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Une nouvelle technique d'exploration statistique:
L'ANALYSE SIMULTANEE DES VARIABLES ET DES UNITES.

Jean-Pierre Schellhorn

RESUME

L'analyse en composantes principales (ACP), l'analyse des
corrélations canoniques (ACC) et l'analyse factorielle des
correspondances (AFC) sont de plus en plus utilisées en
sciences sociales. Après avoir indiqué que ces trois
techniques sont des cas spéciaux d'une seule et même méthode,
l'analyse par transformations simultanées, cet article
présente en grand détail un quatrième cas spécial de la méthode

générale.
Partant de 1'unique décomposition singulière que possède
toute matrice de données (rectangulaire), on construit de
ce fait une procédure "universelle". La représentation
graphique associée est étudiée de façon approfondie, car c'est
elle qui détermine l'intérêt pratique de cette nouvelle
technique exploratoire.
Cet article est écrit pour un lecteur qui possède le bagage
mathématique usuel en sciences sociales. Le résumé mathématique,

dans l'appendice, complète l'exposé pour ceux qui
aimeraient faire exécuter les calculs et graphiques
nécessaires par un centre de calcul.

ZUSAMMENFASSUNG

Hauptkomponentenanalyse (ACP), kanonische Korrelationsrechnung
(ACC) und Korrespondenzenanalyse (AFC) werden als

Spezialfälle einer einzigen Methode, der sogenannten "Analyse
durch gleichzeitige Transformationen" eingeführt. Der Hauptteil

des Artikels wird einem vierten, neuen Spezialfall
gewidmet, der auf der singulären Dekomposition einer Matrix
entstammt. Da diese Dekomposition für jede (auch nicht
Quadrat-)Matrix eindeutig definiert ist, ist diese neue
Datenanalyse universell anwendbar. Um die Methode wirklich
praktisch zu machen, wird auf die naheliegende graphische
Darstellung grosses Gewicht gelegt. Im Anhang findet der
Datenverarbeiter die vollständige Sammlung von mathematischen

Formeln.
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LA METHODE DES TRANSFORMATIONS SIMULTANEES

Pour partir d'un exemple aussi simple que possible, supposons

que nous ayons à analyser les relations entre cinq
variables qui se répartissent naturellement en deux groupes;

appelons (x^, x^ x^) les variables du premier groupe
et ^2' beS variakles du second groupe. Supposons
aussi, pour fixer les idées, que le coefficient utilisé
pour mesurer l'intensité de l'association entre deux
quelconques de ces cinq variables soit leur covariance.

La matrice P des covariances a la forme suivante:

X1 X2 X3 Y1 y2

X
1 bll b12 b13 fll f12

X2 b12 b22 b23 f21 f22
B F

X3 b13 b23 b33 f31 f32
P

Y1 fll f21 f 31 hll h12
F» H

Y2 f12 f22 f32 h12 h22
i

Par exemple: b^ variance de

variance de y^
^21 covar;i-ance X2 e*-

La seule information disponible se réduit essentiellement
à cette matrice P. Pour analyser les relations entre les
deux groupes de variables, il convient d'y substituer de
nouvelles variables qui fassent apparaître, sous une forme
plus simple ou plus directement interprétable, la "position
relative" de ces deux groupes. C'est ce que l'on fait d'une
manière un peu particulière en ACC (voir le paragraphe
suivant) et que l'on peut se fixer comme objectif plus général

(cf. le paragraphe 3).

Dans l'analyse an variables canoniques (ACC), on remplace
les cinq variables initiales (x x2, x^; y y par de
nouvelles variables, les deux paires de "variables
canoniques" (Çi, n1), (Ç2/ h2) et une cinquième variable Ç3
dont la définition importe peu ici (cf. Schellhorn, 1976)

La matrice II des covariances des nouvelles variables a la
forme suivante:
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1 0 0 S1 0

0 1 0 0 s2

0 0 1 0 0

S1 0 0 1 0

0 s2 0 0 1

h
A

0
A El I2

Par exemple: covariarice de ^ et Ç2 0

covariance de ri 1 et n2 0

variance de Ç. =1
variance de ri =1
covariance de-'çl et n : s,
covariance de Çi et n2 0

Les nombres positifs g, et s2 sont appelés les deux coefficients
de corrélation canonique entre le groupe (x^, x^)

et le groupe (y1> y

Nous exprimerons ce résultat en disant que le but de l'ACC
est de transformer simultanément

(x x X en (x *, x2*, x3*)
(y1# y2) en (yx*> y2*)

afin de remplacer la structure compliquée (car quelconque)

P
B F

F ' H
par la structure simple II

A o

Le résultat mathématique intéressant est qu'une paire de
transformations simultanées (essentiellement) unique
résout ce problème; c'est la paire (x * Ç1( x * Ç2

*3* C 3) et (yx* nl7 y2* n 2 -

3. Passons au principe général, énoncé sans démonstration (on
trouvera celle-ci dans mon étude citée plus haut).

Si deux groupes de variables (x^,...,x et (y,/.../y„)
possèdent une matrice de covariance (ou uRe matrice de
corrélation, ou une matrice de coefficients d'association) de
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forme générale

*l-"Xp yi-"-yq

B F

F' H

on peut trouver deux paires de transformations simultanées
(x, x (x * x *) (respectivement (x1(..., x1 p 1 p 1 p
(y-, - • • • / y + (y-,*/.../ y *) (respectivement (y yx x SI

telles que les matrices correspondantes des x^*,..., y *
(resp. des x^,..., y soient de forme ^

* *
X1 XP

* *
yx -yq X X

1 p
y. ...yi q

*
X1

ae F*

X
1

B 3
X
p

X
p

yl yl

*
F*' •y 3 H

Jq Jq

où 5e e t ~y fresp.j peuvent être fixés a priori, et où F*
(resp. B et A)ont des structures précisées dans l'appendice

à cet article; la seule restriction est essentiellement
que le rang des matrices *, V et J (notion définie

ci-dessous) ne soit pas supérieur au rang de la matrice
B, H et F respectivement.
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On peut évidemment atteindre au moyen de la même paire de
transformations simultanées le double objectif ut, y et J
si ces trois matrices sont "compatibles".

Dans la présentation usuelle de l'analyse des corrélations
canoniques, on détermine séquentiellement les paires (Çlf
n:), (£2*12)' etc. de variables canoniques par des propriétés

de corrélation nulle (entre et entre ri^ et n^.,
entre Ç. et nk) et de corrélation maximum (entre et rt )•
c'est d"*"ailleurs cette corrélation s^ entre et'Tk que l'or
appelle la kleme corrélation canonique.

La définition simultanée (et non séquentielle) de paires
comme elle a été introduite au paragraphe 2, est

connue des spécialistes depuis plusieurs années. Il est
regrettable qu'elle n'ait pas acquis droit de cité dans les
manuels de statistique, car elle me semble plus intuitive
que la définition de type séquentiel.

L'ACC peut donc être considérée comme le cas spécial de la
méthode générale du paragraphe 3, où les objectifs aeE 1^

I et J sont compatibles,

L'analyse factorielle des correspondances (AFC) sert à
analyser des tables de contingence, des fonctions de probabilité

bidimensionnelles ou, plus généralement, n'importe
quelle matrice (rectangulaire) C de nombres non négatifs
c... On peut la considérer comme l'analyse des corrélations
canoniques entre variables dichotomiques (cf., par exemple,
Escoufier, 1971; ou Hill, 1974).

Si L (respectivement K) désigne la matrice diagonale dont
les éléments diagonaux sont les totaux de lignes (resp. de
colonnes) de la matrice C, alors la matrice
L C

C' K en AFC, joue le rôle de la matrice B F
F 1

H en ACC.

C'est donc bien un cas particulier de la méthode générale
du paragraphe 3.

6. L'analyse en composantes principales (ACP) sert à simpli¬
fier la description d'un seul groupe de variables (x
x^). On peut cependant la présenter comme l'ACC.

Appelons B la matrice des variances et covariances de
variables x^,...,x ; c'est une matrice (symétrique et définie

positive) quilconque.

Il est facile de montrer que si p q et si le groupe de
variables (y^,...,y n'est qu'une "copie" du groupe (xw
...,x alors l'AcP sert à remplacer la structure compli-
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quee
B B
B B par la structure simple II

V W

W' B '

où W est une matrice à lignes non-corrélées deux à deux et
où la matrice V est diagonale. V contient les variances des
nouvelles variables (x *,...,x *), variables que l'on
appelle les composantes principaÇes du groupe (x^,...,x
Cette définition de type simultané me semble plus intéressante

que la définition usuelle, où x *,...,x * sont définies

séquentiellement par des propriétés de cBrrélation
nulle (entre x.* et x *) et de variance maximum (pour chaque

x * 1

k

En conclusion, l'ACP est le cas particulier de la méthode
générale des transformations simultanées où B F H, et
où l'objectif est ïs V et ^ B.

7. Dans le reste de cet article, nous allons développer un cas
particulier qui nous semble encore plus important que les
précédents, et qui n'a été étudié que récemment (Gabriel,
1971; Schellhorn, 1976)

Il s'agit du cas d'une matrice quelconque

A
ail aim

anl a
nm

1 '
1

à n lignes 1 1 '
^ 1 n et m colonnes cI"" 'c„

Pour ne pas multiplier les interprétations possibles des
formules mathématiques, nous nous occuperons du cas le
plus courant où chaque colonne c. représente n mesures
d'une variable, et où chaque ligne 1. représentent une unité

statistique où l'on a mesuré les r?i variables.

Dans la section intitulée "La décomposition singulière
d'une matrice", nous rappellerons que A peut être représentée

de façon unique sous la forme d'une somme de matrices
de rang un aux propriétés intéressant l'analyse de données.
Cette propriété - encore trop peu connue et trop peu
utilisée - permet de construire une paire de transformations
simultanées

A

A '

1 1 IIDî n u1 n 1 n
("effets des unités")

c c i ^ y ' V V ' ("effets des varia
1 m 1 m blés")
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telle que

P
AA' a(2>

A<2)' A ' A
soit transformée en II

GG UV '

D> W '

AA' n x (matrice des "similarités brutes" entre unités);
A1A n x (matrice des variances et covariances empiriques)

lorsque les variables sont centrées; nVV1 A1 A.

UV' A (la matrice originale, dont chaque élément est donc
représenté comme le produit "scalaire" d'un "effet
unité" par un "effet variable");

UU' n x (matrice de "projection des moindres carrés")
n x (matrice des similarités entre unités)

Les (u ,...,u et sont analysés dans la section

intitulée "Variables et unités statistiques"; en outre,
ils se prêtent bien à une représentation graphique très
utile qui est présentée dans la dernière section de cet
article.

LA DECOMPOSITION SINGULIERE D'UNE MATRICE

Toute matrice A possède une unique "décomposition singulière"

(terminologie mathématique traditionnelle, assez
malheureuse, sinon singulière; les psychométriciens
l'appellent la décomposition d'Eckart-Young); nous allons
voir en détail ce que cela signifie au moyen d'un exemple
de taille minimum (4 lignes et 3 colonnes).

1. Supposons que la mesure de 3 variables chez 4 "sujets"
fournisse les 12 nombres suivants:

A

Les lignes 1^' zlLilüJ - ••• ' V il ; i ; L
représentent les 4 sujets (ou unités statistiques) ;
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les aolonnes c,

représentent les 3 variables

2. A est égale à la somme des trois matrices suivantes:

A Aj + A2 + A3

(par exemple, en première ligne et seconde colonne, 13
6 + 6 + 1)

A1 A2 A3

Les matrices A^, A^ et A^ sont construites comme suit:

h1 18 [0,5;0,5;0,5;0,5] ' [0,3 ; 0,6 ; 0,6]

S1 gi dl'
A 13,4164 [-0,6708;-0 ,2236 ;0 ,2236 ;0,6708"J ' [O ,6 ;-0 ,6 ;0 ,3]

A3 6 [0,5;-0,5;-0,5;0,5] ' [0,6 ; 0,3 ;-0,6]
s3 g3 d3'

Les trois nombres s^ 18, s2 13,4164 3/2TT) et s 6

s'appellent les valeurs singulières de la matrice A; on les
regroupe dans la matrice S suivante:

S

S1 0 0

0 S2 0

0 0 S3
0 0 0

Les valeurs singulières sont des nombres positifs ou nuls.
On appelle matrice des vecteurs singuliers "à gauche" (de A)
la matrice G suivante (il y a 4 vecteurs g, car il y a 4



167

lignes dans la matrice A):

G

0,5 -0,6708 (=-3/ v/2ÔT 0,5 -0,2236 (=-l//2ÔÎ

0,5 -0,2236 (=-l//2ÖT -0,5 0,6708 3//2ÖT

0,5 0,2236 1//2ÖT -0,5 -0,6708 (=-3//2ÔÎ

0,5 0,6708 3/v/2ÔT 0,5 0,2236 1//2ÔT

On appelle matrice des vecteurs singuliers "à droite" (de A)
la matrice D suivante (il y a 3 vecteurs d, car il y a 3

colonnes dans la matrice A):

D

1/3 2/3 2/3

2/3 -2/3 1/3

2/3 1/3 -2/3

Dans cet exemple, la matrice D est égale à sa transposée

ce n'est en général pas le cas.

Les produits matriciels figurant ci-dessus (<3^1 ' '^2^2 ' '
g d 1), et qui permettent de déterminer A A^ et A^
respectivement, se calculent comme on le montre pour A^ (ce
qui suffit):

Ä3

0,5

-0,5

-0,5

0,5

0,6 ;0,3 ;-0,6 6

(0,5)•(0,6) (0,5) • (0,3) (0,5)•(-0,6)
(-0,5)•(0,6) (-0,5) (0,3) (-0,5)•(-0,6)
(-0,5)•(0,6) (-0,5) • (0,3) (-0,5) *(-0,6)

(0,5)•(0,6) (0,5) • (0,3) (0,5)•(-0,6)

6- (0,3) 6-(0,16) 6- (-0,3)

6- (-0,3) 6- (-0,16) 6-(-0,3)

6"(-0,3) 6- (-0,16) 6- (-0,3)

6- (0,3) 6"(0,16) 6- (-0,3)

5 1 -2

-2 -1 2

-2 -1 2

2 1 0



168

Une matrice construite comme l'est A^ c'est-à-dire au moyen
de deux vecteurs g^ et d est dite matrice de rang 1; A
et sont donc aussi des matrices de rang 1. Les matrices
dont tous les éléments sont nuls sont dites matrices de rang

0. Toutes les autres matrices sont de rang supérieur à 1;
plus exactement, le rang d'une matrice est égal au nombre de
ses valeurs singulières non nulles; par exemple, la matrice
A est de rang 3. Le rang d'une matrice M ne peut pas
dépasser le plus petit des deux nombres suivants:

(nombre des lignes de M) et (nombre des colonnes de M).

Le rang est ainsi une mesure assez simple de la complexité
d'une matrice; c'est exactement un "nombre de dimensions"
ou "nombre de degrés de liberté". Donc les matrices de rang

1 sont les matrice s (non nulles) de oomplexitê minimum.

3. On remarquera aussi que le mode de formation de A^ (ou A^,
ou A^) détaillé ci-dessus correspond à une analyse
multiplicative de A^ (alors que les calculs d'analyse de variance
correspondent a une analyse additive):

- la 3ème valeur singulière s 6 équivaut à une mesure
d'importance globale ("effet global");

- le 3ème vecteur singulier à gauche g^ ^0,5;-0,5;-0,5;0,5^]'
comprend les 4 "effets de ligne"-,

- le 3ème vecteur singulier à droite d^ [_2/3 ; 1/3 ;-2/3^| '

comprend les 3 "effets de colonne".

C'est ainsi que le nombre -2, qui figure à l'intersection
de la 4ème ligne et de la 3ème colonne de la matrice A^,
est égal au produit:
(effet global=6)X (effet de la 4e ligne=0,5)x(effet de la 3e colonne=-0,6)

La décomposition singulière de la matrice A est cette
représentation sous forme d'agrégat de trois analyses
multiplicatives

gidl ' a d 1

2 2 A3 S3 W
dont chacune explore une nouvelle "direction" en augmentant
de 1 le rang de la matrice somme-partielle:

A Ai + A2 + A3 rang (A

rang (A + A2)

rang (A1 + A2 + A3>

1

2

rang (A)
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Un lecteur familiarisé avec le produit matriciel remarquera
que l'on peut aussi écrire A - G S D', ce qui est une forme
équivalente de la décomposition singulière de A.

4. La décomposition singulière ne peut être obtenue pratiquement
que par un ordinateur (problème des valeurs propres

et vecteurs propres de deux matrices symétriques; cf.
l'appendice) ; mais ses propriétés remarquables (I à VI ci-dessous)

en font un instrument indispensable en analyse des
données multidimensionnelles.

I La décomposition singulière existe toujours; elle est
essentiellement unique.

II A^ est la matrice de rang 1 à distance minimum de A

(c'est donc la meilleure approximation B de rang 1

au sens des moindres carrés, l'approximation dont la
matrice résiduelle A-B est la plus petite possible)
De même A^ + A est la matrice de rang 2 à distance
minimum de la matrice A:

A + A
1 2

3-6 6+6 6-3

3-2 6+2 6-1

3+2 6-2 6+1

3+6 6-6 6+3

-3 12 3

1 8 5

5 4 7

9 0 9

Plus généralement si M +M +...+M est la décomposition
singulière d'une matrice M, alorl M^+M^+.-.+M (s<r)
est la meilleure approximation de rang s de la
matrice M.

III Lorsque M M^+...+M est une matrice "carrée" (autant
de lignes que de colonnes), l'approximation M +...+M
(s<r) vérifie en même temps une propriété de maximumS
parmi toutes les transformations simultanées de M; cette

propriété, qui est énoncée exactement dans l'appendice,
comprend comme cas spéciaux les propriétés de

variance maximum des composantes principales et les
propriétés de corrélation maximum des variables
canoniques

IV Les propriétés II et III ci-dessus sont valables pour
autant que les valeurs singulières aient été rangées
dans leur ordre décroissant: s^ > s > s >0 (ce qui
a été fait dans l'exemple numérique^. En^outre:
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2

_ 60% dans notre exemple) mesure la qualité
s 2+s 2+s 2 i'appr0ximation de A par la matrice A^ de

1 2 3 -*

rang 1 ;

2 2

S1 + s2 93% dans notre exemple) mesure la qualité
2 2 2 de l'approximation de A par la matrice A +A

sl +s2 +s3 de rang 2;

(etc.)
V Les vecteurs singuliers à gauche g^, g^, g^ sont

normés || g || 1) et perpendiculaires deux à deux
(g.'g^ 0). Voici deux vérifications, parmi les dix
qui sont nécessaires:

||g3|| /o,5)2 + (-0,5)2 + (-0,5)
2

+ (-0,5)
2"

/0,25-4'= v/T= 1 ;

g2<g3 - (°,5) + (-1/1/2Ô') • (-0,5) + (1/v22Ü) - (-0,5) + - (0,5)

(3//23) -0 + (l/v/20") -0 0.

Les vecteurs singuliers à droite d d^, d^ sont aussi
normés et perpendiculaires deux à aeux.

Cette propriété de perpendicularité est précieuse en
statistique, car cela signifie que si ,X^,X ,X
Y^,Y3 et sont des variables de même variance (par
exemple des variables réduites) et non corrélêes deux
à deux, alors les variables dérivées

(-3//20)X, + (-l//2C?)Xn + (1//2CÎ)X + (3//2B)X et1 2 3 4

(0,5) Y1 + (-0,5) Y2 + ("0,5) Y3 + (0,5) Y4

sont non corrélées.

VI On peut définir facilement des fonctions de la matrice A,
et c'est essentiellement la seule façon de le faire.
Voici quelques exemples:

(k)

<-k)

logfs^) gid '
1

+ log (s2> g d '
2 2

+ logts^)
S s„

e
1

gid
1

1
+ e

2
g d '

2 2
+ 2 3

g3d3'
k

S1
k

s2
k

3gid
1

1
+ g„d '

y2 2
+ g3d3'

-k
S1

-k
S2

-k
dig

1

1
+ d2g2

' + d3g3'

g d '
3 3

(k > 0)
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(puissances de l'inverse généralisé A
Moore-Penrose) ;

A( 1) de

(-1/2) Vi' d2g2' d g '
3 3

VARIABLES ET UNITES STATISTIQUES

Les unités statistiques et les variables correspondent
respectivement aux lignes et aux colonnes de la matrice de
données A.

Nous montrons d'abord que les vecteurs singuliers à droite
(colonnes de D) sont des vecteurs dérivés des lignes de A
et que les vecteurs singuliers à gauche (colonnes de G) sont
des vecteurs dérivés des colonnes de A. C'est la première
interprétation des matrices G et D, qui fournissent donc
respectivement une meilleure représentation des variables
et des unités statistiques (par des vecteurs perpendiculaires

deux à deux).

Mais on peut aller plus loin, grâce à la décomposition
singulière, et définir une paire de transformations simultanée s
des unités et variables en "effets des unités" et "effets
des variai les".

1. Les vecteurs singuliers à droite d sont dérivés des unités;
chaque d' est une combinaison linéaire des lignes 1' de la
matrice A. Considérons, par exemple, le troisième vecteur
singulier à droite d^:

0,5
6

-0,5

-0,5
6

0,5
6

11 ; 1 ; 7

-1 ; 13 ; 1

-1 ; 7 ; 7

3 ; 3 ; 9

Symboliquement :

9,31

s. Y

Y
33

34

s „
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Ce qu'il y a d'intéressant dans ce résultat, c'est que les
numérateurs g des coefficients sont les composantes du
troisième vecteur singulier à gauche g^, alors que les
dénominateurs sont tous égaux à la troisième valeur singulière
s^. Schématiquement, pour les trois vecteurs singuliers à

droite :

Figure 1

2. Les trois premiers vecteurs singuliers à gauche g sont dé¬
rivés des variables; chacun de ces g est une combinaison
linéaire des colonnes c de la matrice A.

Considérons, par exemple, le second vecteur singulier à
gauche g2

2

- 3//201

- 1/V/2CT

1//20
3//2Ö1

2/3
ï/Hr

- 1

- 1

3

11

-2/3
3/2CP

13

7

3

1

1

7

9

7

Symboliquement
21

S2 ed
22

s„
23

S2 ta-
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On observe de nouveau que les numérateurs d
^ des coefficients

sont les composantes du second vecteur singulier à

droite d alors que les dénominateurs sont tous égaux à
la seconde valeur singulière s^.

Schématiquement, pour les trois premiers vecteurs singuliers
à gauche:

Figure 2

3. Désignons par n le nombre d'unités statistiques, c'est-à-
dire le nombre de lignes de la matrice A (dans notre cas,
n 4)

Les lignes u 1

u '
2

u 1

4

2/2 - 6/720" -, 2/2 - 2//2Ö"

2/2 - 2/720" t-2/2 6/720"

2/2 2/720" ;-2/2 - 6//2Ü"

2/2 6/720" ; 2/2 2/72Ü"

de la matrice /n G, au contraire des colonnes g représentent
des effets des unités statistiques (ce sont les

"effets de ligne" introduits plus haut, mais amplifiés par un
facteur /n?

De même, les colonnes v v v de la matrice 1//ri) SD ' —
c'est-à-dire, dans notre cas, de \ x le produit matriciel
de la matrice S par la transposée de la matrice D —, soit:
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s /6
1

3 2s^/6 6 2s /6 6

2s,/6 /2Cf -2s?/6 -/2Ü S2/6 /2Ö72

VT —

25^/6 2
2

s^/6 1 -2S3/6 -2

0 0 0 0 0 0

représentent des effets des variables (ce sont les "effets
de colonne" introduits plus haut, mais transformés par un
facteur s, //n)
En effet, de ces définitions, il découle (comme l'ont
remarqué quelques auteurs, dont Gabriel, 1971) les interprétations

suivantes:

a) Tout élément a.. de la matrice est égal au produit (sca
laire) d'un efèàt "unité statistique" u. par un effet
"variable" v.. 1

1

Par exemple a^ ^
13 u^' v^, donc

&12= (2/2) (2si/6) + (-6/>/20) (-2s2/6) + (2/2) (s3/6) + (-2//20) (0)

'

6 + 6 +1 + 0

Cette représentation est d'autant plus intéressante que
comme tout produit scalaire, u ' vse laisse interpréter

par un triple produit:

u '
v2 (longueur de u^) x (longueur de v x

(cosinus de l'angle entre les directions u^ et v
2 x 7,55 x cos (30° 34' 37").

La "longueur" de u^ =|[u |= /(2/2)2 + (-6//20)2 + (2/2f + (-'2//2ÏÏ)2

/T= 2 est une mesure de "l'importance" de l'unité 1 (cf. ci-
dessous)

v- 7,55 est une mesure de "l'importance" de la variable
2 (cf. ci-dessous).

cos (30° 34' 37'') 0,86 est une mesure du degré "d'as
sociation" entre unité 1 et variable 2; cette association

est maximum lorsque cos ± 1, minimum lorsque
cos 0.
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b) h'effet différentiel Up-U2 Senlre unités 1 et 2)
La différence a^3~a23 entre les unités 1 et 2, en ce qui
concerne la variable 3, vaut aussi

a!3 " a23 (U1 ~ V '
V3

I U1_U2H "Il V3I! • cos (angle entre effet u -u et effet v

c) L'effet différentiel V^_V2 ^entre variable s 1 et 2)
La différence a^-a^ entre les variables 1 et 2, pour
l'unité 3, vaut aussi

a31 " a32 U3' (V1 ~ V
luJ •|IV1_V9II • cos (angle entre effet u et effet v -v112 3 12

d) L'effet d'interaction entre paire d'unités et paire de
variables. En analyse de variance, la combinaison linéaire

suivante est appelée l'effet d'interaction entre
paire (u u et paire (v^ v :

airai2-a2i+a22 (U1 - V '
(V1 - V

=|| u -u^ll *|[ v^-v^ll " cos (angle entre les deux).

e) Si les variables sont centrées (c'est-à-dire si la somme
de chaque colonne c de la matrice A est nulle), alors:

èmei) la variance empirique de la k variable est égale
au carré |j v^| 2 de la longueur du vecteur v^;

ème èmeii) la covariance empirique entre les i et k varia¬
bles est égale au produit scalaire v^

'
v^ -,

iii) le coefficient de corrélation empirique entre les va¬
riables i et k est égal à (v.' v / || v^|| • || v j|) soit
le cosinus de l'angle entre les directions v~ et v,1 k

iv) la distance euclidienne .|(v.-v J entre effets de va¬
riables est proportionnelle à la distance euclidienne
||c^-c^j| entre colonnes de la matrice A:
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i k
I / /n ; en outre,

écart-type de la variable "(variable 1)

(variable k)".

Les interprétations du paragraphe précédent correspondent
aux propriétés intrinsèques de nos trois variables; aux
propriétés intrinsèques de nos quatre unités statistiques
(cf. ci-dessous les points c, d et e) correspondent des
propriétés "extrinsèques" des trois variables (essentiellement

le fait que ces trois variables déterminent la matrice
Q introduite ci-dessous). C'est ce que nous allons expliquer
dans ce paragraphe avant de poursuivre (au paragraphe 6) la
liste des interprétations des effets u. et v..
Supposons que nos quatre unités statistiques nous fournissent

des informations non seulement sur nos trois variables,
mais aussi sur d'autres variables y, z, ...; il suffira de
considérer le cas d'une unique variable y. Nous disposons
donc d'un vecteur (colonne) y de quatre observations:

Nous allons aussi changer l'optique de recherche adoptée
jusqu'à présent, soit l'étude des relations entre les trois
variables; nous voulons maintenant étudier l'impact de nos
trois variables sur la variable y — on pourrait aussi dire
que nous voulons "prédire" y au moyen de nos trois variables.

Les variables du début jouent maintenant le rôle de trois
variables "exogènes" (ou variables "prédictrices",
"indépendantes", "prédéterminées"), alors que y est une variable
dite "endogène" (ou variable "critère", "dépendante").

La méthode des moindres carrés permet de trouver la combinaison
y de trois variables exogènes qui est la plus proche du

vecteur d'observation y; elle montre que cette meilleure
approximation s'interprète géométriquement comme une projection
(perpendiculaire, et non oblique):

Y
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et, ce qui est plus important, que chaque composante y, du
vecteur "ajusté" y s'obtient par combinaison linéaire aes
composantes du vecteur original y:

M'i,y + U1.1(yT' + ui.^>(y-.' + u,./y/ •k2 J 2 k3 3 k4 4

Dans notre cas, le projecteur des moindres carrés est la
matrice Q suivante:

V 19 3 -3 1

•y i 3 11 9 -3

y 20
-3 9 11 3

y 1 -3 3 19

Ainsi, la meilleure approximation (ou "valeur ajustée")

de y^ est y^ (19Yi + 3y2 3y3 + y4) / 20,
de y2 est y2 (3Yl + lly2 + 9y3 - 3y4) / 20,
de y^ est y^
de y, est y,J 4 J4

(-3y1 + 9y2 + lly3 + 3y4) / 20,

(yx - 3y2 + 3y3 + 19y4) / 20.

Les propriétés matricielles de Q figurent en appendice;
les propriétés plus directement utilisables dans notre
analyse de données sont les suivantes:

a) Le carré de la longueur de chaque vecteur-ligne or '

(ou vecteur-colonne, puisque 0 est toujours symétrique)
est égal à l'élément q^ sur la diagonale de la matrice.
Exemple de la seconde ligne:
J] ai

2
|2 3/20

2
+ 11/20

2
+ 9/20

2
+ (-3/20

2
11/20.

b) Le produit scalaire des vecteurs w.' et est égal à
l'élément q^ en ligne i et colonne k.
Exemple des lignes 3 et 4 :

w'io (-3/20) (1/20) + (9/20) (-3/20) + 11/20 3/20
+ (3/20)(19/20)
3/20.

c) Le rang de la matrice A 3 dans notre exemple) est
égal à la somme des éléments diagonaux de la matrice
Q

19 11 11 19
20 20

"

20 20 dans notre exemple); ces
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éléments diagonaux q.. représentent la contribution
individuelle de chaque unité statistique i à la complexité
totale de notre matrice de données A.

Ainsi, dans notre exemple, les deux "gros contribuables"
sont les unités 1 et 4.

d) Chacun des éléments diagonaux q, de Q est aussi une me¬
sure de la sensibilité de l'ajustement lors de modification

(erreur, changement, etc.) de y^
Exemple de la deuxième composante:
Si y est remplacé par y^ + c, alors tous les y^ sont
remplacés par des y.* (que l'on calculera au moyen des
formules ci-dessus pour y^, en substituant y + c à y^):
le nouveau vecteur ajusté y* (y *; Y2*' Y 3 » Y^*]1
est alors à la distance || y - y * || de l'ancien vecteur
ajusté y.

Il est facile de montrer que la modification relative
vaut

H y ~ y l|
_ yz ' _ /— _ o,74 dans notre cas)

c 22 » 20

e) Chacun des éléments non-diagonaux q.. de Q est une mesure
de la similarité entre unités i et on obtient une
mesure standardisée, variant entre -1 et +1, en utilisant

qij (qui est égal au cosinus de l'angle entre
^ii ^jj in. et u ; cf. l'appendice)r j

Voici la matrice des similarités standardisées pour notre
exemple: unité 1 unité 2 unité 3 unité 4

unité 1 1 +0,21 -0,21 +0,05

unité 2 +0,21 1 + 0,82 -0,21

unité 3 -0,21 + 0,82 1 +0,21

unité 4 +0,05 -0,21 +0,21 1

6. Voici la suite des interprétations que l'on peut donner aux
effets u. et v, :

1 k
2

a) Le carré ||u.|| de la longueur du vecteur u. (à trois com¬
posantes) est égal à n*q^.
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Exemple pour la seconde unité:

Il u2|
2

(2/2)
2

+ (-2//20)2 + (-2/2)
2

44/20 4 •
«2

2

b) Le produit scalaire u^
'
u^ (vecteur à trois composantes)

est égal à n*q.,xik
Exemple pour les unités 3 et 4:

u 'u (2/2) (2/2) + (2//20) (6//20) + (-2/21(2/2) 12/20
3 4

4 • w
1

ÜJ

3 4

c) Le cosinus de l'angle entre les directions u. et u^ est
égal au coefficient de similarité standardise entre unité
i et unité k.
Exemple pour les unités 3 et 4:

V"4 i 0,21
/ 44 76'

V 20 20
^37^4

d) La distance euclidienne [|v.-v || entre effets de variables
(à trois composantes) est égale à ce que l'on appelle la
distance de Vahalanobis

(l.-l ' (- A'A)_1(1.-1
1 k n 1 k

entre les lignes i et k de la matrice A; c'est une
distance "pondérée" (alors que la distance euclidienne)
I l.-l, I (l.-l, ' <1.-1II i k" 1 k 1 k

n'est pijis pondérée), familière aux statisticiens; la
matrice (— A'A) des coefficients de pondération n'est
autre, ïorsque les variables sont centrées, que l'inverse

de la matrice des variances et covariances empiriques
de nos trois variables.

Le carré ||u.-v || de la distance euclidienne entre effet
unité u. et effet variable v, (tous deux, des vecteurs à
trois composantes) dépend à la fois de la contribution de
l'unité i à la complexité totale (rang) et de la contribution

de la variable k à la dispersion totale (variance).
Plus précisément, lorsque les variables sont centrées, on
a la relation:

2
u -v n-q.. + variance (variable k) - 2 a.,11 i k" ii ik
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LA REPRESENTATION GRAPHIQUE

Il est évident que si la matrice A est de rang > 2, seule
une approximation de rang 2 peut être représentée exactement

sur le plan du dessin.

Puisque les grandeurs qui se laissent le mieux interpréter
sont des longueurs de vecteurs (variances et nombres q
des angles (coefficients de corrélation, coefficients ae
similarité) et des distances entre extrémités de vecteurs
(flu^-u^H, llvj__v]<ll' Il II' ' Ie plus naturel serait de
représenter les u^ et les v^ par des vecteurs du plan. C'est
ce que l'on ferait si les lignes de la matrice correspondaient

à un second groupe de variables (cas de l'ACC et de
l'AFC) plutôt qu'à des unités statistiques.
Dans notre cas, pour des raisons de lisibilité du graphique,
nous adopterons le principe de représentation suivant:

Pour les variables : les vecteurs formés des deux
premières composantes de v^jV^,...

Pour les unités : les points-extrémités des vecteurs
û^jû^,... formés des deux premières
composantes de u^Uji

Le lecteur pourra s'exercer à construire la représentation
graphique de notre exemple.
Ainsi il représentera la variable (colonne de la matrice A)

C1 °2 C3

par un vecteur allant de l'origine (o;o) vers le point

(3;/2Ü) (6;-,/2Ö) (6;v^Ö>2)

(+3,00; +4,47) (+6,00; -4,47) (+6,00; +2,24)

De même, il représentera l'unité statistique (ligne de la
matrice A)12 3 4

par le point
(1,-6//2Ü) 1 ; -2/S2ÏÏ) (1;2/v^ÏÏ) (1;6/^2ÏÏ)

+ 1,00;-1,34) + 1,00 ;-0,45) + 1,00;+0,45) (+1,00; + l,34)

Les matrices exactes des variances et covariances empiriques
d'une part, des corrélations empiriques d'autre part, sont
les suivantes:
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c
1

c
2

c
3

c
1

c
2

c
3

C1 32,44 -1,13 22,88 '
C1

1 -0,03 0,61

°2 -1,13 54,75 21,75 C2 -0,03 1 0,45

C3 22 ,88 21,75 42,75 °3 0,61 0,45 1

Bien que le graphique ainsi construit représente rigoureuse-
et non A, + An + A_, A, et bien que les va-

y lire cependant que:
ment A^ + A^ et non A^ + A^ + A^
riables ne soient pas centrées, on peut

a) variance (c-^) < variance (c^) < variance (c2) • en compa-

^ etrant les longueurs de v^

0b) correl (c^jC^)
laires), correl

(car v^ et v_ sont presque perpendicu-
cl,c3) > correl (°2'C3' (car l'angle

entre v^ et v^ est inférieur à celui entre v^ et v^);
c) c^ et c^ forment un sous-groupe en ce qui concerne les

distances euclidiennes deux à deux entre les Cj_ (car la
distance entre les extrémités de v. et v^ est sensiblement

plus petite que celle entre les extrémités de v et
v3);

d) les unités 1 et 4 sont les plus "gros contribuables" à

la complexité de A et à la sensibilité du projecteur Q

(car û1 et sont plus éloignés de l'origine que
û2 et u3);

e) si l'on avait essayé de construire une échelle à partir
des similarités standardisées entre unités, on aurait
obtenu uy uj-le graphique;

4 ' échelle qui se lit bien sur

f) les valeurs absolues a.
dent aux positions relatives des points û. et des
vecteurs v (plus exactement, aux angles entre directions
û. et vî k

3. Toutes les relations exactes, énumérêes dans la section
"Variables et unités statistiques", sont valables seulement

approximativement dans la représentation graphique.

des éléments de A correspon-

Lorsqu'une matrice A A, +

A^ + Ay la qualité de l a,justementJ~'vaut
+ A^_ est remplacée par

2 2
s +s

1 2

2 2 2
s +s +. .+s12 r

93 % dans notre exemple)
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pour les effets différentiels et d'interaction entre paires
d'unités et de variables (les a^ et u^'Vj);

4 4
s + s

1 2

4 4
s +. ,+s

1 r
99,1 % dans notre exemple)

pour les variances, covariances et coefficients de corrélation
de variables centrées (les v '

v^ et || v^ || );
o o

s +s
1 2 2

o o
S_ +...+S1 r

r
— 66,7 % dans notre exemple)

pour les similitudes entre unités et contributions à la
complexité (les ui '

uk et " ui ^

Donc, les corrélations sont les mieux représentées, puis
viennent les effets différentiels et d'interaction; enfin
les similitudes et contributions à la complexité sont
souvent assez faussées dans la représentation graphique (ce
qui n'est heureusement pas le cas dans notre exemple où
r 2+1).

Il n'est pas difficile de construire une paire de transformations

simultanées aux propriétés inverses, où les similitudes
sont les mieux représentées et les corrélations les

moins bien représentées.

4. Nous terminons par un exemple plus complexe; afin que le
lecteur puisse comparer la technique particulière exposée
ci-dessus à l'ACP et l'ACC, nous avons repris volontairement

un exemple de 18 variables et 18 unités statistiques
analysés par Bertier et Bouroche (1975) selon l'ACP et
(partiellement) selon l'ACC.

Notre graphique 1 correspond à la figure 1 (page 120) de
ces auteurs. Au lieu de leur figure 2 (page 121),
correspondant aux valeurs singulières s^ et s,, nous avons préféré

dessiner le graphique 2, correspondant aux valeurs
singulières s_ et s^, c'est-à-dire la meilleure approximation

de la matrice résiduelle A-A^ A^ + A + + A^_,
+ ^2.8^ ' direction d'analyse qui correspond à A^ est
interprétée par Bertier et Bouroche (page 121) comme étant
le revenu par habitant; la matrice résiduelle analysée dans
le graphique 2 est donc la matrice originale "corrigée" des
effets du revenu par habitant (autre terminologie: matrice
"lissée"). Faute de place, nous ne commenterons que brièvement

le seul graphique 1.
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a) (Sl4 + S24) / (S14 + +
coi—I

83,6%;
2 2

/ 2 2, 56,6%;(S1 + S2
> (S1 + + S18 >

<*1° + S20) / 0
1—1

Cfi + + o.
S18 ' 11,1%.

Ces trois rapports nous indiquent que la qualité de
l'ajustement est acceptable pour les corrélations,
passable pour les effets différentiels et effets d'interaction,

et médiocre pour les similitudes et contributions
à la complexité. On étudiera donc ces dernières sur la
base des valeurs numériques exactes, et non sur la seule
base du graphique; ce dernier, pourtant, nous montre
utilement la disposition des unités statistiques (distances
et angles) dans le plan de meilleure approximation (PMA),
ce qui est un aperçu synthétique non négligeable.

b) Les calculs ont été effectués à partir de variables ré¬
duites (variances 1 et covariances corrélations). On
ne peut donc pas distinguer les variables par leurs
variances; on notera cependant que dix variables sont bien
représentées dans le PMA (vecteurs de longueur voisine
de 1), alors que les variables TES, LOG, ELE, CAL, AIN,
TAP, DEN et FBC le sont mal (de ces huit, LOG, CAL et
FBC sont bien représentées dans le graphique 2).

c) Dans le PMA, on distingue nettement trois groupes de va¬
riables (FBCF est mal placé par Bertier et Bouroche]:

I TES, REC, EDU, LOG, ELE;
II CAL, PNB, AIN, TLV, ASS, PIA;
III TAP, EXP, IMP, RES, POP, DEN, FBC.

Les variables d'un même groupe sont plus fortement cor-
rélées entre elles qu'avec les variables des autres
groupes.

d) Dans le PMA, certains groupements d'unités statistiques
apparaissent nettement:
A) FI, DA, NO, SU (pays Scandinaves);
B) PO, ES, GR (pays méditerranéens n'appartenant pas

au Marché commun).

Une entité comme le Marché commu (AL, GB, FR, BL, IT),
par contre, apparaît en ordre très dispersé dans le PMA.

e) Les unités statistiques éloignées du centre (US, PO, GR,
SU, etc.) contribuent plus fortement que les autres aux
deux dimensions "revenu par habitant" et "importance des
dépenses publiques" du PMA. On notera que les échelles
utilisées pour dessiner les unités et les variables sont
différentes.
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Notons les différences principales avec les graphiques d'ACP
et d'analyse factorielle.
a) On peut on principe représenter n'importe quelle matrice

de nombres réels a. .; la représentation sera utile dans
la mesure où les prâpriétés de la section "Variables et
unités statistiques" seront pertinentes (interprétation
par produits scalaires et par projections perpendiculaires)

b) Les axes de coordonnées servent uniquement à construire
le graphique; une rotation d'axes n'a pas de sens,
"c'était avant qu'il fallait agir", en choisissant une
autre paire de transformations simultanées.

c) Les rôles joués par les variables et par les unités sta¬
tistiques apparaissent de façon plus symétrique (et mieux
que dans les "Q-analysis" et "R-analysis" des psychomé-
triciens):

d) On a tendance à interprêter les graphiques d'ACP et d'AFC
en termes de distances entre points; en fait, c'est avant
tout en termes d'angles et de projections perpendiculaires

qu'il faut lire le message graphique. En ce qui
concerne l'AFC, on peut montrer (Schellhorn, 1976) que la
notion de barycentre est liée à celle de projection
perpendiculaire

APPENDICE

Les valeurs propres X (respectivement y) et vecteurs propres
d (resp. g) de A'A (resp. AA') sont définis par les

relations

On peut montrer que les X et y sont des nombres réels non-
négatifs et que, si on les énumère en ordre décroissant, on
a

unités
similarités
complexité

variables
corrélations
dispersion

effets différentiels et d'interaction

A'A d Xd (resp. AA' g yg).

y.r+1
0

r est égal au rang de la matrice A; les racines carrées
positives s. /X~f /y"? sont les valeurs sinqulières de A.ill °
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Les vecteurs propres normes d. (resp. g.) de A'A (resp.
AA') sont les vecteurs singuliers à droite (resp. à gauohe)
de A; ils vérifient les relations Ad. s.g. et A'g.1

Soit G gl g D d d
r 1 r

S

On vérifie les relations suivantes:

A-

G ' G I D'Dr AD GS A ' G

> II O S D' s^g^d^' + s 2g2d2
' + + s g d '

rJr r
A'A D S2 D' s12d1d1' + + s 2d d '

r r r
AA' G S2 G' s12g1g1' + +

2
s g gr r r

> II G Sk D' A+ D S-1 G'

Le projecteur des moindres carrés Q A(A'A) A
+ A. GG'

+ + g g ' vérifie les propriétés Q Q' Q

QrÇT= QQ'; ses vaïeurs singulières non-nulles valent + 1.
De même pour A'(AA1) A DD'.
:

Rangs: rang (A) rang (A'A) rang (Q) trace (Q) q +
+ qnn

Les lecteurs un peu mathématiciens pourront consulter
l'article de Hawkins et Ben-Israel (1973).

Les effets des unités sont les colonnes de la matrice
U' =Vn>G'; les effets des variables sont les colonnes de
la matrice V' (l/VnMSD'.

La paire de transformations simultanées est la suivante:

GSD '

DSG '

A

A'

r h —1-|
A [n DS J U

A ' [nA] V ;

AA' a(2) 2
GS G'

2
GS D'

A
(2' '

A'A
2

DS G'
2

DS D' est transformée en

GG UV'

VU' w
nGG ' GSD'

DSG'
-1 2

n DS D'
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La méthode des transformations simultanées est basée sur la
remarque suivante:
Si X et Y sont les bases de deux sous-espaces vectoriels de
dimension finie, et si l'on transforme X en XS et Y en YT,
alors la matrice de tous les Droduits intérieurs

B F

F' H
devient

S'BS S »ft
T'F'S THT

L'ACC est le^cas particulier suivant:
Soit F* B 2 F H 2 la matrice F standardisée (cela signifie

que si F est une matrice de covariances, alors F*
consiste en pseudo-corrélations); soit F* GSD' sa décomposition

singulière. Alors

Y

[BAS]

[H_'D]

c
r

ni nr

est la paire de transformations simultanées cherchée (les
Çj et avec j r et k > r peuvent être négligés ici)

Les propriétés d'optimum découlent des deux propriétés
suivantes, où a (M) > a_(M) > a^fM) > désignent les valeurs
singulières ae la matrice M, rangées dans l'ordre décroissant.

a) Pour toutes les représentations d'une matrice A comme
somme de deux matrices perpendiculaires (A B+C avec
B'C où rang(A) r > k rang(B), on vérifie que:
gi(A~B) ^ VA-tA^...-^!) ai(flk + 1+"-+V Si+k
pour 1 < i < k. Ainsi le résidu d'ordre k (A^+-^+...+A
minimise simultanément toutes les valeurs singulières
dans le cas d'une transformation A->A-B du type ci-dessus.

b) Pour toutes les transformations A-+S ' AT d'une matrice
A GSD' de rang r au moyen de matrices S' et T telles
que rang (S'T) k < r,a.(S') < 1, a.(T) < 1, on vérifie
que cm (S'AT) < (G^AD^) cm (A^+. .+A^

pour 1 < i < k. Ainsi la meilleure approximation d'ordre
k (A^+...+AjJ maximise simultanément toutes les valeurs
singulières dans cas d'une transformation A->S'AT du
type ci-dessus.
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Graphique 2
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