Zeitschrift: Schweizer Soldat : die führende Militärzeitschrift der Schweiz

Herausgeber: Verlagsgenossenschaft Schweizer Soldat

Band: 75 (2000)

Heft: 9

Artikel: Mit Laserstrahl messen und sehen bei Nacht : Klappmeter und

Taschenlampe bald einmal im Museum?

Autor: Bogner, Ernst

DOI: https://doi.org/10.5169/seals-715801

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mit Laserstrahl messen und sehen bei Nacht (Teil 1)

Klappmeter und Taschenlampe bald einmal im Museum?

Unzählige Schweizer Firmen fabrizieren vielfältige High-Techprodukte für Armee- und zivile Einsätze. Im folgenden Bericht wird die in Heerbrugg im Rheintal und Unterentfelden beheimatete und auch weltweit tätige Firma Leica Geosystems AG, bekannt auch unter dem einstigen Namen Wild Leitz vorgestellt.

Leica Geosystems AG ist spezialisiert in der Herstellung von Messferngläsern, Nachtferngläsern, Wärmebildgeräten,

Wm Ernst Bogner, Oetwil am See

Theodoliten für die Zielerfassung und Zielverfolgung mit integrierter Datenverarbei-

Das Innenleben des Vector.

Dr. Jürg Wullschleger

tung, Luftbildkameras, Satelliten-Navigationssysteme und Mikroskope für medizinische Zwecke.

Von Heinrich Wild zur Leica

26. April 1921: Major Heinrich Wild, Vermessungsingenieur, Oberst Dr. Robert Helbling, Inhaber eines Vermessungsbüros in Flums, und der Rheintaler Industrielle Oberst Jakob Schmidheiny, gründeten die Heinrich Wild, Werkstätte für Feinmechanik und Optik, Heerbrugg. In den Zeiss-Werken Jena konnte Wild seine Berufskenntnisse mit der Fertigung geodätischer Instrumente erweitern. In der Folge begann Wild zusammen mit Facharbeitern von Zeiss, die ihm in die Schweiz gefolgt sind, seine Konstruktionsideen für neue geodätische und photogrammetische Vermessungsinstrumente zu entwickeln und zu fertigen.

1923: Eine beträchtliche Finanzspritze von Alt-Nationalrat Ernst Schmidheiny gab der inzwischen neu gegründeten Verkaufsaktiengesellschaft: Heinrich Wild's Geodätische Instrumente Heerbrugg neue Impulse. Im gleichen Jahr revolutionierte Wild mit dem ersten Sekundentheodoliten T2 das gesamte Vermessungswesen. Ihm folgten weitere Geräte sowie das erste Nivelliergerät. Die Ahrend Holding N. V. in

Amsterdam übernahm für Wild die erste Auslandvertretung, und als erste Sozialeinrichtung der Firma wurde eine Bau-Wohngenossenschaft gegründet. Schon Ende 1938 beschäftigte das Unternehmen Wild rund 3000 Mitarbeiter und unterhielt Vertretungen in 37 Ländern.

1943 beginnt Wild mit der Herstellung von Reisszeug.

1944: Als absolute Krönung mechanischoptischer Präzision wird das astronomische Universalgerät T4 erwähnt, das Ablesungen bis zu 0,1 Winkelsekunden erlaubte. Die Produktion des T4 lief über vier Jahrzehnte, und das Instrument kostete damals schon 70 000 Franken. Das Gerät ist auch für Vermessungsaufgaben in der amerikanischen Raumfahrt eingesetzt worden. In den Kriegsjahren zeigte sich, dass auch die Optik wichtige militärische Aufgaben erfüllen konnte. Die inländischen Armeeaufträge wurden ausnahmslos bevorzugt behandelt, aber die für das Ausland produzierten Instrumente nur gegen Lieferung lebenswichtiger Güter. In den folgenden Jahren prosperierte die Wild Heerbrugg weiter. Man bemühte sich um Spezialisten aus dem Ausland, entwickelte stetig neue optische Präzisionsinstru-

1973 wurde der erste auf der Basis Infrarot arbeitende Distanzmesser Distomat DI3 zum Bestseller des Jahres. Nach Eingabe des Vertikalwinkels konnte der Benützer auf dem Display des Gerätes die Horizontaldistanz und den Höhenunterschied ablesen. Dem DI4 folgten der DI5 und 1981 der DI10 mit einer Reichweite von einem Kilometer und der DI20 für Messdistanzen über 12 Kilometer.

1984 sicherten sich die Heerbrugger den Zugang zur Technologie der Vermessung

mittels Navastar-Satelliten, und die Gruppe Rüstung (GR) übergab der Firma die Lizenzfertigung der präzis arbeitenden Feuerleitanlage des Panzers «Leopard 2» und ab 1989 auch die Lizenzherstellung von «Suchköpfen» der Stinger-Luftabwehrraketen der Schweizer Armee. Im gleichen Jahr erfolgte der Zusammenschluss der Wild Heerbrugg AG mit Leitz Wetzlar zur Wild-Leitz AG. Auch die Nachtsichtgeräte an den Panzerfahrzeugen der Schweizer Armee sind optische Meisterleistungen der Wild-Leica.

1988 erwirbt Wild-Leitz die 1819 gegründete Firma Kern in Aarau. 1997 aus dem – inzwischen zum Konzern Leica-Wild gewachsen – verselbstständigt sich die Leica Geosystems AG. Dr. Jörg Wullschleger wird General Manager und betreut in dieser Funktion – nebst anderem – den Sektor Defence und Spezialprodukte.

Pythagoras im Hosensack heisst «Leica Vector»

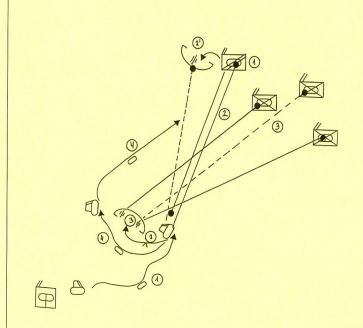
Der «Vector» ist ein vielseitig einsetzbares absolut militärtaugliches Messfernglas. Wie sein Name sagt, misst das Instrument auf Tastendruck den polaren Vector von ihrem Standort, Distanz und Winkel. Als Zielmarke dient ein rotes Quadrat in der Mitte des Sehfeldes. Ein Laserstrahl mit erstaunlich geringer Ausgangsleistung misst Distanzen - je nach Typ - von 5 m, bei idealen Sichtbedingungen sogar bis über 4 km, und der eingebaute digitale Kompass funktioniert als Neigungsmesser in jeder Lage von minus 35 bis plus 35 Grad Neigungswinkel, auch bei verkantetem Einsatz. Die Optik des Vector bietet eine 7-fache Vergrösserung. Das Gerät wiegt weniger als 1,9 kg, ist absolut resistent ge-

Mechanisierte und Leichte Truppen: Panzergrenadier

Pz Gren Gruppe: Spitzenelement des Spitzenzuges (schwacher Gn) (Waffenplatz: Bure)

Lage

A Lage


Beso Lage

Die Gruppe stösst als erstes Element des Spitzenzugesl

Dilemmas

- Verletzte oder Ausfall des Uof
- Übung unter C-Bedingungen
- Der Gn wird stärker

Mechanik

- 1 beübte Trp: Stossen des Spz bis Fei Kontakt
- 2 beübte Trp: Gn binden mit MBK, ausbooten
- 3 beübte Trp: Bereithalten, mit PzF den Kampf aufzunehmen
- 4 beübte Trp: Auftragserfüllung

Besondere Hinweise

Übungsbestimmungen

- Heulpet blau = Einschuss einer RPG 7/AT 4
- Heulpet gelb = Einschuss AGS 17/M 203
- Heulpet rot = Einschuss MBK 73 mm oder LAV 25 mm
- Sanitätsbilder mit blauen, gelben oder roten Kennfarben simulieren Verletzte von den entsprechend aufgeführten Waffen
- Gn ist gekennzeichnet mit:
- mit Tenü Blau
- Fz mit rotem Fliegerband
- U Ltg ist gekennzeichnet mit: weissem Armband am linken Arm
- Die Übung muss vor Ü Beginn im Zusammenhang mit der Z Gef Technik erklärt werden

Munition

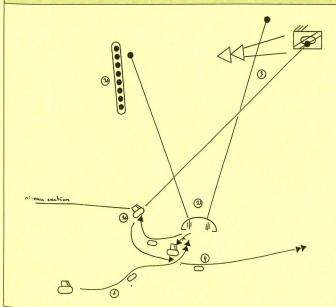
- 2 Mag à 5 Schuss und 3 Mag à 10 Schuss
- 4 Ei Läufe Pz F oder SIM Stgw 90

Besondere Hinweise (Fortsetzung) Zielsetzungen → schwachen Gn binden können Erfolgskriterien: Grfhr: → befiehlt konsequent mit 3 Pkt Bf (klar, präzis, zeitgerecht) → Durchsetzung und Kontrolle der Gef Tech → Koordination von Feuer und Bewegung → Meldung an Zfhr (kurz, präzis, korrekt) → Führung von vorne und aggressive Reaktion bei unvorhergesehenen Ereignissen → Anwendung der kleinen Gef Technik (Auflage, Tarnung, Deckung, Vrb, Beob) Trp: → Korrekte Anwendung Kahi → rascher Stellungsbezug Kadervorbereitung Merkmale eines Spitzenzuges Einsatz eines Spitzenzuges Befehlsgebung - etc. **Notizen**

Pz Gren Gruppe: Koordinierte Sperrbereitschaft: (Waffenplatz: Bure)

Lage

A Lage


Beso Lage

Gruppe ... ist Spitzenelement (Spz fahren)

Dilemmas

- Ankündigung von mehreren Spz bei der Sperre (Feuerschablone)
- Ankunftszeit von fei Spz bzw Änderung der Richtung
- Übung unter AC Bedingungen

Mechanik

- 1 beübte Trp: Vs im Spz Rtg Kampfzone
- 2 beübte Trp: Erstellen prov Sperrbereitschaft oder Kampfvorbereitung (offenhalten)
- beübte Trp: Ankunft Fei Spz mit oder ohne aussteigende Infanterie
- 4 beübte Trp: Reorganisation

Besondere Hinweise

Übungsbestimmungen

- Heulpet blau = Einschuss einer RPG 7/AT 4
- Heulpet gelb = Einschuss AGS 17/M 203
- Heulpet rot = Einschuss MBK 73 mm oder LAV 25 mm
- Sanitätsbilder mit blauen, gelben oder roten Kennfarben simulieren Verletzte von den entsprechend aufgeführten Waffen
- Gn ist gekennzeichnet mit:
- Tenü Blau
- Fz mit rotem Fliegerband
- U Ltg ist gekennzeichnet mit: weissem Armband am linken Arm

Munition

- 2 Mag à 5 Schuss
- 3 Mag à 10 Schuss
- 4 Ei Läufe PzF

Besondere Hinweise (Fortsetzung) Zielsetzungen → prov Sperrbereitschaft in 5′, koordiniert in 20′ nach Stellungsbezug Erfolgskriterien: erstellt → befiehlt konsequent mit 3 Pkt Bf (klar, präzis, zeitgerecht) Grfhr: → Durchsetzung und Kontrolle der Kampfvorbereitung → Führung von vorne und aggressive Reaktion bei unvorhergesehenen Ereignissen → Anwendung der kleinen Gef Technik (Auflage, Tarnung, Deckung, Vrb, Beob) Trp: → Jeder Mann kennt seinen Auftrag (Waf Ei) → Korrekte Anwendung Kahi → rascher Stellungsbezug Kadervorbereitung Merkmale einer koordinierten Sprengbereitschaft - Befehlsgebung - etc. Notizen

gen Staub, Sand und Wasser, Schläge und Vibrationen. Ausser dem Gehäuse aus Leichtmetall und dessen Rundum-Gummiarmierung werden rund 80 Prozent der Einzelteile, inklusive die präzise Optik in den Leica-Werken in Heerbrugg gefertigt.

Rationelle Datenerfassung

Die Messwerte liest der Benützer direkt im Sehfeld des Vector ab, und es besteht die Möglichkeit, die Daten über die Schnitt-

Technische Daten

1. Optik

Vergrösserung 7-fach Vergütung der Linsen mehrschichtig

Blickfeldbreite

bei 1000 m 120 m

Augenabstand

verstellbar

58,5 bis 71,5 mm Zielmarke Einschaltbares. beleuchtetes Quadrat

2. Distanzmesser

Messbereiche

5 m bis über 4 km, je nach Vector-Typ +/- 2 m

Messgenauigkeit

Messangaben nach Wunsch

Messzeit Wiederholrate

Anzeige

Mehrfachmessung

1 m/1 Yard/1 Feet 0,3 Sekunden 12 Messungen/Minute

(maximal) LED-Display in rechtem Okular

Bis drei hintereinander liegende Objekte

3. Digitaler Magnetkompass

Messzeit Wiederholrate 0,2 Sekunden 120 Messungen/ Minute

Neigung

+/- 35 Grad in zwei Ebenen

4. Anzeige

Wahl der Einheiten

5 Winkel- und 3 Distanzeinheiten

5. Sonstiges

Stromversorgung Batteriekapazität

Hülle

Wassergeschützt Wasserdichtigkeit (Option)

Betriebstemperatur Stossfestigkeit

Vibrationen Abmessungen

Gewinde für Stativ

Lithium-Batterie 6 V (Typ 2 CR 5) zirka 2000 Messungen mit Warnsystem Schlagfester Mantel

aus Gummi Nach Din 58390

10 m/30 min (1 Atm.) - 35 Grad C bis + 63 Grad C

60 g/bei 6 m/sek. in syz-Achse 10 bis 500 Hz in 10 Minuten 212×178×82 (Okular-

Hülse ausgefahren Länge 226 mm)

A 1/4" Gewicht je nach Typ 1,6 bis 2,0 kg mit

Batterie

Vector ist militärtauglich. Sie können ihn auch mit Brille, Handschuhen und Schutzbekleidung sicher bedienen. Ebenso besteht die Möglichkeit, Vector mit einem Datenterminal oder GPS-Empfänger zu verbinden.

stelle RS 232 an einen Datenterminal oder Registriergerät zu übertragen.

Militärische Einsatzmöglichkeiten

Militär

- Scharfschützen
- Vorgeschobene Beobachter
- Kommandanten mechanisierter Truppen
- Angriffsplanung
- Panzerabwehr-Unterstützung
- Genietruppen
- **Pontoniere** Flugplätze
- Hilfe bei Helikoptereinweisung

Mörser Beobachter mit Sprechfunkgerät übermittelt die Lage des Ziels (Entfernung, Azimut, Neigungswinkel) an die Batteriefeuerleitstelle. Genaues Anzielen ist wichtig bei grossen Entfernungen, darum ist Vector IV auf einem taktischen Kleinstativ befestigt.

Kampfwertsteigerung für Ihre Artillerie: Vector IV auf einem digitalen Goniometer Leica SG12. Diese Kombination bietet 1-Strich-Winkelmessgenauigkeit und Programme zur Orientierung, Standort- und Zielbestimmung. Neben Vector kann auch ein Wärmebildgerät montiert werden, um die Beobachtung rund um die Uhr sicherzustellen.

Zusammenfassung

Der technisch bis ins letzte Detail von den Leica-Konstrukteuren entwickelte und mit hervorragender Optik ausgerüstete Messfeldstecher Vector wird schon ab 1995 in Serien gefertigt. Scharf auf den Vector seien etliche Armeen, zivile Sicherheitsorganisationen, Vermessungsbüros, Handwerkergülti und natürlich auch Jäger. Die Zeit des guten Klappmeters ist Vergangenheit. Es lebe das Messen mit Laserstrahlen.

Quelle und Fotos: Leica Geosystems AG Heerbrugg