien vecteur
ajusté ¥.

Il est facile de montrer que la modification relative
vaut

lg - v _ ﬁg;
c

(= j%%‘ = 0,74 dans notre cas).

e) Chacun des €léments non-diagonaux gq,. de Q est une mesure
de la similarité entre unités 7 el j3 on obtient une me-
sure standardisée, variant entre -1 et +1, en utilisant

qij (qui est égal au cosinus de 1'angle entre
Y255 95 w, et w. ; cf. 1'appendice)

L J

Voici la matrice des similarités standardisées pour notre

exemple: unité 1 unité 2 unité 3 unité 4
unité 1 1 +0,21 -0,21 +0,05
unité 2 +0,21 1 +0,82 a2
unité 3 -0,21 +0,82 1 +0,21
unité 4 +0,05 -0,21 +0,21 1

6. Voici la suite des interprétations que l'on peut donner aux
effets n, 8 ¥ 3
i k
2 - .
a) Le carré |u.|” de la longueur du vecteur u, (& trois com-

posantes] est égal a neg,. .



d)

e)
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Exemple pour la seconde unité:

Hu2“2 = 2/ + (=2/V70)% + (-2/2)% = 44/20 = 4. o,

Le produit scalaire ui'uk (vecteur a trois composantes)
est égal a s P —_—

Exemple pour les unités 3 et 4:

u,'u, = (2/2) (2/2) + (2/V20) (6/V20) + (-2/2) (2/2) = 12/20

= 4-w_'w

3

Le cosinus de l'angle entre les directions ui et u, est
é&gal au coefficient de similarité standardis& entre unité
i et unité k.

Exemple pour les unités 3 et 4:

] .]Lg. q
Y3 M 20, g9 - —34
- . T 1
Tul-Tu,l é%.. %% 33 Y44
2 2 -

La distance euclidienne [|v -v || entre effets de variables
(& trois composantes) est égaie da ce gue l'on appelle la

distance de Mahalanobis

1 i
_l ] foarie] ] —_
(li k) (n A'A) (li lk)

entre les lignes i et k de la matrice A; c'est une dis-
tance "pondérée" (alors que la distance euclidienne)

“li—lk" = (-1 -1 ]

n'est pgs ponﬁ?rée), familiére aux statisticiens; la ma-
trice (= 2'A) des coefficients de pondération n'est
autre, Torsque les variables sont centrées, que 1l'inver-
se de la matrice des variances et covariances empiriques
de nos trois variables.

Le carré |u,-v H2 de la distance euclidienne entre effet
unité ui et effet variable v, (tous deux, des vecteurs a
trois composantes) dépend & &a fois de la contribution de
l'unité 1 a8 la complexité totale (rang) et de la contri-
bution de la variable k & la dispersion totale (variance).

Plus précisément, lorsque les variables sont centrées, on
a la relation:

"ui-Vk"2 = n-qii + variance (variable k) - 2 aik .
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LA REPRESENTATION GRAPHIQUE

Il est évident que si la matrice A est de rang > 2, seule
une approximation de rang = 2 peut étre représentée exacte-
ment sur le plan du dessin.

Puisque les grandeurs qui se laissent le mieux interpréter
sont des longueurs de vecteurs (variances et nombres g k)'
des angles (coefficients de corrélation, coefficients de
similarité) et des distances entre extrémités de vecteurs
(Juy=u | | vi=v, I uui—vkﬂ), le plus naturel serait de re-
présenter les uy et leés v, par des vecteurs du plan. C'est
ce que 1'on ferait si les lignes de la matrice correspon-
daient & un second groupe de variables (cas de 1'ACC et de
1'AFC) plutdt gu'a des unités statistiques.

Dans notre cas, pour des raisons de lisibilité du graphique,
nous adopterons le principe de représentation suivant:

Pour les variables: les vecteurs ¥,,V.,..., formé&s des deux
premiéres composantes de ACRACYERE
Pour les unités : les points—-extrémités des vecteurs

-~

a,,4,,... formés des deux premiéres com-
poOsantes de Ujrlgre e

Le lecteur pourra s'exercer a construire la représentation
graphique de notre exemple.

Ainsi il représentera la variable (colonne de la matrice A)

€1 Sq €3

par un vecteur allant de l'origine (o;0) vers le point

(3;v20) = (6;-¥20) = (6;v20/2) =
(+3,00; +4,47) (+6,00; -4,47) (+6,00; +2,24)

De méme, il représentera l'unité statistique (ligne de la
matrice A)

1 2 3 2

par le point

(1;-6//20) = (1;-2/4/20) = (1;2//20) = (1;6/v20) =

(+1,00;-1,34) (+1,00;-0,45) (+1,00;+0,45) (+1,00;+1,34)

Les matrices exactes des variances et covariances empirigques
d'une part, des corrélations empiriques d'autre part, sont
les suivantes:
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(@)
1 5 ‘3 ‘1 “y 3
c, [32,44 -1,13 22,88 ey 1 ~0,03 0,61
c, | -1,13 54,75 21,75 c, |-0.03 1 0,45
c, | 22,88 21,75 42,75 c, | 061 045 1

Bien que le graphigque ainsi construit représente rigoureuse-
ment A, + A, et non A, + A_ + A_ = A, et bien que les va-
riableS ne Soient pas Centrées, On peut y lire cependant que:

a) variance (c.,) < variance (c,) < variance (02), en compa-
rant les longueurs de ﬁl, vz et V3;

b) correl (c,,c,) = 0 (car ¥, et ¥, sont presque permendicu-
laires), correl (c,,c,) > corre% (c,,c,) (car l'angle en-
tre Vl et 03 est inférieur a celul éntfe 02 et 03);

c) c, et c, forment un sous—-groupe en ce gui concerne les
distanceés euclidiennes deux a deux entre les c, (car la
distance entre les extrémités de ¥. et ¥, est sensible-
ment plus petite que celle entre 1lés extrémités de ﬁz et
Vi)

d) les unités 1 et 4 sont les plus "gros contribuables" &

la complexité de A et & la sensibilité du projecteur Q

(car ﬁl et ﬁ4 sont plus éloignés de l'origine que

g, et u3);

e) si l'on avait essayé de construire une échelle & partir
des similarités standardisées entre unités, on aurait

obtenu u u U3 Uy échelle qui se lit bien sur
le graphique;

f) les valeurs absolues |a,,| des éléments de A correspon-
dent aux positions relatives des points {i, et des vec-
teurs ﬁk (plus exactement, aux angles entt¥e directions
ﬁi et ﬁk).

Toutes les relations exactes, énumérées dans la section
"Variables et unités statistiques", sont valables seule-
ment approximativement dans la représentation graphique.

Lorsqu'une matrice A = Al e SRR - Ar est remplacée par
Al + Aj, la gqualzité de l7ajustement vaut
2 2
S +s
1

(= 93 % dans notre exemple)




182

pour les effets différentiels et d'interaction entre paires
d'unités et de variables (les aih et ui'v.);

4 a2 (= 99,1 % dans notre exemple)

pour les variances, covariances et coefficien%s de corréla-

tion de variables centrées (les v, 'v, et Hvi“ )3
5o
s +s 2
1 2 = - (= = = 66,7 3 dans notre exemple)
o o] 3
S: +F.r.ts
1 r

pour les similitudes entre unités §t contributions a la
complexité (les g, u,'u,_ et |ju, i

P ( Dikr Y1 Y H 1“ )
Donc, les corrélations sont les mieux représentées, puis
viennent les effets différentiels et d'interaction; enfin
les similitudes et contributions & la complexité sont sou-
vent assez faussées dans la représentation graphique (ce

qgui n'est heureusement pas le cas dans notre exemple ol
r = 2+1).

Il n'est pas difficile de construire une paire de transfor-
mations simultanées aux propriétés inverses, ol les simili-
tudes sont les mieux représentées et les corrélations les
moins bien représentées.

Nous termincons par un exemple plus complexe; afin que le
lecteur puisse comparer la technique particuliére exposée
ci-dessus & 1'ACP et 1'ACC, nous avons repris volontaire-
ment un exemple de 18 variables et 18 unités statistiques
analysés par Bertier et Bouroche (1975) selon 1'ACP et (par-
tiellement) selon 1'ACC.

Notre graphique 1 correspond a la figure 1 (page 120) de
ces auteurs. Au lieu de leur figure 2 (page 121), corres-
pondant aux valeurs singuliéres s. et s,, nous avons pré-
féré dessiner le graphique 2, correspondant aux valeurs

singuliéres s, et s,, c'est-a-dire la meilleure approxima-
tion de la matrice ¥ésiduelle A-A, (= A2 + A, + ... +A
+ A._); la direction d'analyse qui correSpona a A, est in-

terprétée par Bertier et Bouroche (page 121) commé étant

le revenu par habitant; la matrice résiduelle analysée dans
le graphique 2 est donc la matrice originale '"corrigée' des
effets du revenu par habitant (autre terminologie: matrice

"lissée”). Faute de place, nous ne commenterons que briéve-
ment le seul graphique 1.



b)

c)

e)
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4 4 4 4, _ .
(sl + S, y / (sl + e +\818 ) 83,6%;
2 2 2 - ..
(5l + S, Y / (sl + ... + Sig ) = 56,6%;
o) o o o, _ o
(sl + S, )/ (sl + ...+ oSg } o= 11,.1%.

Ces trois rapports nous indiquent que la qualité de
l'ajustement est acceptable pour les corrélations, pas-
sable pour les effets différentiels et effets d'interac-
tion, et médiocre pour les similitudes et contributions

a la complexité. On étudiera donc ces derniéres sur la
base des valeurs numériques exactes, et non sur la seule
base du graphique; ce dernier, pourtant, nous montre uti-
lement la disposition des unités statistiques (distances
et angles) dans le plan de meilleure approximation (PMA),
ce gui est un apercu synthé&tique non négligeable.

Les calculs ont été effectués a partir de variables ré-
duites (variances = 1 et covariances = corrélations). On
ne peut donc pas distinguer les variables par leurs va-
riances; on notera cependant que dix variables sont bien
représentées dans le PMA (vecteurs de longueur voisine

de 1), alors que les variables TES, LOG, ELE, CAL, AIN,
TAP, DEN et FBC le sont mal (de ces huit, LOG, CAL et
FBC sont bien représentées dans le graphique 2).

Dans le PMA, on distingue nettement trois groupes de va-
riables (FBCF est mal placé par Bertier et Bouroche):

I TES, REC, EDU, LOG, ELE;
II CAL, PNB, AIN, TLV, ASS, PIA;
III TAP, EXP, IMP, RES, POP, DEN, FBC.

Les variables d'un méme groupe sont plus fortement cor-
rélées entre elles qu'avec les variables des autres
groupes.

Dans le PMA, certains groupements d'unités statistiques
apparaissent nettement:

A) FI, DA, NO, SU (pays scandinaves) ;

B) PO, ES, GR (pays mé&diterranéens n'appartenant pas
au Marché commun) .

Une entité comme le Marché& commu (AL, GB, FR, BL, IT),
par contre, apparait en ordre trés dispersé dans le PMA.

Les unités statistiques éloignées du centre (US, PO, GR,
SU, etc.) contribuent plus fortement que les autres aux
deux dimensions "revenu par habitant" et "importance des
dépenses publiques" du PMA. On notera que les échelles
utilisées pour dessiner les unités et les variables sont
différentes,
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Notons les différences principales avec les graphiques d'ACP
et d'analyse factorielle.

a) On peut on principe représenter n'importe quelle matrice
de nombres réels a..; la représentation sera utile dans
la mesure ot les p%apriétés de la section "Variables et
unités statistiques" seront pertinentes (interprétation

par produits scalaires et par projections perpendiculai-
res) .

b) Les axes de coordonnées servent uniquement a construire
le graphique; une rotation d'axes n'a pas de sens,
"c'etait avant qu'il fallait agir", en choisissant une
autre paire de transformations simultanées.

c) Les rdles joués par les variables et par les unités sta-
tistiques apparaissent de fagon plus symétrique (et mieux
que dans les "Q-analysis" et "R-analysis" des psychomé-

triciens):
unités variables
similarités corrélations
complexité dispersion

effets différentiels et d'interaction

d) On a tendance & interpréter les graphiques d'ACP et d4'AFC
en termes de distances entre points; en fait, c'est avant
tout en termes d'angles et de projections perpendiculai-
res qu'il faut lire le message graphique. En ce qui con-
cerne 1'AFC, on peut montrer (Schellhorn, 1976) que la

=

notion de barycentre est liée a celle de projection per-
pendiculaire.

APPENDICE

Les valeurs propres ) (respectivement u) et vecteurs pro-
pres d (resp. ¢) de A'A (resp. AA') sont définis par les
relations

A'A d = M (resp. AA' g = ug).

On peut montrer que les A et y sont des nombres réels non-

négatifs et que, si on les énumére en ordre décroissant, on
a

r est &gal au rang de la matrice A; les racines carrées po-
sitives s; = VA = /Ui sont les valeurs singuliéres de A.
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Les vecteurs propres normés d, (resp. gi) de A'A (resp.
AA') sont les vecteurs singuliers 4 droite (resp. a4 gauche)
. s - . . = ! =
de A; ils vérifient les relations Adi Sigi et A gk Skdk'

sl 0 emae U
0 S, e 0
i = = .o y S =
EBLE 6 gl gr v B dl dr ...........
0 0 wes S
i r
On vérifie les relations suivantes:
G'G =1I_ = AD = GS A'G = DS
= L— | 1 1
A G S D lgldl + szgzd2 t wmw L srgrdr
P 2 _ 2 . 2 .
A'A =D S = Sl dldl + e T sr drdr
1 — 2 ] —_ 2 L} 2 1
AA' = G S5 G' = Sy 979, F see E sr grgr
Ak = ¢ gk p at =pste
Le projecteur des moindres carrés Q = A(A'A)TA' = GG' =,
= glg1' * s F g4 ' vérifie les proprié&tés Q = Q' = Q" =
= Q'0"= QQ'; ses vaf$urs singuliéres non-nulles valent + 1.
De méme pour A'(AA') A = DD'.
Rangs: rang (A) = rang (A'A) = rang (Q) = trace (Q) = dp; *
R S

Les lecteurs un peu mathématiciens pourront consulter 1l'ar-
ticle de Hawkins et Ben-Israel (1973).

Les effets des unités sont les colonnes de la matrice
U' =/Mm~G'; les effets des variables sont les colonnes de
la matrice V' = (l1/+/n>)SD’'.

La paire de transformations simultanées est la suivante:

B ———i & [nlzns_l]

GSD' = =7
DSG' = A' — 3 A'[n_%G] =V ;
2 2

AR' A(Z) GS G'|GS D'

(2)" = 2 ., 1..2_,| est transformée en
A A'A DS G'|DS D
uu'! uv' nGG' |GSD'

= -

vu' A% DSG n DS D
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La méthode des transformations simultanées est basée sur la
remarque suivante:

Si X et Y sont les bases de deux sous-espaces vectoriels de
dimension finie, et si 1'on transforme X en XS et Y en YT,
alors la matrice de tous les produits intérieurs

B F S'BS S'FT

devient — .
F' H 1 ) THT

L'ACC est lchas Egrticulier suivant:

Soit F* = B ? F H * la matrice F standardisée (cela signi-
fie que si F est une matrice de covariances, alors F* con-
siste en pseudo-corrélations); soit F* = GSD' sa décomposi-

tion singuliére. Alors

X —> X [B_%GJ =&, [---]¢

It

X aee| X
1 p

1l

Yl ‘e Yq

Y —— Y[H_%D:] =|ny[---n

¥

est la paire de transformations simultanées cherchée (les

gj et N avec i > r et kK > r peuvent &tre négligés ici).

Les propriétés d'optimum découlent des deux propriétés sui-
vantes, oud o, (M) > o,(M) > o,(M) > ... désignent les valeurs
singuliéres ée la ma%rlce M, "rangées dans l'ordre décroissant.

a) Pour toutes les représentations d'une matrice A comme
somme de deux matrices perpendiculaires (A = B+C avec
B'C =f0]) ol rang(A) = r > k = rang(B), on vérifie que:

- > i 8- R = ; Fio v ot = ;
0.(A B) o, (A (A Ak)) a (Ak+l Ar) S. 4k
pour 1 < i < k. A1n51 le résidu d'ordre k (A " +...+A )

r
minimise simultanément toutes les valeurs singuliéres
dans le cas d'une transformation A-A-B du type ci-dessus.

b) Pour toutes les transformations A-+S'AT d'une matrice
A = GSD' de rang r au moyen de matrices S' et T telles
gue rang (S'T) =k < r,0,(8') < 1, o, (T) 1, on vérifie

1 pm i_
que o, (S'AT) 2 o, (GkADk) 0, (Ayt. ¥R ) s

pour 1 < i < k. Ainsi la meilleure approximation d'ordre
k (A,+...+A ) maximise simultanément toutes les valeurs
singiiliéres dans cas d'une transformation A~»S'AT du
type ci-dessus.

{1 P
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