Zeitschrift: Memorie / Società ticinese di scienze naturali, Museo cantonale di

storia naturale

Herausgeber: Società ticinese di scienze naturali ; Museo cantonale di storia naturale

Band: 12 (2017)

Artikel: Comportamento agronomico e fisiologico della vite (cv. Merlot) e qualità

dei vini nelle differenti condizioni pedoclimatiche del Canton Ticino

(Svizzera)

Autor: Monico, Cristina / Letessier, Isabelle / Marion, Josselin

DOI: https://doi.org/10.5169/seals-981685

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Comportamento agronomico e fisiologico della vite (cv. Merlot) e qualità dei vini nelle differenti condizioni pedoclimatiche del Canton Ticino (Svizzera)

Cristina Monico¹, Isabelle Letessier² & Josselin Marion²

- ¹ 6948 Porza, Svizzera
- ² Sigales Etudes de sol et de terroirs, 38410 Saint Martin d'Uriage, Francia

Riassunto: Uno studio dei *terroir* viticoli ticinesi è stato eseguito dal 2006 al 2009 dalla Federazione dei viticoltori ticinesi (Federviti) in collaborazione con Agroscope seguendo la metodologia già applicata in altri studi svizzeri. Il progetto è stato suddiviso in tre fasi. Nella prima fase sono stati caratterizzati i tipi di suolo viticoli ed elaborato una prima cartografia delle entità pedologiche. Nella seconda è stata eseguita una cartografia del macroclima ticinese. Nella terza è stato analizzato l'influsso del suolo sul comportamento agronomico e fisiologico della vite e sulla qualità del vino. A tale scopo sono stati scelti 41 vigneti ripartiti nelle tre principali regioni viticole ticinesi: Medrisiotto, Luganese e Sopraceneri, dove sono stati identificati i tipi di suolo attraverso uno studio pedologico. In questi vigneti sono stati inoltre misurati diversi parametri, quali il vigore vegetativo, la fisiologia della pianta, la dinamica di maturazione delle uve e la qualità dei vini. Questo contributo presenta una sintesi di uno studio complesso nel quale sono stati integrati tre aspetti complementari: la pedologia, il clima e il comportamento della vite.

Parole chiave: clima, eco-fisiologia, qualità delle uve, qualità dei vini, suoli, Terroirs.

Agronomical and physiological response of the vine (cv. Merlot) and wine quality to different soil characteristics in the Canton of Ticino (Switzerland)

Abstract: A study on the Vineyard Terroirs of the Canton Ticino, Switzerland, was carried out from 2006 to 2009 by the Federation of Vine Growers (Federviti) in collaboration with Agroscope applying the same methodology used in other similar investigations in Switzerland. The project was divided into three phases. First, we characterized and mapped distinct types of soil. Second, we created a macroclimate map of the Canton Ticino. Third, we assess the influence of soil on the agronomic and physiological behavior of the vine and on the quality of the wine. For this purpose we selected 41 vineyards distributed in the three major vineyard regions of the Canton Ticino, i.e., Medrisiotto, Luganese and Sopraceneri, where we conducted a pedological study to identify the different soil types. Here we quantified different parameters such as: the vegetative vigor, the physiological parameters of the plant, the grape ripening dynamics and the quality of the wines. The present contribution shows a summary of an integrated study of three complementary aspects: soil caracteristics, climate, and behavior of the vine.

Key words: grape quality, climate, ecophysiology, soils, Terroirs, wine quality.

INTRODUZIONE

Il termine *terroir* è molto utilizzato nella filiera vitivinicola poiché ricopre una nozione di territorio riconosciuto per la qualità dei suoi prodotti. A livello scientifico esistono differenti definizioni. Quella più completa definisce il *terroir* come un luogo di interazioni complesse tra clima, suolo, materiale vegetale ed abilità umane che si esprimono attraverso le scelte viticole ed enologiche (Vaudour, 2005). Diversi studi sono stati intrapresi per determinare le caratteristiche dei *terroir* viticoli (Morlat, 2001). L'approccio che sembra dare risposte più pertinenti è quello eco-fisiologico (Deloire *et al.*, 2005), che studia l'influenza e

l'importanza di ogni singolo fattore sul comportamento della vite.

Si tratta di un approccio complesso poiché sono molteplici i fattori in grado d'influenzare la qualità dei vini e pertanto un approfondimento al *terroir* deve essere eseguito considerando l'interazione esistente tra suolo, clima e la vite. Questo tipo di analisi è stato proposto per la prima volta in Svizzera dallo studio dei *terroir* vodesi (Zufferey & Murisier, 2004) e su questo primo studio altri lavori ne sono seguiti in varie regioni viticole romande e in Ticino. Lo studio dei *terroir* viticoli ticinesi è stato realizzato dalle tre autrici del presente contributo dal 2006 al 2009 su mandato della Federazione dei viticoltori ticinesi (Federviti)

in collaborazione con Agroscope. I risultati sono raccolti in tre rapporti tecnici (Letessier & Marion, 2007; Pythoud, 2007; Monico, 2009) disponibili presso la Federviti.

L'obiettivo del progetto terroir era di accrescere le conoscenze dell'ambiente viticolo attraverso la caratterizzazione dei suoli e del clima e l'identificazione di zone omogenee di produzione. Non si è in alcun modo voluto fare una zonazione del vigneto ticinese, cosa che oltremodo risulterebbe molto complessa. Esso si inserisce di un progetto più vasto che ha coinvolto i cantoni di Vaud, Vallese, Ginevra e Neuchâtel, in cui si sono applicati gli stessi approcci metodologici e analitici (Zufferey et al., 2008). Lo studio ha previsto tre moduli: 1) lo studio pedologico dei suoli, con il quale si sono caratterizzati i suoli viticoli ticinesi, cercando nel contempo di comprenderne il funzionamento; 2) la caratterizzazione del clima basandosi sui dati esistenti e la loro modellizzazione; 3) lo studio dell'influsso di certi parametri pedologici e climatici sul comportamento della vite (fenologia, crescita, fisiologia e produzione) e la definizione di indicatori in grado di interpretare il comportamento della vite nelle diverse entità pedoclimatiche delle regioni studiate.

Il presente articolo propone un riassunto dei tre moduli citati quale anello di congiunzione tra le componenti pedo-climatiche e quelle aeree, in particolare della vite e dell'ecosistema vigneto.

MATERIALE E METODI

Lo studio pedologico

La metodologia adottata nello studio pedologico ha dovuto essere adattata al contesto geologico delle nostre regioni, per le quali vi erano informazioni geologiche parziali poiché erano disponibili solo tre carte geologiche su una zona che ne copre sette. Le prospezioni iniziali per definire la densità di profili e di sondaggi da eseguire si sono pure rilevate difficoltose. Si è quindi aumentato il numero dei profili e alleggerito quello delle prospezioni alla sonda. Così, per cartografare i circa 800 ettari di vigneto, sono state eseguite circa 230 osservazioni alla sonda (prelievi di terra) e 97 profili (fosse profonde almeno 1 metro). Con questo lavoro si è cercato di dare un'immagine del suolo, definendone gli orizzonti, il profilo radicale e insistendo in particolare sulle sue proprietà idriche. Per questo importante fattore si è stimata la riserva idrica utile dei suoli per settori di 10 cm, considerando la tessitura, la quantità di elementi grossolani (sassi e ghiaia) e la colonizzazione delle radici (Letessier & Fermond, 2004).

Lo studio climatico

Lo sviluppo della vite, malgrado le sue capacità di adattamento, è influenzata dai fattori climatici. La valutazione delle potenzialità climatiche di una regione costituisce quindi un primo livello d'approccio per la caratteriz-

zazione degli ambienti produttivi. Lo studio eseguito in Ticino si è basato sul modello pilota condotto nel Canton Vaud e la metodologia utilizzata è un adattamento di quella usata nello studio dei terroir viticoli eseguito in questo Cantone (Pythoud, 2007). Parametri quali temperatura, l'irraggiamento solare e la pluviometria sono stati regolarmente rilevati dalle stazioni meteorologiche della rete Meteo Svizzera. La caratterizzazione dei parametri mesoclimatici su scala del vigneto ha dovuto dunque passare attraverso l'utilizzazione di modelli. Lo studio dell'irraggiamento solare, per esempio, è stato calcolato con l'aiuto di un modello che considera l'effetto dei rilievi circostanti (pendenza, orientamento e ombra proiettata) e l'altezza del sole rispetto all'orizzonte durante il periodo considerato.

I parametri climatici sono stati calcolati per i periodi critici del ciclo vegetativo della vite, ossia da marzo a fine ottobre. La ripartizione pluviometrica si è basata su una regionalizzazione delle informazioni raccolte nelle stazioni di misurazione della rete MeteoSvizzera, mentre per il calcolo si è considerato i valori pluviometrici mensili medi delle stazioni situate nei pressi o all'interno dei vigneti.

L'utilizzo di modelli di calcolo hanno così permesso di interpolare in modo affidabile le informazioni esistenti. Essi non possono tuttavia integrare tutti gli effetti microclimatici quali le correnti di aria fredda discendenti, gli effetti di situazioni a catino o il riverbero delle pareti rocciose. Si tratta di una caratterizzazione climatica globale su scala regionale.

Lo studio del comportamento della pianta

Gli approcci pedologici e climatici dello studio hanno permesso di definire delle entità zonali omogenee dal punto di vista del suolo e del clima. Queste entità dovrebbero stimolare delle risposte pertinenti da parte del vegetale, in particolare dal profilo qualitativo (tenore zuccherino, acidità dei mosti) misurati attraverso parametri agronomici e fisiologici.

Lo studio del comportamento della vite alle condizioni pedo-climatiche impone che le indagini si svolgano in condizioni omogenee dal profilo della fisiologia propria del materiale vegetale, del sistema di allevamento e della gestione del suolo. Tuttavia il dispositivo scelto costituisce, nel maggior parte dei casi, un compromesso tra scelte scientifiche, realtà viticola imposta dal vigneto stesso e le molteplici costrizioni inerenti questo tipo di sperimentazione in campo.

A questo scopo, due gruppi di vigneti di studio sono stati definiti nell'insieme del vigneto ticinese dividendolo in tre zone distinte, Medrisiotto, Luganese e Sopraceneri, e sulla base dei vari tipi di suolo identificati con lo studio pedologico e in particolare:

 Una rete allargata comprendente 41 vigneti d'osservazione (18 nel Mendrisiotto, 8 nel Luganese e 15 nel Sopraceneri), allo scopo di quantificare alcuni parametri chiave della vite, tra cui l'evoluzione degli stadi fenologici, la crescita dei germogli e la maturazione delle uve.

2. Una rete ristretta composta da 25 vigneti scelti all'interno della rete allargata (10 nel Mendrisiotto, 5 nel Luganese e 10 nel Sopraceneri) nella quale si è studiato in dettaglio il comportamento fisiologico della vite e in particolare le condizioni d'alimentazione idrica della pianta. Le uve prodotte da queste parcelle sono state vinificate per tre anni consecutivi seguendo un identico protocollo e i vini sono stati valutati da degustatori professionisti.

In ogni vigneto si è definita al suo interno una micro-parcella costituita da 50 ceppi distribuiti su due ranghi sui quali si sono eseguite le principali misure, notazioni e prelievi in base al protocollo stabilito.

Il vitigno scelto per il nostro studio è il Merlot, poiché costituisce l'85% della superficie viticola totale, innestato sul portinnesto 3309C (Riparia x Rupestris) ed è largamente dominante nella Svizzera italiana. Tutte le parcelle scelte erano inerbite e con viti di età media tra i 10 e i 20 anni. La scelta di vigneti di questa età è stata fatta per avere la sicurezza che l'apparato radicale avesse raggiunto la sua massima estensione, corrispondente alla colonizzazione radicale massima del suolo, così da evidenziare l'influenza dell'ambiente edafico sul funzionamento fisiologico della vite (Lebon, 1993). Tale condizione, secondo Branas & Vergnes (1957) e Champagnol (1984), è raggiunta quando la vite ha un'età di almeno 7-10 anni. Il sistema di allevamento scelto è il Guyot (semplice e doppio) con un palizzamento a un piano verticale.

Per limitare l'influsso di cariche produttive diverse, tutte le parcelle di riferimento sono state diradate con lo scopo di limitare la produzione a 1 kg/m². In ogni caso il rapporto foglia/ frutto, basato sulla misurazione della superficie fogliare esposta (SFE) e la stima di produzione in kg/m², superava 1.0 m² SFE/kg uva, valore che garantisce una buona maturazione delle uve (Murisier, 1996).

RISULTATI E DISCUSSIONE

Caratteristiche geologiche e pedologiche dei suoli viticoli

Le caratteristiche geologiche e pedologiche dei suoli viticoli del Cantone Ticino si presentano assai variegati e caratteristici. Nel Mendrisiotto, il vigneto occupa molteplici collinette costituite da depositi glaciali o dall'azione degli stessi, i quali, dopo aver attraversato dei contrafforti calcaro-dolomitici, hanno levigato e contornato le colline di scisti calcarei della regione. Numerosi suoli, sia morenici che originati dall'alterazione di rocce soggiacenti, contengono delle tracce di calcare che ne cambia notevolmente l'evoluzione. Nella zona di Pedrinate un massiccio di conglomerato fa fluire nuovamente dei suoli acidi e neri. Le morene del Mendrisiotto possono essere di natura molto variabile: morene di fondo molto

compatte o collinette di morene frontali o laterali molto sassose; spesso, ma non sempre, calcaree. Ai piedi delle scarpate calcaree o dolomitiche, i detriti di falda sono di pH neutro o leggermente basico, i suoli non mostrano mai le caratteristiche tricolori e acide del nord del Cantone. Infine, il vigneto si estende più generosamente che negli altri settori, in pianura, ripiani colluviali o coni a poca pendenza.

Nel Sopraceneri è in gran parte un vigneto collinare di detriti di falda su versanti vallivi fluvio-glaciali intagliati in un enorme duomo di gneiss. Un quarto circa della superficie viticola si estende in pianura. Dei suoli molto neri in superficie, ocra a mezza profondità, generati da roccia madre mobile e sassosa beige (morena laterale o detriti di falda, o entrambi) acidi e molto denaturati, occupano una grande parte dei versanti viticoli. Si tratta, secondo il grado di rifacimento antropico, degli Alocrisol o Brunisol/Rankosol di detriti di falda. Nelle zone pianeggianti si estende un vigneto più discontinuo, su suoli alluvionali grigi di cui la composizione granulometrica varia, secondo gli antichi meandri e sbocchi dei coni torrentizi, fra due poli: il primo sabbio-limoso e il secondo molto sassoso a sabbie grossolane.

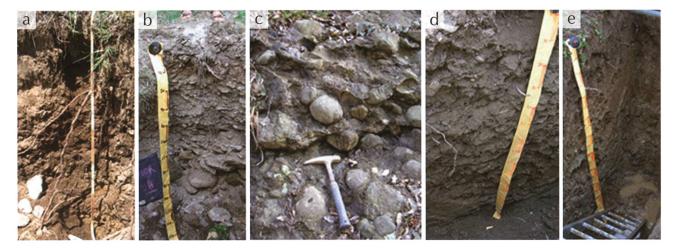
I suoli del Luganese apparentano ai due precedenti, ai quali si aggiungono quattro emergenze localizzate di terreni vulcano-sedimentari, ciò che fa del Luganese un anello di congiunzione tra i suoli del Mendrisiotto e quelli del Sopraceneri.

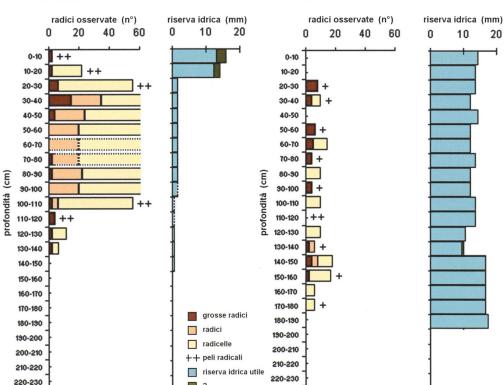
Tale successione pedologica fornisce una grande varietà di suoli caratterizzati soprattutto da una grande variabilità nel tenore in sostanza organica di superficie che si attesta in media al 5% con un minimo del 2% nel Mendrisiotto e un massimo del 10% nel Locarnese. La stessa tendenza vale per il tenore in argilla che varia dal 20% in media nei profili del Mendrisiotto, grazie ai suoli formatisi su calcare e calcari marnosi, a meno del 10% nel Sopraceneri.

I vari profili realizzati durante lo studio hanno permesso di cartografare i suoli delle tre zone viticole citate (Mendrisiotto, Luganese e Sopraceneri).

Per lo studio del comportamento della pianta i suoli sono stati raggruppati in 5 gruppi principali rappresentati nella figura 1.

- a. Eboulis o detriti di falda Formazioni superficiali mobili ed essenzialmente sassose. Le alternanze di gelo e disgelo hanno frammentato progressivamente le rocce alimentando lentamente queste pietraie. I detriti di falda dominano nei versanti del Sopraceneri. Qui i vigneti occupano la parte bassa dell'imponente massiccio cristallino. Fra Locarno e Bellinzona i suoli su detriti di falda sono particolarmente presenti in ricoperture più o meno spesse sopra la morena e/o lo gneiss.
- b. Peyrosol Suolo con un tasso di sassi o elementi grossolani superiore al 60%. Questa struttura a orizzonti sassosi ne determina la forte permeabilità. L'origine di questi suoli è




Fig. 1 — Cinque gruppi principali di suolo rilevati nelle tre zone viticole investigate (Mendrisiotto, Luganese e Sopraceneri). Da sinistra a destra: a) Eboulis (o Detriti di falda), b) Peyrosol, c) Conglomerato, d) Marne, e) Colluviosol e alluvioni.

- riconducibile ai depositi glacio-torrentizi o fluvioglaciali (da riportare quindi al passaggio dei ghiacciai) o a depositi fluviali (quindi di origini più recenti).
- c. Conglomerati Un conglomerato è una roccia dura, formata da ghiaia e sassi arrotondati o meno, cimentate che prendono l'aspetto di scoria o di una crosta. Per praticità abbiamo raggruppato in questa categoria due conglomerati differenti. Il conglomerato della Prella e il conglomerato di Morcote. Nel caso di Morcote ci troviamo di fronte ad un conglomerato vulcano-sedimentare. I sassi formatisi dallo smantellamento di un conglomerato sono difficili da distinguere da una morena. Alla Prella, il conglomerato è più alterato con dei grandi vacuoli di alterazione.
- d. Marne Rocce sedimentarie non indurite,

- a grana fine, effervescenti all'acido diluito, miscela di argilla e calcare, meno compatte del calcare, meno plastiche dell'argilla, di portata, colore e composizione variabile. Questo tipo di suolo si trova solo nel Mendrisiotto.
- e. Colluviosol e alluvioni Le alluvioni, o depositi torrentizi recenti sono originate dall'accumulo gravitazionale delle frazioni più fini e più fertili, erose a partire dal versante dominante. Tali suoli occupano le basse pianure, talvolta ancora inondabili, l'altitudine si situa da +5 a +20 m in rapporto al livello del corso d'acqua attuale. In pianura, le alluvioni presentano delle grandi eterogeneità legate alla granulometria e alla profondità della falda freatica. Le colluvioni, in Ticino, si trovano sul fondo dei pendii, in zone concave e su qualche largo ripiano stabile.

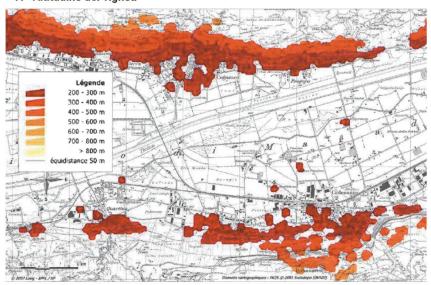
Fig. 2 — Esempi di profili idrici (ogni barra corrisponde a 10 cm di suolo) a Giornico e a Stabio. Barre marronegiallo = numero radici osservate nel profilo; barre blu = riserva idrica utile (in mm). Lettura dei grafici: A) Giornico 94: suolo sabbioso e sassoso, riserva utile massima (RU max) di 40-46 mm. B) Stabio 30: suolo limoso argilloso RU max di 260 mm.

A - Giornico 94

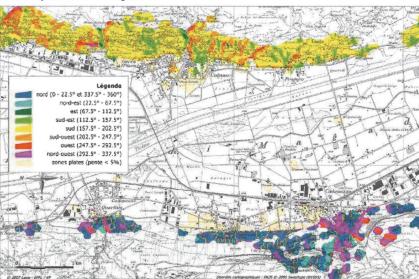
B - Stabio 30

Riserva idrica

L'alimentazione idrica gioca un ruolo essenziale nell'effetto del *terroir*. Durante lo studio particolare attenzione è stata rivolta alle proprietà idriche dei suoli, stimandone la riserva idrica. I grafici idrici (Fig. 2), risultati dalle nostre stime, illustrano bene l'ampiezza, sempre sottostimata, di queste riserve che possono variare da valori di 40 mm a 300 mm per metro di suolo. La capienza del serbatoio è fortemente legata al contenuto di sassi e alla profondità raggiunta dalle radici. Il suo riempimento è in funzione delle precipitazioni dell'anno, come pure della sua permeabilità di superficie e di profondità.


Suoli su detriti di falda o su morene profonde e molto sassosi, ma non ipersassosi, permettono la creazione di una riserva idrica media del suolo che si attesta attorno ai 140 mm per metro di suolo. Non ci sono molti suoli profondi, pesanti e poco sassosi formatisi su delle marne, delle colluvioni o delle morene di fondo compatte. I suoli su morene di fondo di forte pendenza o dorsi, su flysch calcarei, conglomerati o gneiss sono gli unici in cui si avvera la limitazione della profondità ed è in queste situazioni che troviamo dei suoli con una riserva idrica media attorno ai 50 mm per metro di suolo. Tale situazione si ritrova pure nei suoli di pianura molto sassosi, ma questi possono beneficiare della risalita di acqua di superficie a partire dalla falda freatica. Al contrario, le colluvioni di pianura poco sassose su un metro di profondità, presentano una riserva idrica media di 250 mm per metro di suolo. La riserva idrica media dei suoli viticoli ticinesi si stabilisce attorno ad un valore di 145 mm per metro di suolo. Si tratta di una buona riserva idrica, legata a suoli molto drenanti, ma largamente sufficiente a fronte di un clima caratterizzato da importanti precipitazioni.

Riguardo all'apparato radicale e ai suoi adattamenti alle differenti strutture constatiamo che le modalità di esplorazione, molto differenti, possono venir interpretate come un compromesso tra i bisogni di risorse e possibilità dettate dal tipo di suolo. I suoli a riserva debole ma ben aerati possiedono sempre un radicamento che invecchia bene, perenne, ben ripartito e molto abbondante, ciò che permette pure un miglioramento del suolo. I suoli a forte riserva idrica e a debole potenziale ossido-riduttivo, o nullo, mostrano invece poche radici, verticali, lisce, di taglia media e poco divise.


Caratteristiche climatiche

Questa seconda parte dello studio ha permesso di cartografare il vigneto ticinese dal punto di vista del suo microclima. L'approccio utilizzato non permette però di integrare le variazioni mesoclimatiche su scala parcellare, ma apporta tuttavia una suddivisione relativamente precisa su scala del vigneto. Lo studio dell'irraggiamento solare è stato particolarmente interessante a seguito dell'orientazione molto variata delle colline (Fig. 3). La variabilità dell'altitudine, l'orientamento delle superfici, la pendenza e orientazione come pure

A - Altitudine dei vigneti

B - Esposizione dei vigneti

C - Pendenza dei vigneti

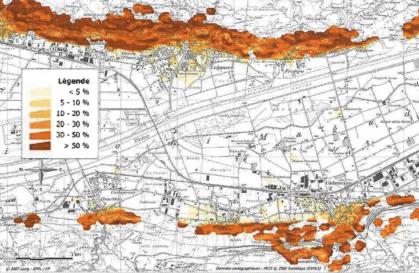
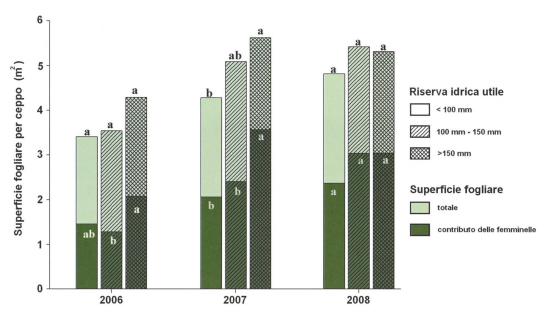



Fig. 3 — Estratto delle carte di altitudine (A), esposizione (B) e pendenza (C) del vigneto lungo le fasce pedemontane del Piano di Magadino (Pythoud, 2007).

Fig. 4 — Superficie fogliare totale (SFT) per ceppo e parte dovuta alle femminelle misurate nel corso delle annate di rilievo 2006-2008. Le parcelle sono raggruppate per riserva idrica dei suoli (RU). Lettere diverse indicano valori significatimente diversi.

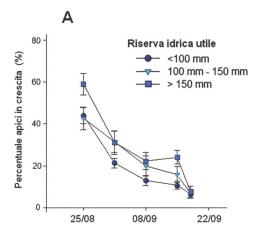
l'ombra proiettata dal rilievo circostante generano una variabilità dell'irraggiamento con un influsso sulla temperatura locale.

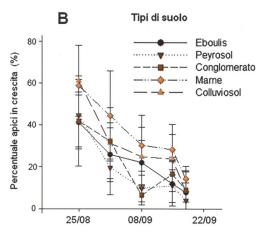
L'utilizzazione di un modello numerico ha permesso un corretto apprezzamento delle differenze. La pluviometria ticinese mostra delle caratteristiche particolari e delle differenze regionali marcate che non sono dovute a fattori altitudinali ma alla circolazione delle correnti sui bordi della catena alpina e delle principali vallate. La ripartizione delle piogge nel corso dell'anno è particolare.

Il metodo utilizzato non permette d'integrare le variazioni microclimatiche a livello parcellare, ma apporta tuttavia una suddivisione relativamente precisa su scala del vigneto. Complessivamente i risultati generati dai modelli numerici sono promettenti e permettono di ottenere risultati corretti che ben integrano la variabilità del parametro con la geomorfologia del terreno. Questi hanno permesso di cartografare il macroclima del vigneto ticinese.

Effetto del suolo e del clima sul comportamento della vite e sulla qualità dei vini

Espressione vegetativa


Un fattore fisiologico esplicativo è la fenologia. La precocità di un *terroir* è, secondo Morlat (1989), una condizione determinante delle


sue potenzialità viticole e in particolare nelle zone climatiche settentrionali.

Durante il nostro studio, il germogliamento è distribuito tra il 10 e il 22 aprile nel 2006, tra il 3 e 11 aprile nel 2007 e tra il 30 marzo e il 26 aprile nel 2008. Queste differenze sono da ricondurre essenzialmente alle condizioni climatiche e alle situazioni (esposizione, orientamento, altitudine, pendenza e presenza di correnti fredde) delle singole parcelle. Il tipo di suolo non sembra invece influenzare la data di germogliamento. Questa variazione la si riscontra nuovamente nella data di fioritura durante le tre annate investigate. Se da un lato la fioritura è ben correlata con la precocità del germogliamento, tale tendenza non è più stata riscontrata all'invaiatura. La stessa osservazione vale per la cinetica di crescita dei germogli e per la lunghezza e il diametro degli internodi. Anche questi fattori sembrano dipendere essenzialmente dalla temperatura piuttosto che dal tipo di suolo o dalla sua riserva idrica.

L'effetto del microclima della parete fogliare sulla qualità delle uve è stata dimostrata da Carbonneau (1980). Egli ha messo in evidenza l'importanza dell'assorbimento dell'irraggiamento solare dalla vegetazione e soprattutto la sua distribuzione fra le foglie.

Fig. 5 — Evoluzione della percentuale di apici in crescita a fine stagione 2008 su Merlot secondo la riserva idrica (A.) e tipo di suolo (B.). Barre verticali: deviazione standard.

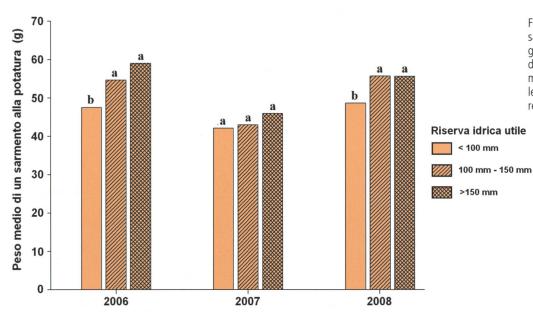


Fig. 6 — Peso medio dei sarmenti alla potatura raggruppati per riserva idrica dei suoli (RU) nei tre anni di misurazione 2006-2008. A lettera uguale nessuna differenza significativa.

Nel nostro studio, la superficie fogliare è stata misurata nel mese di agosto sulle parcelle della rete ristretta. La figura 4 illustra la superficie fogliare totale per ceppo e la frazione dovuta alle femminelle, raggruppata in funziona della riserva idrica dei suoli per le annate 2006, 2007 e 2008. Si osserva un aumento della superficie fogliare con l'aumento delle riserve idriche dei suoli. La frazione di superficie fogliare totale dovuta alle femminelle è, per le tre annate, maggiore nelle vigne istallate su grandi riserve idriche a testimonianza del loro maggiore vigore. Champagnol (1984) riferisce che le parcelle piantate in situazioni dove l'acqua dei suoli è fortemente ritenuta, tale da imporre un arresto di crescita, beneficino di un equilibrio ormonale favorevole alla qualità. La figura 5 mostra i dati di arresto di crescita rilevati sulla rete ristretta per l'annata 2008. Si osserva come nessuna parcella della rete di osservazione raggiunge il totale arresto di crescita (0% degli apici in crescita). Questa situazione può essere messa in relazione con le condizioni climatiche e il regime idrico dell'annata anche se le vigne istallate su suoli a piccola riserva idrica hanno tendenzialmente una percentuale d'apici in crescita minore che quelle impiantate su delle grandi riserve idriche (Fig. 5A). In generale, si nota che l'arresto di crescita interviene solo tardivamente nella stagione.

Il peso del legno alla potatura permette di stimare il vigore e la potenza della vite a parità di sistema di allevamento (van Leeuwen & Seguin, 1994). Anche in questo caso si osserva in generale che il peso dei sarmenti delle vigne della rete di osservazione dipende dalla riserva idrica dei suoli (Fig. 6). Il peso dei sarmenti delle viti cresciute su suoli con grande riserva idrica è più elevato rispetto a quello su suoli con piccola riserva idrica. Considerando i tipi di suoli, i pesi più elevati misurati durante le tre stagioni di studio sono stati quelli delle vigne su marne (dati non presentati). Si può quindi affermare che esiste una relazione tra espressione vegetativa e la riserva idrica dei suoli.

Alimentazione idrica della pianta

L'alimentazione idrica della pianta viene definita dalla misurazione del potenziale idrico di base, ossia lo stato idrico della pianta al termine della notte, quando il flusso della linfa è praticamente assente e la vite può riequilibrare il suo stato idrico in funzione dell'acqua del suolo.

Dei valori soglia sono stati proposti da diversi autori (Carbonneau, 1998; Riou & Payan, 2001; Zufferey, 2000) che permettono di stimare il grado di carenza idrica subito dalla pianta. Nel nostro caso sono stati utilizzati i valori soglia di Zufferey (2000).

L'evoluzione del potenziale idrico di base misurato durante le stagioni 2006 a 2008, così come il deficit idrico cumulato sono presentati nella figura 7. Nel corso dei tre anni di misurazione, in Ticino non si sono mai raggiunti delle condizioni climatiche tali da indurre livelli di stress idrico importanti (potenziale di base inferiore a -3 bar) per la pianta. Ciononostante, si notano delle differenze tra i siti a forte riserva idrica utilizzabile (> 150 mm) rispetto a siti a media-bassa riserva idrica utilizzabile (100-150 mm e < 100 mm). In questi suoli si sono raggiunti dei leggeri stress idrici (da -1.5 a -3.0 bar) nelle annate 2006 e 2007 nel corso del mese di luglio-agosto in corrispondenza di un deficit idrico marcato, mentre in quelli a forte riserva idrica, la vite non ha mai evidenziato valori di carenza idrica e il potenziale di base è sempre rimasto tra i 0 e i -1.5 bar (Fig. 7). Nel 2008, annata caratterizzata da precipitazioni regolari e importanti, la pianta non ha mai espresso valori di potenziale idrico di base che indicassero uno stato di carenza idrica. Se si analizza il livello di carenza idrica in funzione del tipo di suolo, si può notare come nel 2006 la vite non presenti carenze idriche estive unicamente in suoli colluvionali o alluvionali, mentre nel 2007 il debole stato di stress è stato misurato solo su piante in suoli di tipo eboulis e conglomerati.

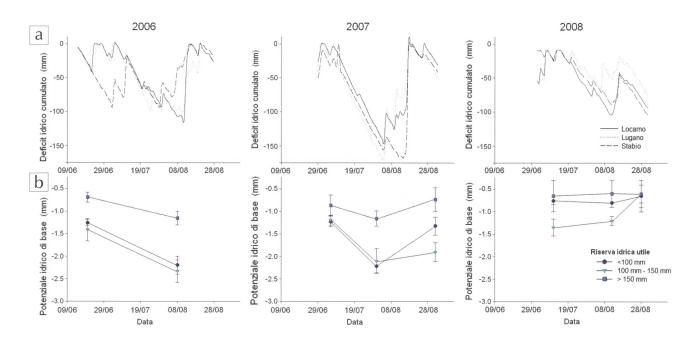
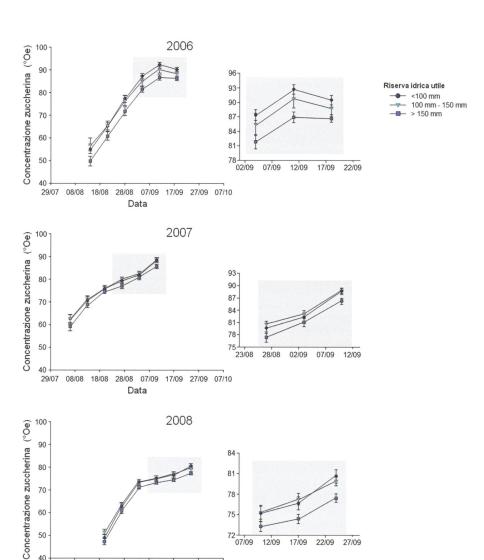



Fig. 7 - Evoluzione del deficit idrico cumulato (mm) (A) ed evoluzione del potenziale idrico di base nel corso delle stagioni 2006-2008 (B) nelle parcelle di riferimento a Locarno, Lugano e Stabio raggruppate per riserve idriche (RU) dei suoli. Barre verticali deviazione standard.

12/09

17/09 22/09 27/09

Fig. 8 - Evoluzione della concentrazione zuccherina delle uve nel vitigno Merlot per il periodo 2006-2008 sull'insieme delle parcelle di osservazione raggruppate per classi di riserva idrica dei suoli. Il grafico più piccolo sulla destra raffigura un ingrandimento dell'andamento degli ultimi tre periodi (vedi riquadro evidenziato su fondo grigio). Barre verticali deviazione standard.

28/08 07/09 17/09 27/09 07/10

40

29/07 08/08 18/08

Maturazione delle uve

L'analisi dell'accumulo degli zuccheri nelle uve durante la maturazione (2006-2008) ha mostrato delle differenze di comportamento tra le vigne istallate sui principali sull'insieme delle parcelle di osservazione raggruppate per classi di riserva idrica dei suoli (Fig. 8). In generale si osserva che l'alimentazione idrica influenza il contenuto zuccherino delle uve. Nelle tre annate di studio, le uve delle parcelle istallate su suoli a grandi riserva idrica hanno presentato tenori zuccherini minori durante tutta l'evoluzione della maturazione delle uve, fino alla vendemmia. Questo dato si riallaccia alla tipologia di suolo e pertanto ritroviamo la stessa differenza nei tre anni per i colluviosol/ alluvionali, caratterizzati, appunto, da una maggiore RU. Questi dati confermano quanto emerso in altri studi (Spring & Zufferey, 2009) e, in particolare, come un leggero-moderato stress idrico stimoli l'accumulo degli zuccheri e rallenti la crescita vegetativa.

L'acidità totale, il tenore in acido tartarico e malico e l'indice di formolo non mostrano differenze particolari fra le diverse classi di riserva idrica e le tendenze osservate sono da ricondurre alle condizioni climatiche stagionali.

L'influsso della tipologia del suolo su questi fattori qualitativi dei mosti è nullo per l'acidità totale e per il tenore in acido malico. L'indice di formolo non sembra essere influenzato se non nel 2008, mentre il contenuto in acido tartarico sembra essere più elevato nei peyrosol, sebbene non si differenzi a livello statistico nel corso delle tre annate.

Qualità dei vini

I parametri analitici dei vini non evidenziano differenze statisticamente significative in funzione della riserva idrica dei suoli, mentre qualche differenza (seppur non sempre significativa) emerge confrontando le varie tipologie di suolo.

I tenori in antociani, dell'estratto secco e dei fenoli totali dei vini non hanno mai presentato differenze significative tra i tipi di suolo e nelle annate. Differenze significative sono state invece osservate per l'acidità totale, il tenore in glicerolo e l'intensità colorante. Tuttavia tali differenze sono piuttosto riconducibili all'annata e non alla tipologia di suolo.

Tra tutti questi elementi qualitativi vale la pena citare l'acidità totale, che presenta valori superiori alla media soprattutto su peyrosol.

Le analisi sensoriali hanno permesso, infine, di caratterizzare e differenziare i Merlot vinificati nell'ambito di questo studio, mentre non è stato possibile associarli ad un particolare tipo di *terroir*. Infatti, malgrado si siano riscontrate differenze significative fra i vini delle diverse parcelle, le stesse sono solo in parte riconducibili al tipo di suolo mentre la riserva idrica e l'annata sembra avere un ruolo più importante.

CONCLUSIONI

La metodologia utilizzata nel presente studio tenta di integrare l'insieme dei parametri suscettibili di definire un *terroir*, ossia i fattori naturali (geologia, pedologia, clima) e la risposta della pianta (principale rivelatore del valore di un *terroir*).

Gli studi sui *terroir* svizzeri (Zufferey *et al.*, 2008) hanno evidenziato come l'alimentazione idrica e quella azotata e il vigore della pianta siano i fattori che influenzano di più la qualità delle uve e del vino. Un'alimentazione idrica moderata durante la maturazione delle uve è benefica per l'accumulo degli zuccheri e per una buona maturazione fenolica delle uve oltre a favorire un arresto di crescita che sposta l'equilibrio ormonale verso le uve permettendone una migliore maturazione (Spring & Zufferey, 2009).

Le condizioni climatiche ticinesi limitano gli stati di carenza idrica della vite e quindi esercitano un debole influsso sulla maturazione, inducendo nel contempo un arresto tardivo della crescita. L'andamento climatico dell'annata sembra giocare un ruolo non trascurabile rispetto al tipo di suolo e alla riserva idrica dei suoli.

Le caratteristiche dei grandi *terroir* si riflette tuttavia nell'espressione dei grandi vini di qualità qualunque siano le condizioni climatiche dell'annata. Questi grandi *terroir* hanno in particolare la capacità di limitare sia gli eccessi che le carenze idriche. La capacità di regolare l'alimentazione idrica nel suolo appare come il fattore principale d'un *terroir*.

Il presente studio ha permesso di mostrare differenze qualitative tra i vini di differenti terroir, anche se queste non sono facilmente riconducibili alle caratteristiche pedologiche. Questa gerarchia qualitativa ha potuto essere spiegata solo parzialmente dal tipo di suolo o dal clima delle diverse parcelle. Per questo motivo risulta molto difficile creare una zonazione del vigneto ticinese. Rimane tuttavia molto importante poter identificare dei gruppi di parcelle che possono dare dei vini di grande qualità rispetto ad altri gruppi che hanno un potenziale inferiore. Questa conoscenza si basa sull'esperienza del viticoltore e/o vinificatore, che riconosce la qualità intrinseca delle differenti parcelle e può quindi raggruppare le uve di potenzialità simile.

BIBLIOGRAFIA

Branas J. & Vergnes A. 1957. Morphologie du système radiculaire. Progrès Agricole et Viticole 3 (4), 29-104.

Carbonneau A. 1980. Recherche sur les systèmes de conduite de la vigne: essai de maîtrise du microclimat et de la plante entière pour produire économiquement du raisin de qualité. Thèse docteuringénieur. Université de Bordeaux II. 235pp.

Carbonneau A. 1998. Irrigation, vignoble et produits de la vigne. Chapitre IV, Traité d'irrigation, Jean-Robert Tiercelin, Editions TEC DOC Lavoisier, Paris: 257-276.

- Champagnol F. 1984. Eléments de physiologie de la vigne et de viticulture générale. Ed. Champagnol F., Impr. Dehan, Montpellier. 351 p.
- Deloire A., Ojeda H., Zebic O., Bernard N., Hunter J.-J. & Carbonneau A. 2005. Influence de l'état hydrique de la vigne sur le style de vin. Progrès Agricole Viticole, 122 (21): 455-462.
- Lebon E. 1993. De l'influence des facteurs pédo- et mésoclimatiques sur le comportement de la vigne et les caractéristiques du raisin. Application à l'établissement de zonage des potentialités qualitatives en vignoble à climat semi continental (Alsace). Thèse de Doctorat. Centre des Sciences de la Terre, Université de Bourgogne, 165 pp.
- Letessier I. & Fermond C. 2004. Etude des terroirs viticoles vaudois (Suisse), Géo-pédologie. Zone pilote de La Côte: Appellations Bursinel, Vinzel, Luins et Begnins. Rapports Sigales, Etudes de sols et de terroirs, Letessier-Fermond, 38410 St-Martin d'Uriage. 70 pp.
- Letessier I. & Marion J. 2007. Studio dei terroir viticoli ticinesi. Geo-pedologia. SIGALES, Etude des sols et terroirs, St. Martin d'Uriage.135 pp.
- Monico C. 2009. Studio dei terroir viticoli ticinesi. Comportamento del Merlot nelle differenti condizioni pedoclimatiche del Canton Ticino. 150p.
- Morlat R. 1989. Le terroir viticole. Contribution à l'étude de sa caractérisation et de son influence sur les vins. Application aux vignobles rouges de la moyenne vallée de la Loire. Thèse de Doct. Etat, Bordeaux II. 289 pp.
- Morlat R. 2001. Terroirs viticoles: Etude et valorisation. Aux Editions Oenoplurimédia, dans la collection Avenir Œnologie. 120 pp.
- Murisier F. 1996, Optimalisation du rapport feuille fruit de la vigne pour favoriser la qualité du raisin et l'accumulation des glucides de réserve. Relation entre rendement et la chlorose. Thèse 11729 ETH Zurich, Svizzera. 132 pp.

- Pythoud K. 2007, Modellizazzione dei parametrici mesoclimatici del vigneto ticinese. 54p.
- Riou C. & Payan J-C. 2001. Outils de gestion de l'eau en vignoble méditerranéen. Application di bilan hydrique au diagnostic du stress hydrique de la vigne. Compte Rendu du GESCO. 12ème journée, Montpellier, 3-7 juillet 2001: 125-133.
- Spring J.-L. & Zufferey V. 2009. Influence de l'irrigation sur le comportement de la vigne et sur la qualité de vins rouges dans les conditions du Valais central. Revue suisse Viticulture, Arboriculture, Horticulture 41(2): 103-111.
- Van Leeuwen C. & Seguin G. 1994. Incidences de l'alimentation en eau de la vigne, appréciée par l'état hydrique du feuillage, sur le développement de l'appareil végétatif et la maturation du raisin (Vitis Vinifera Cabernet Franc, Saint Émilion 1990). Journal International des Sciences de la Vigne et du Vin, 28 (2): 81-110.
- Vaudour E. 2005. I Terroir. Definizioni, caratterizzazione e protezione. Ed. Agricole, Bologna. 295 nn.
- Zufferey V. 2000. Échanges gazeux des feuilles chez Vitis vinifera (cv. Chasselas) en fonction des paramètres climatiques et physiologiques et des modes de conduite de ka vigne. Thèse de doctorat, ETH Zurich. 335 pp.
- Zufferey V. & Murisier F. 2004. Etude des terroirs viticoles vaudois. Comportement de la vigne en fonction des conditions pàdo-climatiques. Rapport final. 221 pp.
- Zufferey V., Pythoud K., Letessier I., Reynard J.-S., Monico C. & Murisier F. 2008. Etudes des terroirs viticoles suisses. Revue suisse Viticulture, Arboriculture, Horticulture 40(6): 367-373.