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Induction of endogenous virogenes and oncogenes
in the pathogenesis of leukemia
Christoph Moroni

Introduction

Oncogenic retroviruses fali into two classes,
those with slow and those with acute
transforming ability. The former are termed
leukemia viruses; they induce leukemia after
about 3-12 months following virus inoculation.

The latter are termed sarcoma- or
acute leukemia viruses. Their effect becomes
obvious after 1-2 weeks after inoculation.
They transform fibroblasts and other suitable

target cells in vitro. This is in contrast to
the leukemia viruses which do not display
transforming activities in vitro. The important

difference between the two classes of
viruses is that the sarcoma viruses, but not
the leukemia viruses, carry additional genes,
called oncogenes, which control neoplastic
transformation. Interestingly, these
oncogenes are norma! cellular host genes which
have found their way into the viral genome
via recombination. In other words, sarcoma
viruses have evolved from non-transforming
retroviruses by recombination with host
oncogenes. it is the "picked up" oncogene
which controls and directs the malignant
phenotype (for references and review see
Weiss et al., 1982). In vertebrate cells, the
oncogenes are thought to carry out normal
functions of still unknown nature, while
under the control of the viral genome they
cause transformation.
The first mammalian leukemia virus was
isolated by Gross from AKR mice (Gross,
1951). It was only 20 years later that it was
realized that all mice carry in their genomes
multiple copies of integrated retroviral
genomes, collectively called endogenous viruses.
Nucleic acid hybridisation ("Southern
blot") analyses shows that mice carry about
15-25 viral copies related to the Gross
leukemia virus. They are inherited as normal
cellular genes, following Mendel's laws and
appear to be subject to normal gene regula¬

tion by the host (Aaronson and Stephenson,
1977). They offer a model to study gene
expression in eukaryotic cells.
There is heterogeneity amongst endogenous
viruses. (In this article, we deal only with the
endogenous viruses related to leukemia
viruses). Many copies show deletions and are
therefore defective. When expressed, they
may lead to production of viral proteins, but
not to infectious virus. The complete
infectious viruses of inbred mice fall into two
groups, distinguishable by their host range.
Xenotropic viruses replicate in non-mouse,
e.g. rabbit cells, but not in mouse cells
(Levy, 1973; Levy, 1978), while ecotropic
viruses show the reciprocal behaviour
(Pincus et al., 1971). There is recombination
amongst endogenous viruses. In leukemoge-
nesis, an ecotropic virus recombines with a

(presumably defective) virus related to the
xenotropic group to generate a dual-tropic
virus which replicates both in mouse- and
non-mouse cells (Hartley et al., 1977).
In retroviral leukemogenesis the following
steps can be distinguished: First, there is

expression and high-titer replication of
ecotropic viruses. This can be achieved by
spontaneous induction of the ecotropic viral
loci as in AKR mice, or, when these loci are
silent or absent, by passive inoculation of an
ecotropic viral stock. In AKR mice, later in
life, the endogenous xenotropic virus
becomes expressed, and with the onset of the
characteristic T-cells thymoma the dual-
tropic virus appears (Rowe et al., 1980). It

may be that only this latter virus has the ability

to infect the target cell for neoplastic
transformation. It is thought that the long
latency of this disease is related to the time
required to generate the dual-tropic virus and
to infect the appropriate target cell. How
does a virus lacking known transforming
genes induce transformation? From work
with avian leukosis virus, which also lacks
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oncogenes, we know that following infection
viral DNA can integrate next to a cellular
one gene, in this case the myc gene (Hayward
et al., 1981). Viral control elements called
LTR (see Diggelmann, this volume)
containing promoter sequences can then induce
the transcription of the neighbouring myc
gene. It may be that in murine leukemia, the
dual tropic virus induces an oncogene in a T-
cell in the way avian leukosis virus does in
the B-cell tumor of the chicken. Figure 1

shows a "minimum model" of leukemogenesis.

According to this model, the critical
steps are: induction of at least two different
endogenous viruses; the recombinational
generation of dual-tropic viruses; and, the
activation of oncogenes. Chronic immune-
stimulation, known to favor leukemogenesis,

may affect this process by two ways:
by inducing endogenous viruses, and by
triggering pre-malignant changes in T-lyrn-
phocytes. There is some evidence that such
changes are even required to allow T-cell
infection to take place; normal T-cells which
grow in vitro cannot be infected by
retroviruses (Horak et al., 1981; Stoye and Moroni,

unpublished results).

Induction of endogenous viruses

The multiple copies of endogenous viruses
are integrated at different sites and
apparently in many chromosomes. It appears that
they have been acquired by exogenous infection,

and have succeeded in maintaining
themselves in the genome of the species.
Over time, they have duplicated, changed
their position in the genome (perhaps by
reinfection of the germ line) and have given
rise to the heterogeneity observed to date. It
is not. known why they have been maintained
for long periods of time. Either they offered
to their host a selective advantage of
unknown nature, or they found an ecological
niche as "harmless" molecular parasites,
causing rare leukemias and sarcomas but not
affecting the viability of the species as such.
As expected, the host has evolved protection
mechanisms to prevent reinfection of
spontaneously induced viruses. Two such
mechanisms are known: First, there is a
serum lipoprotein which is highly and
selectively active in neutralizing xenotropic virus.
Second, mouse cells lack receptors for
xenotropic virus and therefore cannot be rein-
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fected once virus has become activated (Levy
et al., 1975; Levy, 1978). Reinfection by
ecotropic virus is restricted by an intracellular

mechanism which prevents integration of
viral DNA into the host genome and is
controlled by the host Fv-1 locus (Lilly and
Pincus, 1973).
The induction of endogenous viruses is

important for two reasons. First, it
corresponds to one step in the development of
retroviral leukemia. Second, it is of interest in
the general context of induction and function

of eukaryotic genes. The analysis of
virus-induction is complicated by the
heterogeneity mentioned above. If one wishes to
make statements about the induction of a
single provirus, care must be taken to
exclude the induction of additional loci. This
heterogeneity also has its merits: viruses
integrated at different sitey may serve as guides
and probes to chromosomal regions for
which no marker yet exists.
In the following sections some pertinent
facts about induction of xenotropic,
ecotropic and defective viruses are being
summarized.

a. Xenotropic viruses

Some strains of mice (prototype NZB)
spontaneously produce high titers of xenotropic
viruses. A genetic analysis revealed that they
carry two non-linked loci, Nzv-1 and Nzv-2,
which control virus production (Datta and
Schwarz, 1977). It is not known whether the
lack of virus-repression results from a

specific integration site, or from sequences
present in the viral genome. Genetic
information for a different type of xenotropic
virus is present in most strains of mice, but
expression is repressed. When fibroblasts
from such strains, e.g. BALB/c, are treated
with IrdU or BrdU, production of the
repressed xenotropic virus is induced in some
of the cells (Lowy et al., 1971; Aaronson et
al., 1971). The mechanism for this induction
is still poorly understood. Suboptimal doses
of IrdU followed by UV treatment lead to
virus induction, suggesting that chromosome
brakes may be involved (Teich et al., 1973).
Other agents which have been found to be vi-
rus-inducers in fibroblast cultures include
inhibition of protein synthesis (Aaronson

and Dunn, 1974), L-canavanine (Aksamit
and Long, 1977), hydroxyurea (Rascati and
Tennant, 1978) and 5-azacytidine (Groudine
et al., 1981; Niwa and Sugahara, 1981). We
have been interested in the induction
mechanisms operating in lymphocytes which
are the target cells of leukemogenesis. We
found that induction of xenotropic virus
occurs in cells during B-cell differentiation
(Moroni and Schumann, 1975; Moroni et al.,
1978). This can be shown by culturing
spleen-of lymphnode cells in vitro with B-
cell mitogens, such as bacterial lipopolysac-
charides, lipoprotein or tuberculin, which all
trigger B-cell differentiation. Induction was
enhanced by BrdU (Moroni et al., 1975).
There is evidence that virus induction is
linked to the process of differentiation itself:
1. When B-cell mitogens, such as dextran
sulfate, lacking the capacity to induce
terminal differentiation are used, no induction

is seen (Moroni and Schumann, 1978).
2. CBA/N mice show a recessive sex-linked
defect in B-cell differentiation. When F,
animals in a cross with wild type mice are
examined individually, only the male animals
exhibit B-cell differentiation and virus-induction

(Phillips et al., 1977). 3. LPS-in-
duced B-cell differentiation can be blocked
by prior treatment of B-cells with anti-p
serum. When this is done, virus induction is
also impaired (Stoye and Moroni, in
preparation). In a genetic cross (Stoye and Moroni,

1983) involving inducible BALB/c mice
and non-inducible 129 mice, induction by
mitogen as well as the BrdU-ampiification
effect segregated as a single trait, closely
linked if not identical to the locus Bxv-1
which controls virus-induction by fibroblasts,

and was discovered by Kozak and

Table /. Cell type specificity of the induction of
xenotropic and ecotropic endogenous viruses

Xenotropic virus Ecotropic virus

B-cell T-eell Fibro- B-cell T-cell Fibro¬
blast blast

B-ceii
mitogen
T-ceil

ind. — — — — —

mitogen
BrdU ampl. — ind. — — ind.

ind.: induction
amp!.: amplification
— : no effect
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Rowe (1980). In our cross, we indentified a
second inducible locus (Bdv-1), unlinked to
Bxv-1, which controls the induction of a
defective virus (see below), and is also induced
by LPS (Stoye and Moroni, 1983). We view
Bxv-1 and Bdv-1 genes as viral markers
integrated in those regions of the chromosome
active in B-cell differentiation. It will be
interesting to learn what cellular functions
are encoded in the DNA adjacent to these
viral loci.

b. Ecotropic viruses

Mice carrying ecotropic viruses fall into two
groups. Some (AKR, C58) produce virus
spontaneously, which leads later in life to
leukemia. Other mice (BALB/c, C57B1/6)
do not express virus, but can be induced to
do so by in vitro treatment of their fibroblasts

by IrdU. Induction is controlled by a

single dominant locus (Stephenson and Aa-
ronson, 1972) mapping on chromosome 5

(Kozak and Rowe, 1979). Interestingly, no
ecotropic virus is induced in B-cells under
conditions that induce xenotropic virus.
Table 1 summarizes the induction pattern for
ecotropic and xenotropic viruses. Virus
production appears to be virus type- and cell
typespecific and the observed patterns raise
interesting questions on the relationship
between the differentiation stage of a cell and
virus expression.

c. Defective viruses

Most endogenous viruses are defective and
their analysis is difficult in the absence of
provirus-specific assays. Eventually, monoclonal

antibodies or specific DNA-probes
may provide the necessary tools. The most
challenging question at present is to identify
and induce the (presumably defective) virus
which is involved in the recombinational
event which generates the leukemogenic
dual-tropic virus. We have demonstrated the
induction of a defective virus from strain-
129 mice which lack inducible replicating
viruses. With BALB/c mice, we have shown
that viruses can be induced from B-cells. The
first is the xenotropic virus mentioned
above, the second is a defective but reverse
transcriptase-positive virus. In a genetic an¬

alysis, the two loci were found to segregate
(Stoye and Moroni, 1983).
While T-cells cannot be induced to produce
complete virus, incomplete virus expression
from what appears to be defective
endogenous genomes has been observed.
Thymus T-cells, for example, express con-
stitutively an antigen (GiX), which
corresponds to the retroviral gp70 protein
(Tung et al., 1975). When mature T-cells are
activated by concanavalin A, viral gp70
antigen becomes induced and inserted into the
cellular membrane. This can be
demonstrated by the fact that activated, but not
resting T-cells can be killed by anti-gp70
antibody in the presence of complement.
Interestingly, gp70-induction was shown on different

subpopulations of T-cells, namely T-
helper, T-suppressor, and cytotoxic T-cells
(Wecker et al., 1977; Wecker and Horak,
1982; Klenner et al., 1982). As argued above
for B-cells, it appears that the induced pro-
virus in activated T-cells lies in a
chromosomal region important and perhaps
specific for T-cell maturation.
Using a fluorescence-activated cell sorter,
Morse et al. (1979) found a gp70 molecule
related to the xenotropic virus on lymphocytes
of all the strains they tested. The relative
amounts in different organs varied in a

strain-specific way; induction of this defective

virus is under host control. In conclusion,

different proviral loci become
expressed during the different phases of
lymphocyte differentiation. This in turn may
favor the recombinational event generating
the leukemogenic variants and explain the
observed association between leukemoge-
nesis and hyperblastic dysfunctioning of the
immune system as observed following graft-
versus-host reactions (Schwartz and Bel-
dotti, 1965).

Oncogene activation

Following infection by sarcoma- and acute
leukemia viruses, the viral oncogene
becomes expressed and directs malignancy.
After it was realized that viral oncogenes are
transduced host genes, the question arose
wheter these cellular host "oncogenes" -
more appropriately called proto-oncogenes -
might also become activated and play a role
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in non-viral malignancies. Recent evidence
suggests that this may be the case.
The oncogenes known at present fall into
two, partially overlapping groups. The first
group contains the oncogenes present in
sarcoma or acute leukemia viruses. Examples
are the src gene of Rous sarcoma virus, myc
of avian myelocytomatosis virus, mos of
mouse Moloney sarcoma virus. The second
group contains genes which have been
identified by their ability to induce foci of
transformed cells following transfection into suitable

fibroblast cells (NIH 3T3 cells). Many
human tumor lines, but also primary human
tumors contained oncogenes, as revealed by
transfection experiments, amongst them
lung-, colon-, bladder-mammary-tumors
and leukemias (Shih et al., 1981; Murray et
al., 1981; Lane et al., 1981; Lane et al., 1982;
Perucho et al., 1981; Pulciani et al., 1982).
The human oncogenes derived from bladder
carcinomas have been cloned. They were
found to be homologous to the oncogene
from the Harvey sarcoma virus (Parada et
al., 1982; Goldfarb et al., 1982; Santos et al.,
1982).
In the following section J will summarize the
evidence that cellular oncogenes become
activated in cancer, and concentrate on the
myc gene, one of the best studied examples.
The activation of the cellular myc gene was
first shown in experiments involving avian
leukosis virus (ALV). This virus, lacking an
oncogene, induces B-cell lymphomas after a
long latency. It turned out that the ALV
genome is integrated in the tumor DNA near the
cellular mye-gene. The integrated virus
contains promoter sequences at its 3' end,
which can direct transcription into Hanking
host sequences (Hayward et al., 1981). This
induction of myc by nearby ALV genes is
called promoter insertion. The viral
promoter forms part of a larger sequence,
which occurs at both ends of the integrated
virus and resembles the insertion-like
elements (IS) identified in prokaryotes (see
Diggelmann, this volume). This suggests
that integration of IS-like elements near an
oncogene may trigger its expression. Indeed,
Rechavi et al. (1982) recently found that one
allele of the mos gene in a murine plasmacytoma

carried at the 5' end an insertion with
direct and indirect repeats typical for IS-ele-
ments. It will be interesting to see if this ob¬

servation is a general one. Evidence suggesting

a possible role of the myc gene in human
B-cell tumors has recently been presented. In
man, the myc gen is located on chromosome
8. In Burkitt's lymphoma, as well as in other
B-cell neoplasias, there is a typical translocation

involving chromosomes 8 and 14, or,
more rarely 8 and 22. Part of the long arm of
8 is translocated to chromosomes 14 (see

Müller, this volume). Molecular cloning
experiments show that in this translocation the

myc gene, located on chromosome 8,
becomes joined to the H-chain locus which is

active in immunoglobulin-producing B-cells.
In the more rare t (8; 22) translocation myc
appears to become translocated to the
lambda L-locus (Dalla-Favera et al., 1982;
Taub et al., 1982; Nell et al., 1982). The
translocation of the myc gene to the H-chain
locus is also observed in plasmacytomas of
mice which show a typical t (15; 12)
translocation. In mice, myc is located on
chromosomes 15 and the H-chain gene on
chromosome 12 (Taub et al., 1982; Shen-Ong el
al., 1982). In conclusion, the myc oncogene,
known to cause experimental myelocytomatosis

following MC29 virus infection is
involved in a specific and virtually
pathognomonic chromosome translocation in
human and murine leukemias.
Activated oncogenes in human leukemias
have also been detected using the NIH-3T3
transfection technique. Lane et al. (1981)
described 5 oncogenes derived from human
and murine T- and B-cell leukemias and
lymphomas. Interestingly, different oncogenes
were associated with pre-B, intermediate-B,
mature-B, intermediate-T and mature-T cell
tumors. It remains to be seen whether these

genes are actually contributing to the malignant

phenotype of these leukemias and
lymphomas, or whether their activation occurs
normally in differentiation and becomes
"frozen" if the cell is immortalized by the
transforming event.
In conclusion, the study of retroviruses and
the development of suitable transfection
techniques has led to the discovery of a
fascinating family of genes, the oncogenes.
There is hope that the elucidation of their
function both in normal cells and experimental

tumors will contribute to the
understanding of some pathogenetic mechanisms
underlying human cancer as well.
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