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Was hat die Wissenschaft von der mathematischen

Logik?

Georg Kreisel

Erstens einmal liefert die Logik Gesetze fur ei-
nige (logische) Begriffe, die beinahe 1in der ge-
samten Mathematik und ithren Anwendungen
nitzlich sind; insbesondere fiir so vertraute Be-
griffe wie: Menge (aus dem letzten Jahrhun-
dert), logische Sprache (um die Jahrhundert-
wende), formale oder mechanische Regel (aus
diesem Jahrhundert). Jene Begriffe werden be-
niitzt, um ausgesprochen wesentliche Sachver-
halte prignant zu beschreiben, und sind in die-
ser Hinsicht dem der natiirlichen Zah! durchaus
vergleichbar; genauer: man braucht diesen Be-
griff mitsamt den (elementaren) Gesetzen der
Arithmetik, z. B. der Kommutativitit der Addi-
tion bei der Kontrolle von Rechnungen. Ahnli-
ches gilt fir die logischen Gesetze. Der Ver-
gleich geht tbrigens noch einen Schritt weiter.
Fir die breite Wissenschaft haben die elementa-
ren Teile der Logik und Arithmetik einen be-
deutend grosseren Grenznutzen als die «hdhe-
ren», d.h. als jene Eigenschaften von Mengen
und Zahlen, auf die sich die heutige hohere
Mengenlehre bzw. Zahlentheorie konzentriert.
(Oft macht es schon viel mehr aus, dass man
nicht vergisst iiberhaupt zu zihlen, und Ahnli-
ches gilt fiir die Logik im Gegensatz - so scheint
es mir — zur héheren Geometrie.} Auf einige
Ausnahmen kommen wir spdter zurick.

Zweitens bietet die ~ Entwicklung der - Logik
krasse Schulbeispiele einer wissenschaftlichen
Problematik. die uns aus anderen Teilen der
Wissenschaft wenig vertrautist; ganz besonders
wenig aus der Mathematik, die in der Auswahl
ihrer Begriffe und Fragestellungen, nicht: der
Beweise, sehr konservativ ist. Grob gesagt be-
trifft jene Problematik die Korrektur von
Zielen oder, nuancierter ausgedriickt, die 4b-
stimmung von Zielen auf vorhandene Methoden,
also: technische Méoglichkeiten. Im Falle der
Logik handelt es sich um die Korrektur ihrer
urspringlichen, grundlagentheoretischen Ziele.
Der folgende Vergleich wirkt auf den ersten
Blick skurril, stellt sich aber als héchst optimi-
stisch heraus. Ich denke an Astrologie und Al-

chemie, und zwar an ihre grobschlichtigen
Ziele, nicht an tiefsinnige oder gar tiefenpsy-
chologische Varianten; also: das Schicksal eines
Menschen vorauszusagen, bzw. Formen der
Materie in andere oder in Energie umzuwan-
deln. Diese allgemeinen Ziele sind m. E. durch-
aus iiberzeugend. Zweifelhaft sind dagegen dic
zusitzlichen spezifischen Annahmen, dass aus-
gerechnet astronomische Kenntnisse, bzw. jene,
die sich die Alchemisten mit minimalem Ener-
gicaufwand beschaffen konnten, fir die er-
wihnten Ziele geeignet sind. (Auch das spezifi-
sche Anliegen der Alchemisten, Blei ausgerech-
net in Gold umzuwandeln, tibersieht die heute
bekannten Schwankungen des Goldpreises und
allgemeiner das Gesetz von Angebot und Nach-
frage.) Die Korrektur bestand gar nicht so sehr
in einer radikalen Anderung des alltiglichen
Wissenschaftsbetriebes, sondern in der Entdek-
kung von fruchtbareren Zielen fiir die Kennt-
nisse, die sich die Astrologen und Alchemisten —
bei thren Bemiihungen um ihre urspriinglichen
Ziele - erworben hatten. Z. B.: nicht das Schick-
sal der Menschen, sondern die Bahnen von Pla-
neten aus astronomischen Daten zu berechnen;
nicht billiges Blei in teures Gold, sondern noch
billigere Tonerde in etwas weniger teures Meiss-
ner Porzellan durch Erhitzen zu verwandeln.
Nebenbeti sei bemerkt, dass es in der Astrologie
an jener Prdzision, die in den logischen Grund-
lagen als Allerweltsheilmittel angesehen wird,
nic mangelt: Es mangelte an vernlinftigen
Zielen fur jene Priazision. Dass der Vergleich
der Logik mit Astronomie und Alchemie opti-
mistisch ist, liegt darin, dass bei den beiden letz-
ten Uniernehmen die Korrekturen gelungen
sind.

Nach dem iiblichen Sprachgebrauch gehoren
solche Korrekturen durch verniinftige Akzent-
verschiebung zur Philosophie, und zwar zu den
philosophischen Fortschritten. In unserem Spe-
zialfall der mathematischen Logik handelt es
sich dazu noch um Philosophie im akademi-
schen Sinne, also um jene traditionellen Frage-
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stellungen der Schulphilosophie, die die mathe-
matische Logik urspriinglich prazisieren sollte
(was ihr tbrigens ausgezeichnet gelang). Man
denke hier an die Rolle der logischen Sprachen
im sogenannten Logizismus und der formalen
Regel im Formalismus, um nur die beiden best-
bekannten Schulen - besser Zweige — der logi-
schen Grundlagenforschung zu nennen. Den
Intuitionismus behandle ich hier deshalb nicht,
weil die breite Offentlichkeit zwar den Namen,
aber nicht seine wesentlichen Begriffe kennt.
Wieder, d. h. wie bei der Astrologie und Alche-
mie, stecken hinter jenen Zweigen der logischen
Grundlagen m. E. durchaus Giberzeugende all-
gemeine Ziele aus der sozusagen heroischen
Tradition der Philosophie der Mathematik, mit
Fragen folgender Art: Was ist Mathematik?
Oder: Was ist Beweis?

Oder im modernen, etwas dezenteren Jargon,
betr. I'architecture des mathématiques et nos
résonances intuitives. Uniiberzeugend ist dage-
gen der Anspruch, dass dafiir ausgerechnet die
logischen Aspekte der Mathematik und des ma-
thematischen Wissens ergiebig sind; natirlich,
in dem Sinn von «logisch», der in der logischen
Grundlagenforschung bentitzt wird.

Jeder Zweifel an der Relevanz der logischen
Aspekte fiir die heroischen Ziele bertihrt unver-
meidlich die Auswahl der Eigenschaften logi-
scher Begriffe, also, der Fragen betr. logische
Begriffe, die eine verntnftige Forschung be-
tont. - Warnung. Die populidre Literatur betont
noch immer jene Sitze, die fur die urspringli-
chen grundlagentheoretischen Ziele (tatsach-
lich) besonders relevant waren. Bei der Akzent-
verschiebung auf nilichternere Ziele muss man
darauf gefasst sein, dass jene (vertrauten) Sitze
zwar nicht widerlegt werden, aber ihre zentrale
Stellung verlieren. Manchmal werden sie fir die
neuen Ziele durch geschickte Umformulierung
relevant. Haufiger aber braucht man eine Ak-
zentverschicbung auf Hilfssdtze, die beim Be-
weis jener «Fundamental»siatze benutzt wur-
den. Dass diese «Konflikte» bei der Logik tat-
sachlich auftreten, werden Beispiele bald zei-
gen.

I. Logische Begriffe und ihre Eigenschaften

l. Mengen und die mengentheoretische Spra-
che, also mit Variablen fiir Mengen (aus einem
geeigneten Mengenvorrat), der e-Relation und
den ublichen logischen Partikeln.

(a) Vor 100 Jahren: von einer Entdeckung zu
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einer Doktrin. Uberraschenderweise hingen
viele mathematische Sitze, z. B. tiber Funktio-
nen, gar nicht von den fiir uns eindruckvollsten
Merkmalen der einschligigen Objekte (also von
thren sogenannten intensionalen Eigenschaf-
ten), sondern von viel groberen ab; bei Funk-
tionen: nicht von den Gesetzen, die vom Argu-
ment zum Wert fithren, sondern nur vom Gra-
phen. Etwas allgemeiner: in die Sdtze gehen nur
tberraschend wenige Aspekte der Objekte ein;
z.B. bei den rationalen Zahlen, manchmal nur
die Ordnung, oft nur die Korperoperationen,
selten die Darstellung als Briiche. Solche Sitze
konnen in der mengentheoretischen Sprache, u.
zw. m. B.a. die erwahnten Aspekte (Strukturen)
formuliert werden. Auf diese Entdeckung folgte
bald eine zweite; in vertrauten Teilen der Ma-
thematik, z. B. in der Arithmetik konnen die
Objekte und ihre Beziehungen auch — wie man
sagt: bis auf Isomorphie — mengentheoretisch
definiert werden, wobei sich jene Isomorphie
auf die relevanten Strukturen bezieht; z. B. 1st
bei den rationalen Zahlen (0,1) ordnungsiso-
morph zu jedem Intervall (a, b): a < b, aber nur
zu sich selbst, wenn auch die Korperoperatio-
nen beriicksichtigt werden.

Danach wurde aus diesen Entdeckungen betr.
grosse Tetle der (damaligen) Mathematik eine
Doktrin: alle «streng» mathematischen Sdtze
mussen in dieser mengentheoretischen Form
ausgedrickt werden. Dahinter steckte natiirlich
das Ziel, die Frage:

Was ist Mathematik? mit: Mengenlehre

zu beantworten. Es ist ziemlich klar, welche Ei-
genschaften von Mengen fiir dieses Ziel ge-
braucht werden: brave Lehrbiicher gehen auf
diese Dinge. meistens in Anhingen, ein.

{b) Heute: Ubertragungsprinzipien. Die Erfah-
rung hat gezeigt, dass, abgesehen von ganz we-
nigen Ausnahmen, die in {(a) betonten mengen-
theoretischen Definitionen der Strukturen
selbst nichts bringen; noch weniger hat man
davon, dass man sich iiber den nétigen Men-
genvorrat den Kopt zerbricht. — Flir Kenner:
die Ausnahmen betreffen z. B. gewisse gruppen-
theoretische Fragen, etwa ob diese oder jene
(tiberabzihlbare) abel’sche Gruppe frei ist. in-
teressant ist die Tatsache, dass man solchen
Fragen i.a. nicht ohne weiteres ansieht. ob sie
vom betrachteten Mengenvorrat abhdngen. —
Im Gegensatz zur sterilen Doktrin (a) ist folgen-
des ganz wesenthch:

Wenn ein Satz mengentheoretisch formuliert ist
- genauer: m.B.a. eine (passende) Strukturie-




rung der darin betrachteten Objekte —, dann gilt
er auch fiir jede isomorphe Struktur.

Damit wird das verpénte Raisonnieren mit
Analogien angemessen prazisiert und legiti-
miert, -~ Warnung. Dagegen liefert die Mengen-
lehre selbst keine Richtlinien fiir die Auswahl
passender Strukturierungen. Damit befasst sich
die tibliche axiomatische Mathematik (nicht zu
verwechseln mit der axiomatischen Mengen-
lehre). Ohne zu iibertreiben:

nicht: dass, sondern: welche Mengen betrachtet
werden, ist fiir den Erfolg der axiomatischen
Mathematik massgebend. — Abschweifung.
Will man diese heikle Frage der Auswahl (von
Mengen) vermeiden, so kommt man beinahe
zwangsldufig zu Cantors Taktik, alle oder zu-
mindest moglichst viele Mengen und gar keine
Strukturierung zu betrachten, kurz: Kardinal-
zahlarithmetik. Und die einfachste Art, hier et-
was Neues hineinzubringen ist, wieder, Cantors
Hauptanliegen: hohere Unendlichkeiten. Die
Ode dieser Fragestellung wird — bewusst oder
eher unbewusst —~ verschleiert durch Dramati-
sierung von Fragen betr. die Existenz solcher
Dinge; vgl. Churchills Meinung, die Wahrheit
briauchte eine Leibwache von Ligen.
Verstirkte Ubertragungsprinzipien. Man kann
sich gut vorstellen, dass sich Sitze, die in einem
Teil der mengentheoretischen Sprache formu-
liert werden, auf eine grossere Klasse von
Strukturen {als nur isomorphe) iibertragen las-
sen. — Besonders bewihrt hat sich die Sprache
der elementaren Logik, mit Variablen fir die
Elemente einer festen Menge. (Logisch sensible
Mathematiker mogen den Ausdruck «elemen-
tare Logik» nicht, weil ja die gesamte Mengen-
lehre in diesem Formalismus angeschrieben
wird). Was Ubertragungsméglichkeiten be-
trifft, gilt fiir Kenner das Stichwort: Ultrapro-
dukte.

(c) Konflikte zwischen den alten Zielen in (a)
und den neuen in (b) sind schon deshalb unver-
meidlich, weil in (a) heroische Fragen der Art:
Was ist (das Objekt) X? das Ding X von allen
anderen Dingen unterscheiden wollten. Dage-
gen werden in (b) Kenntnisse von X auf andere
Dinge iibertragen. Ahnliches gilt fiir den An-
spruch, dass die elementare logische Sprache
die Gesamtheit priziser Definitionsmdglichkei-
ten ausschopfe. Im Gegenteil: die (verstdrkten)
Ubertragungsprinzipien sind niitzlich, = weil
ganz prazis definierte, aber verschiedene (nicht-
isomorphe) Strukturen vorliegen, die sich nicht
elementar unterscheiden lassen!

Zusdtzliche Bemerkungen (fir Kenner). Auch
in der «hdheren» Logik waren Akzentverschie-
bungen notig, die (brigens recht oft hinter einer
neuen Terminologie versteckt sind. Z.B. sind
die Begriffe der verzweigten und konstruktiblen
Hierarchien von Poincaré/Russell bzw. Gédel
praktisch identisch (bis auf den Unterschied
zwischen den einfachen und kumulativen Ty-
pen, die in der Zwischenzeit eingefithrt worden
waren). Aber die relevanten Fragen sind grund-
verschieden. Fir Poincare/Russell, mit thren
pradikativistischen Anliegen, war es eine
Hauptfrage, wie «kompliziert» jene Verzwei-
gungen sein, also bis zu welcher Ordinalzahl sie
wiederholt werden diirfen. Fiir Godels Ziel ~
von relativen WF Beweisen ~ war das uber-
haupt kein Problem: so «kompliziert» wie mog-
lich (genauer: im jeweils betrachteten Mengen-
vorrat moglich). Und seither hat sich der
Schwerpunkt weiter verlegt: von seinen relati-
ven WE-Beweisen zu Ubertragungsprinzipien
der Art:

Welche Sitze liber die konstruktiblen Mengen
lassen sich auf die volle Hierarchie tibertragen?
Das ist deshalb nuitzlich, weil die konstruktiblen
Mengen strukturierter sind und z. B. raffinierte
induktive Beweise erlauben.

Manche drgern sich dariiber, dass die meisten
«Experimente» in der Mengenlehre, z.B. das
rein formal inspirierte System NF von Quine,
keine vergleichbar verniinftigen Ziele haben.
Ich denke dabei an die unverniinftigen Kunst-
stiicke, auf die sich die frithe Elektronik einge-
lassen hat. Die Firmen, die es taten, machten
Pleite (nachdem geschickte Spekulanten kurz-
fristige Gewinne eingesteckt hatten). Aber an-
dere lernten daraus, was man nicht tun sollte,
z.B. darin langfristig zu investieren. — Da wir
schon von Computern reden, komme ich aufs
nachste Thema.

2. Formale Regeln: die nichtnumerische Daten-
verarbeitung.

a) Wir behalten das Schema von §1 bei.

Wieder fing es mit einer Entdeckung, u.zw.
schon im letzten Jahrhundert, an. Boole und
Frege haben Kalkiile fiir die Aussagen- bzw.
Prddikatenlogik aufgestellt, Obrigens unter Ti-
teln, deren Ubertreibungen sich z. B. die heutige
kommerzielle Werbung kaum leisten konnte:
die Denkgesetze (Laws of thought), Grundge-
setze (der Arithmetik). Dabei stellen jene Kal-
kiile keineswegs die tatsichlichen Mdéglichkei-
ten des Denkens dar, sondern nur folgendes. Zu
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jedem giiltigen Satz der betrachteten logischen
Sprache gibt es auch eine Ableitung im ein-
schliagigen Kalkil. Kurz, das Denken wird als
schwarzer Kasten (auf englisch: black box) be-
handelt. — Beispiel. In der Aussagenlogik gilt
p+{—1)"p und wird verninftigerweise durch
Nachzihlen der Negationszeichen bewiesen;
aber dieses Nachzihlen ist kein Beweis im
Booleschen Kalkiil.

Bald wurde aus den Entdeckungen von Boole
und Frege eine Doktrin, die die Frage

Was ist (das Wesentliche am) Beweis?

zu erledigen behauptete, insbesondere im Zu-
sammenhang mit einem Hauptanliegen jener
Zeit, der Geschichte von der Sicherheit der Ma-
thematik oder der Strenge der Beweise (obwohl,
realistisch betrachtet, gerade bei der Mathema-
tik die Sicherheit meistens unsere kleinste Sorge
ist). Die Antwort war: Formalisierbarkeit (of-
fenbar, eine Verlegenheitslésung, da damit nur
die Moglichkeit einer Formalisierung gemeint
ist, obwohl — vorher und nachher — nichtforma-
lisierte Beweise durchaus iberzeugend waren
und bleiben). Natiirlich musste diese Antwort
durch spezifische formale Regeln ergéinzt wer-
den, etwa jene, die Frege konzipiert hatte und
Whitehead/Russell weiterfiihrten. — Abschwei-
fung (fiir Kenner) betr. eine besonders witzige
Wendung, die Hilbert jenem Projekt gegeben
hat. Entgegen einer weitverbreiteten Meinung
stand Hilberts Formalismus, insbesondere sein
Steckenpferd: die Methodenreinheit, keines-
wegs im Widerspruch zum Logizismus. Hilbert
wollte diesen verfeinern! statt sich mit einer
brutalen (globalen) Formalisierung in der Men-
genlehre zu begniigen, wollte er die einzelnen
Zweige der Mathematik (Geometrie, Arithme-
tik, finite Kombinatorik usw.) sozusagen ras-
sen-( = methoden)rein ziichten, z. B. sollten in
der Geometrie nur elementargeometrisch defi-
nierbare Mengen, insbesonders nur so defi-
nierte Dedekind’sche Schnitte beniitzt werden,
u. dgl. Wer. bewusst oder unbewusst, von He-
gels Warnung, alles hinge mit allem zusammen,
eingeschiichtert war, musste das Hilbert'sche
Programm der Methodenreinheit als Erlésung
empfunden haben: zumindest in der Mathema-
tik braucht man sich «prinzipiell» Uberhaupt
um nichts ausserhalb des jeweils betrachteten
Zweiges zu kiimmern.

In diesem Jahrhundert gerieten jene tibertriebe-
nen Anspriiche betr. Beweise, librigens ganz all-
mahlich, in den Hintergrund; besonders nach
den Gdodel’schen Sitzen. (Wie Godel selbst be-
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tonte, widerlegen seine Unvollstindigkeitssitze
prinzipiell die Méglichkeit des Hilbert’schen
Ideals der Methodenreinheit in der Arithmetik,
wihrend ihre Relevanz fir das Hilbert'sche
WE-Programm beschriinkt ist.) Innerhalb der
Logik ging man von der spezifischen Anwen-
dung formaler Regeln als Schlussregeln auf das
allgemeine Gebiet der mechanischen Verfahren,
vor allem der sogenannten Entscheidungsver-
fahren {iber. Dementsprechend dnderte sich die
Terminologie. Man horte immer weniger von
formaler Unvollstindigkeit (die Godel be-
tonte), und immer mehr von rekursiver Unent-
scheidbarkeit, aus der jene Unvollstindigkeit
leicht folgt.

Aber diese Akzentverschiebung - von Beweisre-
geln auf allgemeine mechanische Verfahren -
beseitigt noch nicht die philosophischen Zweifel
der schweigenden Mehrheit (erfahrener Mathe-
matiker). Zugegeben, der Begriff der rekursiven
Funktion trifft ausgezeichnet, was wir naiver-
weise unter einer prinzipiell mechanisch defi-
nierbaren Operation verstehen. Aber ist dieser
naive Begriff auch nur eine qualitativ verniinf-
tige Anndherung (auch «ldealisierung» ge-
nannt) in den Bereichen, in denen wir ithn nai-
verweise anwenden wollen? Aus der Informatik
ist einerseits bekannt, dass die Wachstumsord-
nung ganz wesentlich ist, aber auch, dass es —
jedenfalls fiir die heutige Physik ~ keineswegs
selbstverstindlich ist, dass jede verlissliche
hard ware (Analogcomputer im allgemeinen
Sinn) rekursive Gesetze erfillt. Innerhalb der
reinen Mathematik kann man die Zweifel an
der Bedeutung des Begriffes eines (mechani-
schen) Entscheidungsverfahrens sehr deutlich
anhand des 10. Hilbert’schen Problems tiber die
Losbarkeit diophantischer Gleichungen in gan-
zen Zahlen illustrieren.

Seit etwa 1930, genauer: seit der bekannten Ar-
beit von C. L. Siegel iber bindre diophantische
Gleichungen, hat sich die Fragestellung selbst
geandert; z. B. nicht: ob es berhaupt eine Lo-
sung gibt, sondern: unendlich viele. Besonders
viel Aufmerksamkeit wurde der «Struktur der
Losungsmenge» gewidmet, u. zw. vor allem bei
rationalen Losungen. Nach dem Satz von
Mordell/Weil weiss man, dass sich die Menge
als eine endlich erzeugte abel’sche Gruppe auf-
fassen ldsst, obwohl man 1. a. nicht weiss, ob sie
leer 1st.

So gesehen, war das Hilbert'sche 10.Problem
schon lange eskomptiert. Die rekursive Unlos-
barkeit, die Matyasevic 1970, also etwa 40




Jahre spiter, tatsidchlich beweisen konnte, rati-
fiziert die Einstellung der Zahlentheoretiker.
Der nidchste Abschnitt behandelt den heutigen
Stand der Dinge: vor allem die Rolle der forma-
len Regel fiir die Informatik, mit einem kurzen
Zusatz iiber thre Rolle in der reinen Mathema-
tik.

(b) Heute: Einsichten fiir den Programmierer.
Der Begrift der formalen Regel und seine einfa-
chen Eigenschaften liefern Hinweise zur Frage:
Was hat man davon, wenn man Rechenregeln
kennt und nicht nur die so definierte Funktion?
(Die Voraussetzung ist beim Programmieren
sowieso erfullt.) Offenbar ist die Frage beson-
ders dann ndtig, wenn man sich vorher in die in
(a) beschriebenen Ideale der mengentheoreti-
schen Darstellung von Funktionen durch deren
Graphen verbissen hat. — Warnung. Es geht um
Einsichten, nicht praktische Rezepte. Fir diese
wire der allgemeine Begriff der formalen Regel
viel zu grob, und zwar gréber als so manche in
der ublichen Mathematik. worauf wir noch zu-
riickkommen. - Statt von «Einsichten» zu re-
den, kénnte man auch sagen: es handelt sich
nicht um eine Theorie des Programmierens,
sondern um ein paar gesunde (geistige) Reflexe
fiir den Programmierer, die er sich, je nach Er-
fahrung, anhand von hiibschen allgemeinen
Sétzen oder einprigsamen Beispielen aneignen
kann.

(i) Anwendung formaler Regeln auf formale
Regeln, inklusive der - vielleicht aus tiefenpsy-
chologischen Griinden - etwas tiberbetonten
Selbstanwendung oder Selbstbeziiglichkeit.
Denn offenbar kann eine Regel - genauer: ihre
Kodierung - in einem Programm auch als Ar-
gument derselben oder einer andern Regel vor-
kommen. -

Sicher gibt es Ahnliches in der iblichen Mathe-
matik; z. B. definiert bet Halbgruppen das Ele-
ment a auch die Operation: br—ab. Aber, reali-
stisch betrachtet, 1st dieses Beispiel einfach bei
weitem nicht so eindrucksvoll wie die entspre-
chenden Sitze der Rekursionstheorie, also, der
Theorie der formalen Regeln. Tatsdchlich war
es ja der logisch versierte Mathematiker von
Neumann, der von Godels Arithmetisierung
(die schliesslich zu jenen Sdtzen der Rekursions-
theorie fiihrte) sehr beeindruckt war und als
erster die Anwendung von Regeln auf Regeln
in der Programmierung ausntitzte; vgl. den sehr
gescheiten Ingenieur Zuse, der {die Pradikaten-
logik, aber nicht die Rekursionstheorie kannte
und) diese Moglichkeit Gbersah.

(it) Das Operieren mit Regeln ohne Sorge um
den Definitionsbereich: Einsatz von wesentlich
partiellen Funktionen. (« Wesentlich» insofern,
als ja — verniinftig betrachtet — die meisten tibli-
chen Begriffe und Funktionen, z. B. der kleinste
gemeinsame Teiler, nur fir bestimmte Bereiche
definiert sind. Aber da der Definitionsbereich
«gut» bekannt ist, ist der partielle Charakter
unwesentlich.) Bei Programmen ist 1. a. die Re-
gel «besser» bekannt als ihr Definitionsbereich.
Im technischen Jargon: die Klasse der Pro-
gramme ist (primitiv) rekursiv, die Definitions-
bereiche sind i.a. nur rekursiv aufzdhlbar. (Es
versteht sich von selbst, dass es sich lohnen
kann, Kenntnisse des Definitionsbereiches aus-
zuniitzen. Es wiére hirnrissig zu verlangen, dass
alle Gleichungen fiir alle partiell definierten
Funktionen gelten missen! (fiir Kenner) z.B.
musste man n.0 = 0 durch 0.0 =0 und (n+1).
0 = n.0 in der rekursiven Definition der Multi-
plikation ersetzen.)

Auch hier gibt es Beispiele in der tblichen Ma-
thematik, z. B. bei der analytischen Fortsetzung
in der Funktionentheorie, wo die Regel, insbe-
sondere die Potenzreihenentwicklung in der
Nihe von z =0, bekannt ist, aber nicht der
volle Bereich der Funktion. Aber das ist alles
viel zu aufwendig, um die erwilinschte Einsicht
dem Gros der Programmierer klarzumachen.
(i1} Grenzen der Relevanz der in §1a erwithnten
Dirichlet’schen Entdeckung (der Irrelevanz von
Regeln, abgesehen vom Graphen, einer Opera-
tion). Man kann - mit beschrinkten Mitteln,
hier: mit Hilfe von formalen, d.h. mecham-
schen Programmen - mehr Funktionalglei-
chungen losen, wenn die Loésung vom Pro-
gramm und nicht nur vom Graphen der jeweili-
gen Funktionsvariablen abhdngen darf. Fol-
gendes Beispiel setzt nur die elementarsten
Kenntnisse der Rekursionstheorie voraus.

X und Y seten r. a, Mengen, bestimmt durch
primitiv rekursive Aufzihlungen. Gesucht wer-
denr.a X, und Y:

XnY,=Zund X, uY,=XuUY

Die Operation (X, Y)—(X,, Y,) ldsst sich ohne
weiteres mechanisch programmieren (und le-
fert Aufzahlungen von X, und Y,), aber nicht,
wenn dazu noch die mengentheoretische Aqui-
valenz erhalten bleiben soll, also wenn sowohl
Xund X', alsauch Y und Y' dieselben Elemente
haben, dies auch fiir X, und X", bzw. Y, und Y,
gilt.

Wieder liefert die tibliche Mathematik analoge
Beispiele, z. B. wenn - statt der Forderung einer
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mechanischen Losung - Stetigkeit m.B. a. eine
passende Topologie verlangt wird. Fir Kenner:
es handelt sich darum, die Daten anreichern
und damit das Problem auch unter zusdtzlichen
Forderungen an die Losung erledigen zu kon-
nen. — Ubungsaufgabe. Es gibt keine global ste-
tige Losung fiir x als Funktion von (a,,....,a,.,)
der Gleichung:

X e x4+ 4a,,,, = 0

fur die libliche Topologie des Korpers R; aber
doch, fiir die Anreicherung der reellen Zahlen
durch ihre oszillierenden Dezimalreihen und die
dafir angemessene Produkttopologie.
Zusammenfassend: die allgemeinen Einsichten
(1) - (11) werden am besten durch die (elemen-
tare) Theorie der formalen Regeln oder durch
Beispiele aus diesem Gebiet vermittelt.

Aber, wie z. B. die Aufgabe aus der reellen Alge-
bra in (ii1) zeigt, wird man Richtlinien fiir eine
ergiebige Anwendung jener Einsichten —in (11i):
der Anreicherung der Mengen X durch eine
Aufzihlung, bzw. der reellen Zahlen a durch
oszillierende Dezimalbriiche — im einschligigen
Zweig der Mathematik suchen.

(b’) Abschweifung zur heutigen Rolle des Be-
griffes der formalen Regel in der reinen Mathe-
matik. Wie schon erwéhnt, ist man davon abge-
kommen, (rekursive} Unentscheidbarkeit zu
betonen. Ohne zu dibertreiben: diese allge-
meine, auch «fundamental» genannte, Eigen-
schaft einer Klasse von Problemen lenkt von
heikleren, aber fruchtbareren Eigenschaften ab,
wie z. B. von der Auswahl der betrachteten Ob-
jekte und der sie betreffenden Fragen; man
denke an das Beispiel von den diophantischen
Gleichungen am Ende von 2 (a).

Ganz uberzeugend ist dagegen folgende Wen-
dung, die auf Higman zurickgeht, u. zw. in
seiner Arbeit 1960 zum Wortproblem fiir end-
lich prisentierte Gruppen. Er benutzt die Ge-
danken, die ein weniger genialer Mathematiker
nur zu emem einfacheren Beweis der Unent-
scheidbarkeit des Wortproblems fir solche
Gruppen gebraucht hiitte, um folgende Frage
zu prézisieren und zu beantworten:

Welche endlich erzeugten Gruppen kénnen in
einer endlich prasentierten eingebettet werden?
Genau jene, bei denen die Menge der Nullwér-
ter rekursiv aufzihlbar ist.

Ahnliches gilt fiir die (negative) Antwort auf
das 10. Hilbert'sche Problem:

Welche zahlentheoretischen Pridikate sind dio-
phantisch?
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Sobald diophantische Definitionen

X;... X[P(x.,....x,,n)=0] mit zumindest 9
Variablen (p = 9) in Frage kommen, so sind alle
r. a. Priadikate diophantisch definierbar. - Dies
1st wohl die interessanteste bekannte Eigen-
schaft der Klasse aller diophantischen Defini-
tionen. Letzten Endes ist dies wohl auch das
Beste, was man heute zu einer weiteren nattirhi-
chen Frage sagen kann.
Wodurch sind die Addition und Multiplikation
der natiirlichen Zahlen ausgezeichnet?
Offenbar beruht die Niitzlichkeit der Antwor-
ten (und damit der Fragen) darauf, dass wir uns
leicht mit dem Begriff der rekursiv aufzihlba-
ren Mengen, insbesondere mit ihren Abge-
schlossenheitseigenschaften vertraut machen.
Und dies hiangt wieder damit zusammen, dass
uns unser naiver Begriff des mechanischen Ver-
fahrens vertraut ist, selbst wenn er — wie in (a)
betont wurde — fiir die geplanten wissenschaftli-
chen Anwendungen nicht besonders geeignet
1st.
Bemerkung. Es ist beinahe peinlich, sozusagen
im selben Atemzug von Niitzlichkeit in der rei-
nen Mathematik, wie im letzten Absatz, und in
der Informatik, wie in (b), zu sprechen. Denn
mehr oder weniger verniinftige Menschen ge-
ben mm Jahr dber 250 Millarden Schweizer
Franken aus, um ihre Bedirfnisse mit Hilfe der
numerischen und nichtnumerischen Datenver-
arbeitung zu decken. Aber als «chemisch rei-
nes» Paradigma verschiedener Probleme, die in
der alltiglichen Programmierung auftreten, st
die reine Mathematik oft recht leistungsfihig.
{c) Was nun Konflikte betrifft, so besteht iiber-
haupt keiner zwischen den «Einsichten» in
§2(b) und den Ubertragungsprinzipien in §1(b);
und kein formaler Konflikt mit den mengen-
theoretischen Grundlagen. Denn z. B. oszillie-
rende Dezimalbriiche kénnen ohne weiteres als
Mengen und partielle Funktionen als Paare von
Mengen aufgefasst werden (wobel das erste
Glied des Paares der Graph der Funktion und
das zweite der intendierte Defimitionsbereich
ist). Aber man hat hier nichts von der mengen-
theoretischen Sprache: sie liefert hier genauso-
wenig Richtlinien fiir die richtige Auswahl wie
nach §la — fir die axiomatische Mathematik.
Da leistet sogar die elementare Theorie forma-
ler Regeln, d. h. der rekursiven Funktionen, be-
deutend mehr.
Dagegen besteht ein markanter Konflikt zwi-
schen den Eigenschaften von formalen Regeln,
die fiir eine verntnftige Informatik, und jenen,
die fur die urspringlichen grundlagentheoreti-




schen Ziele in §2a - also betr. {Beweise und)
prizise Verfahren - relevant sind. Vor allem
beschiftigt sich die grundlagentheoretische Li-
teratur mit jener Stabilitdt, die zeigen soll, dass
wir tiberhaupt einen deutlichen Begriff der for-
malen Regel haben; genauer: dass die uns als
definicrende  Eigenschaften einleuchtenden
«Definitionen» tatsdchlich dquivalent sind.
(Kenner werden hier unterscheiden zwischen
der groben Aquivalenz fir die Klasse der for-
mal definierten Operationen und der feineren
Aquivalenz zwischen den Regeln selbst.) Da-
nach kommt die Kernfrage, ob dieser (deutl-
che) Begriff tatsichlich auf die geistigen Fihig-
keiten des sogenannten idealisierten Mathema-
tikers passt. Am bekanntesten sind da die Uber-
legungen Turings und die Einwinde Godels,
namlich, dass Turing die Wachstumsmaoglich-
keiten des Intellekts oder Gehirns — auf den
Unterschied kommt es hier nicht an - iiberse-
hen hitte (ohne dass Godel je spezifische
Wachstumsgesetze vorschlug).

Fine vernunftige Informatik schert sich i.a.
tiberhaupt nicht darum, ob Computer - etwa in
der Mathematik - prinzipiell alles machen kon-
nen, was der Mensch kann. Im Gegenteil: Com-
puter sollen gut und billig leisten, was die Men-
schen nur schlecht oder teuer machen. Und da
ist es ganz am Platz, nur das Ergebnis, nicht den
(Denk-) Prozess zu beriicksichtigen, also diesen
als schwarzen Kasten zu betrachten. Die oben
erwihnte Stabilitit spielt in der Informatik eine
recht bescheidene Rolle. Denn, wenn wir mit
verschiedenen «Begriffen», also zwel Program-
miersprachen verschiedener Ausdrucksfihig-
keit, zu tun haben und eine Operation in beiden
definierbar ist, so fragt man, welche besser
funktioniert. Jene Stabilitdt bedeutet nur, dass
wir diese Frage prinzipiell fir alle - stillschwei-
gend: rekursiven — Funktionen stellen konnen.
Wie schon in §2 (a) angedeutet wurde, hat die
heroische Frage nach den - vom idealisierten
Mathematiker — verldsslich ausfithrbaren Re-
geln ein Analogon in der Informatik, u.zw. fir
«Analogrrechner, also idealisierte physikali-
sche Systeme, die den bekannten Gesetzen der
heutigen theoretischen Physik, etwa der Mecha-
nik gehorchen. Es ist gar nicht selbstverstind-
lich, dass das Verhalten solcher Systeme (kurz:
hard ware) immer rekursiv ist, d.h. von einem
Digitalrechner simuliert werden kann. Noch
skeptischer wird man - gegeniiber der hero-
ischen Frage - wenn man bedenkt, dass selbst in
den Fillen eines rekursiven Verhaltens oft ganz

spezifische Eigenschaften der physikalischen
Gesetze 1n den Beweis eingehen. Bei dem heuti-
gen Stand unserer Kenntnisse der geistigen Fi-
higkeiten des Menschen kann man bestenfalls
hoffen zu zeigen, dass so plumpe «lIdealisierun-
gen» wie die der formalen Regel nicht stimmen.
Es wird dem Leser nicht entgangen sein, dass
die eben erwihnte Problematik die in §2(b") be-
schriebenen Anwendungen des Begriffs der for-
malen Regel in der reinen Mathematik Uber-
haupt nicht berthrt.

Soziologische Vermutungen. Ich habe schon
lange den Eindruck, dass die Entdeckung der
logischen Kalkiile fiir die Entwicklung der me-
chanischen, nicht-numerischen Datenverarbei-
tung ganz wesentlich war; vor allem dadurch,
dass sie das Vertrauen zur Méglichkeit einer
solchen Mechanisierung ungeheuer bestarkte;
u.zw. bedeutend mehr als etwa die algebrai-
schen, also auch nichtnumerischen Kalkiile.
Aber ich wiisste nicht, wie dieser Eindruck do-
kumentiert werden konnte. Wenn er aber
stimmt, so diirfte jenes Vertrauen mit einem
Wortspiel zusammenhédngen!

Denn schon die Aussagenlogik kann imponie-
ren, wenn man sie als Lehre oder «Theoric»
beliebiger Aussagen betrachtet. Man vergisst
eben, wie wenig diese Theorie tber Aussagen
aussagt. Wenn nun - so ginge das Wortspiel -
diese allgemeine Theorie mechanisiert werden
kann, dann doch sicher jede Theorie von spezi-
fischen Aussagen, z. B. die Arithmetik.

So — und vielleicht nur so - wird die lustige
historische Tatsache verstindlich, dass (vor 100
Jahren) Freges Formalisierung der elementaren
Logik einerseits und (vor 50 Jahren) Godels
Entdeckung der Nichtformalisierbarkeit der
Arithmetik andererseits beide als eine Art Wun-
der angeschen wurden. — Es ist also kein Wun-
der, dass Mathematiker, die sich mit endlichen
Gruppen oder Korpern abplagen, — bewusst
oder unbewusst — die Logik um ihre populdren
Erfolge beneiden.

H. Zum Prozess der Korrektur von Zielen

Bis jetzt ging es nur um das Ergebnis einiger
solcher Korrekturen. Aus meiner eigenen Er-
fahrung kann ich aber auch tber die Etappen
zumindest einer Korrektur berichten, die mich
vor genau 40 Jahren zu beschiftigen anfing: sie
fithrte von einer Kritik des (Hilbert’schen) WF-
Programms schliesslich zu einer erfolgreichen
Programmiertechnik.
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1. Vorgeschichte

Bekanntlich haben sich schon Russell und
Brouwer tiber den Anspruch lustig gemacht, die
WF wire eine hinreichende Bedingung fiir die
Brauchbarkeit von (formalen) Regeln. Diese
Kritik war unbefriedigend, weil sie tiberhaupt
nichts Positives betr. die WF aussagte. Viel we-
niger bekannt ist die nuanciertere Kritik von
Godel und Gentzen: die WF garantiert zwar -
stillschweigend: fiir die Gblichen Systeme - die
Gilugkeit von bewiesenen Allsdtzen, aber nicht
einmal von reinen Existenzsdtzen. Dabei bezog
sich die sogenannte konstruktivistische Proble-
matik, die durch WF-Beweise erledigt werden
sollte, vor allem auf brenzlige Existenzsitze und
andere logisch komplizierte Aussagen. Aber
auch diese Kritik fihrte nicht weiter. Einerseits
ist die erwihnte « Rechtfertigung» der WF - als
Brauchbarkeitskriterium - im Fall von Allsit-
zen sowieso der Gnadenschuss aufs Hil-
bert’sche Programm, das ja den Begrift der Giil-
tigkeit tiberhaupt vermeiden und durch die WF
ersetzen wollte. Andererseits hatte weder Godel
noch Gentzen einen konkreten Vorschlag fiir
eine Bedingung, die der WF vorzuziehen wiire.
Herr Bernays hat im Grundlagenbuch ¢in Ko-
rollar zu einem gewissen WF-Beweis, u.zw. fiir
die elementare Logik, in den sogenannten &-
Theoremen formuliert und ihre Bedeutung fiir
Beweise von reinen Existenzsitzen betont. Aber
er hat es unterlassen, die Schwichen des WF-
Programmes zu unterstreichen. Es lag also
(noch) kein klarer Grund vor, den Schwerpunkt
von der WE weg auf jene Korollare — genauer:
passende Varianten davon — zu verschieben. Im
Gegenteil: naiverweise sah man weiterhin das
Hauptproblem (der Beweistheorie) darin, die
WF auch fir die Zahlentheorie und andere
«stirkere» Systeme (als die elementare Logik)
mit beschrinkten metamathematischen Mitteln
zu zeigen, und nicht in einem besseren Ver-
stindnis der Bedeutung des WF-Beweises fiir
die elementare Logik und in (jener Bedeutung)
angemessenen Verscharfungen.

2. Mathematische Anwendungen

Schon in den 40er Jahren stellte es sich - entge-
gen einer weitverbreiteten Meinung -~ heraus,
dass grosse Teile der Mathematik. u. zw. solche,
in denen brenzlige Existenzbeweise vorkom-
men, recht elementar formalisiert werden konn-
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ten. Genauer: in der elementaren Logik, vor-
ausgesetzt, dass gewisse gliltige Allsitze als zu-
satzliche Pramissen benutzt werden. Dies war
deshalb wichtig, weil dabei —~ wie schon damals
betont wurde - derselbe Algorithmus fir Exi-
stenzsitze herauskam: im Jargon jener Zeit: die
Klasse der beweisbar rekursiven Funktionen
blieb gleich.

Kurz, Beweise von Allsitzen, die fiirs WF-Pro-
gramm die zentrale Rolle spiclen, werden hier
einfach total ignoriert.

Diese neuen Einsichten fihrten bald zu prakt-
schen Anwendungen der in §1 erwihnten ¢-
Theoreme, z.B. zu Schranken fir Artins L&-
sung des 17. Hilbert'schen Problems (betr. Qua-
dratsummen) und zu einer (negativen) Antwort
auf Littlewoods heiklere Frage, ob die von Ske-
wes benttzte Modifikation des urspriinglichen
Beweises betr. Vorzeichenwechsel von n(x)-
l(x) wirklich notig war.

Die erwithnten Einsichten haben auch noch in
Jingster Zeit neue Anwendungen gefunden,
z.B. um dem einschldgigen Bewets von Jacquet
und Shalika aus den 70er Jahren Schranken fir
[L.(1)] abzulesen; iibrigens nachdem Landaus
Beweis von L(1, y). der eine ahnliche logische
Struktur besitzt (und schon iiber 70 Jahre alt
ist), prapariert und «ausgefaltet» worden war.
Dabei wurde klar, dass mathematisch triviale
Anderungen in den urspriinglichen nicht-kon-
struktiven Beweisen sowohl den Prozess als
auch das Endergebnis jenes Ausfaltens be-
trachtlich beeinflussen kénnen; im Einklang
mit der Erfahrung in diesen Dingen in der bli-
chen mathematischen Praxis.

So gesehen, liefert hier die Logik auch Begrifte,
insbesondere (logische) Komplexitits«masse»,
die es gestatten, manches aus der Trickkiste der
Praxis zu mterpretieren und damit thre Erfolge
zu erkliren — abgesehen von Losungen alter
Fragen tiber effektive Schranken.

Warnung. Die Nitzlichkeit des ganzen Projekts
(des Ausfaltens) ist in der Mathematik durch
zwel Umstdnde eingeschrankt. Erstens einmal
ist der ausgefaltete Beweis oft unergiebig, z. B.
wenn die Schranken zu gross oder sonstwie un-
handlich sind: in solchen Fillen ist dann eben
das Ziel ~ oder: konstruktivistische Ideal - des
Ausfaltens widerlegt. Fiir einen weiteren Fort-
schritt braucht man neue Fragen wie, z. B, am
Ende von 1 §2a iber die «Struktur» der Lo-
sungsmenge diophantischer Gleichungen. Bei
der Auswahl solcher neuer Fragen hat die Lo-
gik jedenfalls bis jetzt nicht wesentlich geholfen.




Der zweite Umstand, der den Wert einer logi-
schen Theorie beeintrichtigt, ist ganz trivial,
aber praktisch doch wichtig: begabte Mathe-
matiker brauchen hier, ebensowenig wie in an-
deren Gebieten, die Kriicken einer Theorie des
Ausfaltens, meistens genligen ein paar gesunde
geistige Reflexe. Aber gerade deshalb ist es be-
merkenswert, dass jetzt schon uber 30 Jahre
lang immer wieder Ausnahmen vorkommen,
bei denen erst versierte Logiker die «blinden
Punkte» der Experten wegriumen konnten.

3. Informatik

Hier wird das Ausfalten relevant, wenn der un-
ausgefaltete Bewels als Programm in einer ho-
heren Programmiersprache und der ausgefal-
tete als computerfreundliches Programm aufge-
fasst werden, d. h., das Ausfalten wird fiir ein in
der Informatik vertrautes und bewihrtes Ziel
verwendet: das Neue liegt darin, dass Erfahrun-
gen aus der «hdéheren» Beweistheorie beniitzt
werden. Hier fallen die beiden Einschrinkun-
gen, in der Warnung im letzten Absatz, weg.
Die erste sowieso, da es auf den ausgefalteten
Beweis ankommt; die zweite, wenn immer hin-
reichend viele Einzelfille in der Praxis vorkom-
men: denn dann ist es eine Leistung, das Ausfal-
ten mechanisiert zu haben. selbst wenn jeder
Einzelfall fiir einen Mathematiker trivial ist.
Schon bei oberflachlicher Betrachtung dieses
neuen Projekts (Mitte der 70er Jahre) ergaben
sich Konflikte zwischen den Eigenschaften von
Beweisumformungen, die fiir das Ausfalten ei-
nerseits und seinem Analogen in den Grundla-
gen, dem sogenannten Normalisieren (das zu
kanonischen Beweisen fithren soll), andererseits
wichtig sind. Z.B. wird man beim Ausfalten
geschickte von ungeschickten Umformungen
trennen, wobel die «Geschicklichkeit» vor al-
lem zu einem besseren, d.h. leistungstahigeren
Endergebnis fiihren soll. Dies steht im Gegen-
satz zum Ideal eines kanonischen Beweises, das
bei allen Umformungsprozessen dasselbe End-
ergebnis fordert. Dieses 1deal legt Wert darauf,
dass jeder giiltige Beweis eine kanonische Form
besitzt, wihrend man in der Informatik von
einem geschickten Programmierer erwartet,
dass er — se1 es nach formalen Kriterien, sei es
mit Fingerspitzengeliithl — solche Beweise aus-
wahlt, bel denen sich das Ausfalten tiberhaupt
und dann eine passende Methode lohnt.

Zum Erfolg dieser allgemeinen Betrachtung
braucht man aber vor allem praktisch wichtige

Probleme, deren Entdeckung eine noch viel hes-
klere Aufgabe stellt. C. A. Goad hat sie gelost. -
Fiir Kenner: das Programm in der hoheren Pro-
grammiersprache bleibt gleich, wihrend die
ausgefalteten Programme Eigentumlichkeiten
der eingegebenen Daten, z. B. Redundanzen,
ausnutzen.

Zusiatzliche Bemerkungen. (a) Die Unterdruk-
kung aller (Teil-)Beweise von reinen Allsdtzen
und anderen Sdtzen ohne algorithmischen «Ge-
halt» —, die schon in §2 betont wurde, hat auch
hier eine Schlisselsteliung. Sonst wiren niam-
lich formalisierte (unausgefaltete) Beweise in
der «hdheren» Programmiersprache zu auf-
wendig, um tberhaupt verldsslich zu sein, und
das Ausfalten selbst viel zu lang. (b) Ein gesun-
der Skeptizismus gegeniiber der sogenannten
Komplexititstheorie war Voraussetzung fir
den Erfolg des Projektes. Denn bekanntlich
sind - nach den in dieser Theorie ublichen Mas-
sen — alle in der Beweistheorie tiblichen Umfor-
mungen praktisch unerschwinglich. Stillschwei-
gend wird aber bei jeder dieser Methoden ange-
nommen, dass man sich fuir alle Beweise in einer
aus der Logik vertrauten Klasse interessiert.
Eine verninftige Informatik hat diese Frage-
stellung schon lange eskomptiert; vgl. hier die
Einstellung der Zahlentheoretiker zu diophan-
tischen Gleichungen (obwohl, bis jetzt, die Aus-
wahl von Problemen in der Informatik wohl
nicht so geistreich ist wie Siegels in der Zahlen-
theorie). Ubrigens gibt es meines Wissens kein
Beispiel, wo besonders griindliche Untersu-
chungen jener vertrauten, beweisbarerweise
nutzlosen Klassen beir der Auswahl von ver-
nunftigen Problemklassen geholfen hatten.
Kurz, die Komplexititstheorie dient — wie es in
Osterreich heisst — der Arbeitsplatzbeschaffung
in der theoretischen Informatik; sonst wire sie
ein gutes Beispiel fur Wittgensteins Warnung
vor dem unheilvollen Einbruch der Logik in die
Mathematik; genauer, ihr Teilgebict: die theo-
retische Informatik. - Die folgenden Bemer-
kungen sind Warnungen vor Missverstandnis-
sen. (¢) Die hier betrachtete Umformung oder
Manipulation von Beweisen, d.h. Program-
men, ist grundverschieden von den viel bekann-
teren Projekten des automatischen Beweisens
oder der mechanischen Synthese von Program-
men. Bei diesen sensationsliisternen Unterneh-
men ist der Ausgangspunkt eine Formel, z.B.
eine Vermutung, die automatisch bewiesen oder
widerlegt, oder ein Problem, fiir welches eine
Losung automatisch programmiert werden soll.
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In beiden Fillen handelt es sich um typisch
«schopferische» Leistungen, die die Menschen
verhdltnismdssig billig und gern liefern (inklu-
sive «schopferischen» Zielen, die sich nicht be-
wihren). Das Ausfalten von Beweisen und die -
hier gemeinte — Umformung von Programmen
sind langweilige Prozeduren, die die (meisten)
Menschen nur ungern und (daher) unverliss-
lich ausfithren. NB. Ubrigens hiingen jene Pro-
jekte, die traditionelle Beweistheorie fiirs auto-
matische Beweisen zu verwenden, mit dem
Aberglauben zusammen, dass uns diese Theorie
helfe, Beweise zu finden oder zu kontrollieren.
Tatsichlich aber ist thr Hauptziel, sogenannte
abstrakte in elementare Beweise umzuformen,
um jene zu rechtfertigen. In der Informatik wer-
den die dafiir entwickelten Methoden ~ modifi-
ziert und - verwendet, um Programme in hohe-
ren Programmiersprachen zu «straight code»
umzuformen und damit dem Computer vorzu-
kauen. (d) Schliesslich sei daran erinnert, dass
die in I §1 (b) erwidhnte axiomatische Methode
der Zergliederung von Beweisen mit Hilfe von
Grundstrukturen in ganz offenbarer Weise als
Modell fiir eine Programmiersprache mit ent-
sprechenden Grundzeichen angesehen werden
kann; nur braucht die alltdgliche Informatik
eher Bdume, Listen und dgl. als die spezifischen
Grundstrukturen im engeren Sinne von Bour-
baki, wie Gruppen, Korper usw. Dabel ist die
Maoglichkeit, Baume usw. mengentheoretisch
zu definieren, fiir die Informatik le cte le moins
intéressant, genauso wie im Fall der axiomati-
schen Mathematik. ~ Aber auch jener, in der
heutigen axiomatischen Mathematik verponte
Stil, moglichst viel in Beweisen physikalisch zu
interpretieren (z. B. Definitionen als Energiein-
tegrale, Hilfsitze als Erhaltungssitze), kann fur
die Informatik niitzlich sein; u.zw. wenn Ana-
logrechner eingesetzt werden sollen. Hier sind
«Analogrechner» im allgemeinen Sinn gemeint:
komplizierte Teilrechnungen werden mit Hilfe
eines geeignet priparierten, sozusagen pro-
grammierten physikalischen Systems erledigt,
dessen Verhalten — gemdss einer verlasslichen
Theorie ~ eben jenen Rechnungen entspricht.
(Wie schon in I §2 (¢) erwdhnt wurde, braucht
das System kein Digitalrechner zu sein und
kann vielleicht gar nicht von einem solchen si-
muliert werden.) - Kurz, es wird nicht behaup-
tet, dass die hdohere Beweistheorie, wie sie hier
verwendet wird, der einzige Teil der hoheren
Mathematik sei, der fir die Informatik niitzlich
1st!
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[ Von den Grundlagen zur Technologie

Gemeint sind in diesem Titel die traditionellen
logischen Grundlagen, den die eben beschrie-
bene Entwicklung einer Programmiertechnik
nahelegt. Aber auch unabhingig von diesem
spezifischen Erfolg scheint er mir aus folgen-
dem Grund plausibel: wie sich auch die Auffas-
sungen von den Grundlagen unterscheiden mo-
gen, stammen die traditionellen Grundlagen-
fragen, etwa der alten Griechen, aus einer Zeit
sehr beschrinkter wissenschaftlicher Erfah-
rung. Sicher sind sie nicht leer. Also ist anzu-
nehmen, dass sie fiir jene beschrinkte Erfah-
rung mehr oder weniger angemessen sind; aber
auch, dass das Griibeln iber eine so be-
schriankte Erfahrung sehr bald den Punkt vom
abnehmenden Ertrag erreicht. Dagegen konnen
jene Fragen - oder genauer: die Vorstellungen
hinter thnen — wieder aktuell werden, wenn uns
die Technik neue Erfahrungen, insbesondere
neue Dinge verschafft, auf die die alten Vorstel-
lungen qualitativ passen. Im Falle der clektro-
nischen Grossrechner handelt es sich um die
alte Vorstellung eines mechanischen Verfah-
rens. Hier sei nochmals betont, dass dies zwar
auf die elektronischen Rechner zutrifft, aber es
offenbleibt, ob die Mechanik der heutigen theo-
retischen Physik in diesem (alten) Sinn mecha-
nisch 1st! vgl, die Bemerkung in Il zu Analog-
rechnern.

Es mag unhoflich klingen, wenn wir den tradi-
tionellen Grundlagen nachsagen, sie kiilmmern
sich nur darum, wie sich der kleine Mornitz die
Dinge und das Denken vorstellt.

Mancher Philosoph - zumindest einer, der den
Vorstellungen des kleinen Moritz entspricht --
wird sich beleidigt flihlen. Aber gewiss nicht
jene, wie Aristoteles, Leibniz, Hume usw., die
sich in die Politik einmischen oder Geschifte
machen (wollen). Denn si¢ wissen sehr gut, dass
es viel mehr kleine Moritzchen gibt als reife,
also, dass thnen eine breite Popularitdt bzw. ein
grosser Markt sicher ist.

Andererseits wire es m. E. verfehlt, in staunen-
der Ehrfurcht vor den Erfolgen der primitiven
Vorstellungen (des kleinen Moritz) aufzugehen,
wie lberhaupt vor den erfolgreichen Anwen-
dungen der Mathematik. Denn dabei Gibersicht
man nicht nur die vielen vergessenen Misser-
folge, sondern vor allem die Phantasie und an-
dere geistige Leistungen, die noétig sind, um
fruchtbare Anwendungsgebiete auszuschniif-
feln; Leistungen, die zumindest im Fall der Lo-




gik anspruchsvoller sind als die urspringlichen
mathematischen Entdeckungen. Dieser Aspekt
der Forschung und, allgemeiner, des wissen-
schaftlichen Fortschritts scheint mir in den be-
kannten Schlagworten vernachlissigt zu sein,
wie z. B. in den Geschichten von These - Anti-
these — Synthese, Verifizieren, Falsifizieren, Pa-
radigmenwechsel (besser: Abwechslung bei
Langeweile).

Die Korrektur von Zielen und, insbesondere,
der Schritt von den Grundlagen zur Technolo-
gie sind manchmal entscheidender.

IV Abschliessende Bemerkungen

Fiir manche Leser diirfte es eine dankbare Auf-
gabe sein, zwei Fragen, die hier nur kurz be-
rihrt wurden, niher zu betrachten.

. Heroische Fragen aus der Philosophie der
Mathematik. Die logischen Grundlagen bie-
ten hier nicht nur wenig, sondern bedeutend
weniger als die Entwicklung innerhalb der
Mathematik. Z. B. liefert m. E. die axiomati-
sche Mathematik, mit ihrer Zergliederung
von Beweisen in ein tiberschaubares Gefiige
einpriigsamer Hilfssdtze tiber einige wenige
Grundstrukturen, einfach Wesentlicheres
tiber die tatsichlichen Beweismoglichkeiten
als die logischen Sitzchen tber Giiltigkeit,
Vollstindigkeit, Unvollstandigkeit u.dgl
(obwohl natiirlich niemand bezweifelt, dass
uberzeugende Beweise u.a. auch giiltig sein
sollen!). Diese Situation ist — fiir die Mathe-
matiker, bewusst oder unbewusst ~ ausge-
sprochen peinlich. Denn die logischen Be-
griffe und Sédtzchen sind durchaus mathema-
tisch sauber und unmittelbar verstindlich,
wihrend die mathematische Axiomatik ihre
Auswahl der Grundstrukturen (und dann
die fiir die Zergliederung eines Beweises an-
gemessene Auswahl spezifischer Grund-
strukturen) nur durch den «Erfolg» oder be-
stenfalls durch ein paar, meist grunzende
Hinweise auf die mathematische «Erfah-
rung» vermitteln Kann. Es scheint mir ganz
nattirlich, dass diese Sprachlosigkeit der Ma-
thematiker, was ihre eigenen (wesentlichen)
Beitrige betrifft, zu einer vollig verkehrten
Kritik der mathematischen Logik gefithrt
hat. Ein Beispiel: Bekanntlich kiitmmert sich
die Logik wenig um die Begriffe, die wir der
geometrischen Anschauung, etwa des Konti-
nuums verdanken. Daraus wird dann -~ ganz
gedankenlos - geschlossen, dass das Ubel in

der diskret-kombinatorischen Natur der Lo-
gik Hege. Aber diec Logik kimmert sich auch
nicht um die Auswahl angemessener diskret-
kombinatorischer Grundstrukturen!

Zu beachten: auch fiir die heroischen Fragen
in der Naturphilosophie wie ¢twa: Was 1st
(der Aufbau der) Materie? haben die Ent-
wicklungen innerhalb der Naturwissenschaft
viel mehr geleistet als logische Untersuchun-
gen, d.h. als die Vorstellungen des kleinen
Moritz. Hier wire das Analogon zum logi-
schen Ideal, mit der Giiltigkeit etwa von Be-
weisen, anzufangen und dann, schrittweise,
auf tatsdachlich {iberzeugende einzuschrin-
ken, dies: die Gesamtheit aller moglichen
Welten zu analysieren und dann, schritt-
weise, zur tatsidchlichen Welt und ihren Ge-
setzen zu kommen. So ging es nicht... Es ist
geradezu grotesk, wie selbstgefdllig die Logi-
ker dber alle moglichen Welten reden, wo
doch die Haupterfolge der Physik darin be-
stehen, unsere Welt und ihre Besonderheiten
zu verstehen.

2. Zum Prozess der Korrektur von Zielen
wurde in Teil H nur ein einziges Beispiel,
sozusagen eine Anekdote, angefiihrt. Aber
es scheint mir der Miihe wert, auch ein paar
anderen Beispielen nachzugehen. Denn ei-
nerseits ist zumindest die logische Forschung
in den letzten 50 Jahren noch durchaus iber-
schaubar; z. B. sind Misserfolge noch nicht
vergessen. Andererseits dringen sich, schon
in diesem Gebiet, Fragen von allgemeinem
Interesse auf: Welche Rolle spielt die Pla-
nung, sozusagen die kiinstliche Ziichtung,
die durch Schlagworte andere zur Mitarbeit
anzog? Welche Rolle spielte die sogenannte
wissenschaftliche Freiheit, sozusagen ver-
schwenderisch eine Fiille von Varianten zu
produzieren und fiir sie zu werben, bei wel-
chen dann durch natiirliche Auslese die an-
gemessenen von den Fehlentwicklungen un-
terschieden wurden. Gerade deshalb, weil
diese (soziologischen) Fragen die Weltge-
schichte kaum bertihren, also weil nicht gar
zu viele Querverbindungen bestehen, kénnte
man hoffen, hier eine vielleicht bescheidene,
aber zumindest verldssliche Einsicht in den
Wissenschaftsbetrieb zu gewinnen.
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