Detection of human carcinoma by immunoscintigraphy using monoclonal anti-CEA antibodies

Autor(en): Forni, Michel / Ritschard, Jürg / Buchegger, Franz

Objekttyp: Article

Band (Jahr): 162 (1982)

Persistenter Link: https://doi.org/10.5169/seals-90900

Nutzungsbedingungen
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
Detection of human carcinoma by immunoscintigraphy using monoclonal anti-CEA antibodies

Michel Forni, Jurg Ritschard, Franz Buchegger, Charles Haskell, Stephan Carrel and Jean-Pierre Mach

Early experimental results

Research on tumour localization of radio-labeled antibodies was initiated almost 30 years ago by Pressman (1) and Bale (2), who showed that labeled antibodies against Wagner osteosarcoma or Walker carcinoma cells were concentrated in vivo by these tumors. In 1974, we introduced into this field the model of nude mice bearing grafts of human colon carcinoma and the use of affinity purified antibodies against carcinoembryonic antigen (CEA) (3). We showed that purified 131I-labeled goat anti-CEA antibodies could reach up to a 9 times higher concentration in the tumor than in the liver, while the concentration of control normal IgG in the tumor was never higher than 2.3 times that in the liver. We observed, however, great variations in the degree of specific tumor localization by the same preparation of labeled antibodies, when colon carcinoma grafts de-

![Fig. 1. Scanning of a nude mouse which received an injection of 131I-labeled anti-CEA antibodies. A. Nude mouse bearing a xenograft of human colon carcinoma shown in the scanning position. B. The total body scan from the same mouse obtained 3 days after injection of 2 ug of 131I-labeled anti-CEA antibodies (dose of radioactivity injected = 16 uCi). (Reproduced with the permission of Nature) (3).]
rived from different donors were tested. This is probably due to the fact that human tumors keep their initial histologic properties and degree of differentiation after transplantation into nude mice and these two factors appear to affect the ease with which circulating antibodies gain access to the CEA present in tumors. The detection of 131I-labeled antibodies in tumors by external scanning also gave variable results. With colon carcinoma grafts from certain donors we obtained scans with good tumor localization, such as the one presented in figure 1, whereas with colon carcinoma grafts from other donors the antibody uptake was not sufficient to give satisfactory scanning images. In this context we think that results in the nude mouse model are a good reflection of the clinical reality observed in patients.

Independently, Goldenberg et al. (4) showed specific tumor localisation and detection by external scanning with 131I-labeled IgG fractions of anti-CEA serum, using two human carcinomas which had been serially transplanted into hamsters for several years. Using the same experimental model Hoffer et al. (5) also demonstrated tumor localisation with radiolabeled IgG anti-CEA by external scanning.

Clinical results with polyclonal anti-CEA antibodies

The first detection of carcinoma in patients obtained by external scanning following injection of purified 131I-labeled anti-CEA antibodies was reported by Goldenberg et al. (6,7). They claimed that almost all the CEA producing tumors could be detected by this method and that there was no false positive results. However, our experience, using highly purified goat anti-CEA antibodies and the same blood pool subtraction technology as Goldenberg was that only 42% of CEA producing tumors (22 out of 53 tested) could be detected by this method (8–9). Furthermore, we found that in several patients the labeled anti-CEA antibodies localized non-specifically in the reticuloendothelium. Despite the use of the subtraction technology, these non-specific uptakes were difficult to differentiate from the specific uptakes corresponding to the tumors. This discrepancy of results is unlikely to be due to a difference in the quality of the anti-CEA used since we showed by direct measurement of the radioactivity in tumors resected after injection, that our antibody was capable of excellent tumor localization (8) (fig. 2). Furthermore, in a few patients scheduled for

Fig. 2. Specific tumor uptake of anti-CEA antibodies in patients with colon carcinoma. The shaded areas show the relative concentration of 131I-labeled control normal goat IgG, in both tumor (Tu.) and normal mucosa (Norm.) from four patients who received simultaneous injections of both labeled proteins 3–8 days before surgery. The vertical solid lines show the standard deviation of the results obtained in individual tissue fragments. The radioactivity of each isotope present in each fragment was measured in a dual channel gamma counter. (Reproduced with the permission of N. Engl. J. Med.) (8).
tumor resection, we injected simultaneously 1 mg of goat anti-CEA antibodies labeled with 1 mCi of 131I and 1 mg of control normal goat IgG labeled with 0.2 mCi of 125I. By this paired labeled method adapted to the patient situation, we could demonstrate that the antibody uptake was 4 times higher than that of control normal IgG (8) (fig. 2). These results were very encouraging in terms of specificity of tumor localization. However, the direct measurement of radioactivity in tumors also showed that only 0.05-0.2% of the injected radioactivity (0.5-2 μCi out of 1000 μCi) were recovered in the resected tumors 3–8 days after injection (8). This information is essential if one is considering the use of 131I labeled antibody for therapy (10).

Monoclonal anti-CEA antibody used in photoscanning

The obvious advantage of monoclonal antibodies (Mabs) are their homogeneity and their specificity for the immunizing antigen. Another advantage of Mabs is that they each react with a single antigenic determinant and thus should not be able to form large immune complexes with the antigen (provided that the antigenic determinant is not repetitive).

The first Mab anti-CEA used for immunoscintigraphy in patients was Mab 23 (11). Its production and characteristics have been described (12). Mab 23 was given intravenously to 26 patients with large bowel carcinomas and 2 patients with pancreatic carcinomas. Each patient received 0.3 mg of purified Mab labeled with 1–1.5 mCi of 131I. The patient’s premedication included Lugol 5 percent iodine solution, promethazine and prednisolone, as previously described (8,9). The patients had no personal history of allergy. They were also tested with an intracutaneous injection of normal mouse IgG and found to have no hypersensitivity against this protein. None of the patients showed any sign of discomfort during or after the injection of labeled mouse antibodies. The patients were studied by external photoscanning 24, 36, 48 and 72 h after injection. An Elscint large-field camera with an LFC9 high-energy parallel-hole collimator was used. In 14 of the 28 patients (50%) a radioactive spot corresponding to the tumor was detected 36–48 h after injection. In 6 patients the scans were doubtful and in the remaining 8 patients they were entirely negative (11).

In order to improve these results we produced a series of 26 new hybrids secreting anti-CEA antibodies. Three of them were selected by criteria of high affinity for CEA of the antibody produced (13). The new selected Mabs designated 202, 35 and 192 were purified and tested for the detection of human carcinoma grafted in nude mice both in the form of intact Mab and in the form of

Fig. 3. Localization of carcinoma by external photoscanning after injection of radiolabeled F(ab')$_2$ fragments of monoclonal antibodies against CEA. Anterior left lateral photoscans of the whole abdomen and pelvis of a patient who received an injection of 131I-labeled F(ab')$_2$ fragments of Mab 35, 48 hrs before scanning. The patient had a metastasis of a carcinoma of the ovary, located deep in the abdomen below the umbilicus. Panel A shows the total 131I radioactivity, panel B the 99Tc radioactivity due to injection of 99Tc-labeled HSA and free 99TcO$_4$, 15 min before scanning. Panel C shows the remaining 131I radioactivity after subtraction of 99Tc radioactivity. In panel A and C the arrow indicate the radioactive spot corresponding to the tumor.
F(ab')2 and Fab fragments. The results showed that the fragment of Mabs were markedly superior to the intact Mab for the detection of human carcinoma in the nude mouse model (14).

One of the positive scanning studies obtained recently with the F(ab')2 fragment of Mab 35 is illustrated in figure 3. The patient was an 87 years old female with a retropitoneal metastasis of a carcinoma of the ovary. The tumor was palpable below the umbilicus and found by CAT SCAN to consist of a solid masse of 13x9 cm diameter. Figure 3 shows the anterior-lateral photoscans (camera to the left of the patient) of the abdomen and pelvis, taken 48 hrs after injection of 0.3 mg of Mab 35 F(ab')2 labeled with 1.5 mCi of 131I (55.5 MBq). Panel A shows the total 131I radioactivity; one sees a diffuse radioactive spot in the center right of the scan (arrow) corresponding to the tumor. Abundant radioactivity is also present in the lower left part of the scan corresponding to the urinary bladder which was not properly emptied. Panel B shows the 99mTc radioactivity due to the injection, 15 min before scanning, of 500 μCi (18.5 MBq) of 99mTc labeled human serum albumin and 500 μCi of free 99mTcO4-. There are diffuse spots of radioactivity in the stomach, spleen and bladder as well as in the left side of the abdomen but these spots do not correspond to the localization of the tumor. Panel C shows the 131I radioactivity after computerized subtraction of the 99mTc radioactivity. Here, the major central radioactive uptake corresponding to the tumor is well contrasted. The urinary bladder remained positive despite the subtraction.

Tumor detection by tomoscintigraphy

Another way to improve tumor detection by immunoscintigraphy is the use of tomoscintigraphy. As we have seen, static photoscanning is limited in part by the presence of radiolabeled antibodies or free 131I released from them, in the circulation, the reticuloendothelial system, the stomach, intestine and urinary bladder. Increased radioactivity in these compartments may give false positive results. Specific tumor sites may be masked by non-specific radioactivity. These problems cannot be entirely solved by the presently available subtraction methods using 99mTc labeled HSA and free 99mTcO4-. Axial transverse tomoscintigraphy is a method initially developed by Kuhl and Edwards in 1973 (15) with the potential to resolve some of these problems. This method, also called single photon emission computerized tomography (SPECT), corresponds to the application of the tomographic technique used in transmission computerized axial tomography (CAT) to scintigraphic data. Mathematical techniques similar to those used in positron and X-ray tomographies allows the reconstruction of transverse sections as well as frontal, sagittal or oblique sections of patients. In collaboration with Ch. Berche and J.-D. Lumbroso from the Institut Gustave Roussy in Villejuif, we have recently shown that tomoscintigraphy can improve the sensivity and specificity of tumor detection by radiolabeled anti-CEA Mabs (16). With this methods 15 out of 16 carcinoma tumor sites studied (including 10 colorectal carcinomas, 1 stomach, 1 pancreas and 4 medullary thyroid carcinomas) were detectable. These results are encouraging in term of sensitivity. However, it should be noted that numerous non-specific radioactive spots, sometimes as intense as the tumors were observed. Thus, the problem of non-specific accumulation of antibodies remains, but the three dimensions localization of radioactive spots by tomoscintigraphy, helped to discriminate specific tumor uptakes from the non-specific ones (16).

Antibody and control radioactivity in resected tumors

A few patients scheduled for tumor resection were injected simultaneously with 1 mCi of 131I-labeled Mabs and 0.2 nCi of 125I-labeled purified normal mouse IgG. The radioactivity of both isotopes was measured in the resected tumors and adjacent normal tissues and the specificity of tumor localization studied by differential radioactive analysis, as shown in table 1. One sees that the factors of radioactive uptake (indicated in parentheses) range from 2.7 to 7.4 for Mab 23 when one compares tumor with normal mucosa. They are even higher when one com-
Table 1. Specificity of tumor localisation of monoclonal anti-CEA antibodies as compared to normal IgG

<table>
<thead>
<tr>
<th>Case No. Tumour site</th>
<th>Tumour weight</th>
<th>Material injected</th>
<th>Tot. nCi Tumour</th>
<th>nCi/g Tumour</th>
<th>nCi/g n.mucosa</th>
<th>Tumour** N.mucosa</th>
<th>nCi/g N.serosa</th>
<th>Tumour** N.serosa</th>
<th>nCi/ml serum</th>
<th>Tumour serum**</th>
</tr>
</thead>
<tbody>
<tr>
<td>63) Tr.colon op.d.6; CEA = 1.2</td>
<td>15 g</td>
<td>Mab 23 (^{131}I) N.-IgG (^{131}I)</td>
<td>425</td>
<td>28.3</td>
<td>10.3</td>
<td>(2.7)**</td>
<td>6.6</td>
<td>(4.3)</td>
<td>30.3</td>
<td>(0.9)</td>
</tr>
<tr>
<td>67) Left colon op.d.6; CEA = 1.1</td>
<td>16 g</td>
<td>Mab 23 (^{131}I) N.-IgG (^{131}I)</td>
<td>196</td>
<td>12.3</td>
<td>4.6</td>
<td>(2.7)**</td>
<td>2.5</td>
<td>(4.9)</td>
<td>17.7</td>
<td>(0.7)</td>
</tr>
<tr>
<td>73) Left colon op.d.4; CEA = 2.7</td>
<td>28 g</td>
<td>Mab 23 (^{131}I) N.-IgG (^{131}I)</td>
<td>1,052</td>
<td>38.4</td>
<td>11.3</td>
<td>(3.4)**</td>
<td>7.8</td>
<td>(4.9)</td>
<td>45.4</td>
<td>(0.8)</td>
</tr>
<tr>
<td>81) Sigmoid op.d.5; CEA = 150</td>
<td>50 g</td>
<td>F(ab(^{-}))(_2) 23 (^{131}I)</td>
<td>897</td>
<td>17.9</td>
<td>2.4</td>
<td>(7.4)**</td>
<td>1.8</td>
<td>(10.1)</td>
<td>7</td>
<td>(2.6)</td>
</tr>
</tbody>
</table>

Abbreviations: Tot. nCi Tumour = Total radioactivity in tumour in nanocuries; nCi/g = concentration in nCi per gram; N.mucosa = dissected normal mucosa; N.serosa = dissected external bowel wall; op.d.6 = patient operated 6 days after injection, CEA = 1.2 means: serum CEA level of 1.2 ng per ml (28).

**Factors of radioactivity uptake in tumor (indicated in parenthesess) are obtained by dividing the concentration of radioactivity in tumor by the concentration of radioactivity either in N.mucosa, N.serosa or serum.

Specificity indices (underlined figures) are calculated by dividing the factor of radioactivity uptake obtained for \(^{131}I\) antibody by the same factor obtained for \(^{125}I\) normal IgG.

Discussion

It is evident from this brief review of our recent results that the method of immunoscintigraphy can be improved by the use of solid agents which represent the best potential agents for the destruction of tumor cells (21). Critical experimental investigations are necessary before such type of radiodiagnostic therapy can be considered for the treatment of cancer patients.

Compounds with specific tumor localisation (22-24) have been used to label antibodies with \(^{131}I\) to label antibodies with \(^{131}I\) for immunoscintigraphy. The use of these antibodies allows the detection of antigens to be confirmed on well controlled clinical studies before they can be recommended for large scale use.

Concerning new isotope chelates such as diethylenetriamine pentaacetic acid (DTPA) or radiometal chelates with different alpha-emitting isotope nuclei, \(^{125}I\) can be used for labeling of antibodies with \(^{125}I\) for immunoscintigraphy. It is essential that these results need to be confirmed on well controlled clinical studies before they can be recommended for large scale use.

Critical experimental investigations are necessary before such type of radiodiagnostic therapy can be considered for the treatment of cancer patients.

In contrast, the same factors calculated for the control normal IgG range between 0.8-1.6. If one divides the factors of uptake calculated for antibodies by those calculated for normal IgG one obtains the indices of specific tumor localisation of the antibodies. The average of these indices for the 4 patients analysed here is 4.3 (range 2.2-8.4).
References

