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Was hat die Wissenschaft von der mathematischen
Logik?
Georg Kreisel

Erstens einmal liefert die Logik Gesetze für
einige (logische) Begriffe, die beinahe in der
gesamten Mathematik und ihren Anwendungen
nützlich sind; insbesondere für so vertraute
Begriffe wie: Menge (aus dem letzten Jahrhundert),

logische Sprache (um die Jahrhundertwende),

formale oder mechanische Regel (aus
diesem Jahrhundert). Jene Begriffe werden
benützt, um ausgesprochen wesentliche Sachverhalte

prägnant zu beschreiben, und sind in dieser

Hinsicht dem der natürlichen Zahl durchaus
vergleichbar; genauer: man braucht diesen
Begriff mitsamt den (elementaren) Gesetzen der
Arithmetik, z. B. der Kommutativität der Addition

bei der Kontrolle von Rechnungen. Ahnliches

gilt für die logischen Gesetze. Der
Vergleich geht übrigens noch einen Schritt weiter.
Eür die breite Wissenschaft haben die elementaren

Teile der Logik und Arithmetik einen
bedeutend grösseren Grenznutzen als die «höheren»,

d.h. als jene Eigenschaften von Mengen
und Zahlen, auf die sich die heutige höhere
Mengenlehre bzw. Zahlentheorie konzentriert.
(Oft macht es schon viel mehr aus, dass man
nicht vergisst überhaupt zu zählen, und Ähnliches

gilt für die Logik im Gegensatz» so scheint
es mir - zur höheren Geometrie.) Auf einige
Ausnahmen kommen wir später zurück.
Zweitens bietet die - Entwicklung der — Logik
krasse Schulbeispiele einer wissenschaftlichen
Problematik, die uns aus anderen Teilen der
Wissenschaft wenig vertraut ist; ganz besonders
wenig aus der Mathematik, die in der Auswahl
ihrer Begriffe und Fragestellungen, nicht: der
Beweise, sehr konservativ ist. Grob gesagt
betrifft jene Problematik die Korrektur von
Zielen oder, nuancierter ausgedrückt, die
Abstimmung von 'Zielen auf vorhandene Methoden,
also: technische Möglichkeiten. Im Falle der
Logik handelt es sich um die Korrektur ihrer
ursprünglichen, grundlagentheoretischen Ziele.
Der folgende Vergleich wirkt auf den ersten
Blick skurril, stellt sich aber als höchst optimistisch

heraus. Ich denke an Astrologie und AI-

chemiei: und zwar an ihre grobschlächtigen
Ziele, nicht an tiefsinnige oder gar
tiefenpsychologische Varianten; also: das Schicksal eines
Menschen vorauszusagen, bzw. Formen der
Materie in andere oder in Energie umzuwandeln.

Diese allgemeinen Ziele sind m. E. durchaus

überzeugend. Zweifelhaft sind dagegen die
zusätzlichen spezifischen Annahmen, dass
ausgerechnet astronomische Kenntnisse, bzw. jene,
die sich die Alchemisten mit minimalem
Energieaufwand beschaffen konnten, für die
erwähnten Ziele geeignet sind. (Auch das spezifische

Anliegen der Alchemisten, Blei ausgerechnet

in Gold umzuwandeln, übersieht die heute
bekannten Schwankungen des Goldpreises und
allgemeiner das Gesetz von Angebot und
Nachfrage,) Die Korrektur bestand gar nicht so sehr
in einer radikalen Änderung des alltäglichen
Wissenschaftsbetriebes, sondern in der Entdek-
kung von fruchtbareren Zielen für die Kenntnisse,

die sich die Astrologen und Alchemisten
bei ihren Bemühungen um ihre ursprünglichen
Ziele erworben hatten. Z. B.: nicht das Schicksal

der Menschen, sondern die Bahnen von
Planeten aus astronomischen Daten zu berechnen ;

nicht billiges Blei in teures Gold, sondern noch
billigere Tonerde in etwas weniger teures Meissner

Porzellan durch Erhitzen zu verwandeln.
Nebenbei sei bemerkt, dass es in der Astrologie
an jener Präzision, die in den logischen Grundlagen

als Allerweltsheilmiltel angesehen wird,
nie mangelt: Es mangelte an vernünftigen
Zielen für jene Präzision. Dass der Vergleich
der Logik mit Astronomie und Alchemie
optimistisch ist. liegt darin, dass bei den beiden letzten

Unternehmen die Korrekturen gelungen
sind.
Nach dem üblichen Sprachgebrauch gehören
solche Korrekturen durch vernünftige
Akzentverschiebung zur Philosophie, und zwar zu den

philosophischen Fortschritten. In unserem
Spezialfall der mathematischen Logik handelt es

sich dazu noch um Philosophie im akademischen

Sinne, also um jene traditionellen Frage-
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Stellungen der Schulphilosophie, die die
mathematische Logik ursprünglich präzisieren sollte
(was ihr übrigens ausgezeichnet gelang). Man
denke hier an die Rolle der logischen Sprachen
im sogenannten Logizismus und der formalen
Regel im Formalismus, um nur die beiden
bestbekannten Schulen besser Zweige - der
logischen Grundlagenforschung zu nennen. Den
Lntuitionismus behandle ich hier deshalb nicht,
weil die breite Öffentlichkeit zwar den Namen,
aber nicht seine wesentlichen Begriffe kennt.
Wieder, d.h. wie bei der Astrologie und Alche-
mie, stecken hinter jenen Zweigen der logischen
Grundlagen m. F., durchaus überzeugende
allgemeine Ziele aus der sozusagen heroischen
Tradition der Philosophie der Mathematik, mit
Fragen folgender Art: Was ist Mathematik?
Oder: Was ist Beweis?
Oder im modernen, etwas dezenteren Jargon,
betr. l'architecture des mathématiques et nos
résonances intuitives. Unüberzeugend ist dagegen

der Anspruch, dass dafür ausgerechnet die
logischen Aspekte der Mathematik und des
mathematischen Wissens ergiebig sind; natürlich,
in dem Sinn von «logisch», der in der logischen
Grundlagenforschung benützt wird.
Jeder Zweifel an der Relevanz der logischen
Aspekte für die heroischen Ziele berührt
unvermeidlich die Auswahl der Eigenschaften
logischer Begriffe, also, der Fragen betr. logische
Begriffe, die eine vernünftige Forschung
betont. Warnung. Die populäre Literatur betont
noch immer jene Sätze, die für die ursprünglichen

grundlagentheoretischen Ziele (tatsächlich)

besonders relevant waren. Bei der
Akzentverschiebung auf nüchternere Ziele muss man
darauf gefasst sein, dass jene (vertrauten) Sätze
zwar nicht widerlegt werden, aber ihre zentrale
Stellung verlieren. Manchmal werden sie für die
neuen Ziele durch geschickte Umformulierung
relevant. Häufiger aber braucht man eine
Akzentverschiebung auf Hilfssätze, die beim
Beweis jener «Fundamental »Sätze benutzt wurden.

Dass diese «Konflikte» bei der Logik
tatsächlich auftreten, werden Beispiele bald
zeigen.

I. Logische Begriffe und ihre Eigenschaften

1. Mengen und die mengentheoretische Sprache,

also mit Variablen für Mengen (aus einem
geeigneten Mengenvorrat), der e-Relation und
den üblichen logischen Partikeln.
(a) Vor 100 Jahren: von einer Entdeckung zu

einer Doktrin. Überraschenderweise hängen
viele mathematische Sätze, z. B. über Funktionen,

gar nicht von den für uns eindruckvollsten
Merkmalen der einschlägigen Objekte (also von
ihren sogenannten intensionalen Eigenschaften),

sondern von viel gröberen ab; bei
Funktionen: nicht von den Gesetzen, die vom Argument

zum Wert führen, sondern nur vom
Graphen. Etwas allgemeiner: in die Sätze gehen nur
überraschend wenige Aspekte der Objekte ein;
z.B. bei den rationalen Zahlen, manchmal nur
die Ordnung, oft nur die Körperoperationen,
selten die Darstellung als Brüche. Solche Sätze
können in der mengentheoretischen Sprache, u.
zw. m. B. a. die erwähnten Aspekte (Strukturen)
formuliert werden. Auf diese Entdeckung folgte
bald eine zweite; in vertrauten Teilen der
Mathematik, z. B. in der Arithmetik können die
Objekte und ihre Beziehungen auch - wie man
sagt: bis auf Isomorphic - mengentheoretisch
definiert werden, wobei sich jene Isomorphic
auf die relevanten Strukturen bezieht; z. B. ist
bei den rationalen Zahlen (0,1) ordnungsiso-
niorph zu jedem Intervall (a, b): a < b, aber nur
zu sich selbst, wenn auch die Körperoperationen

berücksichtigt werden.
Danach wurde aus diesen Entdeckungen betr
grosse Teile der (damaligen) Mathematik eine
Doktrin: alle «streng» mathematischen Sätze
müssen in dieser mengentheoretischen Form
ausgedrückt werden. Dahintersteckte natürlich
das Ziel, die Frage:
Was ist Mathematik? mit: Mengenlehre
zu beantworten. Es ist ziemlich klar, welche
Eigenschaften von Mengen für dieses Ziel
gebraucht werden: brave Lehrbücher gehen auf
diese Dinge, meistens in Anhängen, ein.
(b) Heute: Übertragungsprinzipien. Die Erfahrung

hat gezeigt, dass, abgesehen von ganz
wenigen Ausnahmen, die in (a) betonten
mengentheoretischen Definitionen der Strukturen
selbst nichts bringen; noch weniger hat man
davon, dass man sich über den nötigen
Mengenvorrat den Kopf zerbricht. Für Kenner:
die Ausnahmen betreffen z. B. gewisse
gruppentheoretische Fragen, etwa ob diese oder jene
(überabzählbare) abel'sche Gruppe frei ist.
Interessant ist die Tatsache, dass man solchen
Fragen i.a. nicht ohne weiteres ansieht, ob sie

vom betrachteten Mengenvorrat abhängen. -
Im Gegensatz zur sterilen Doktrin (a) ist folgendes

ganz wesentlich:
Wenn ein Satz mengentheoretisch formuliert ist
- genauer: m.B.a. eine (passende) Strukturie-
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rung der darin betrachteten Objekte -, dann gilt
er auch für jede isomorphe Struktur.
Damit wird das verpönte Raisonnieren mit
Analogien angemessen präzisiert und
legitimiert. - Warnung. Dagegen liefert die Mengenlehre

selbst keine Richtlinien für die Auswahl
passender Strukturierungen. Damit befasst sich
die übliche axiomatische Mathematik (nicht zu
verwechseln mit der axioma tischen Mengenlehre).

Ohne zu übertreiben:
nicht: dass, sondern: welche Mengen betrachtet
werden, ist für den Erfolg der axiomatischen
Mathematik massgebend. - Abschweifung.
Will man diese heikle Frage der Auswahl (von
Mengen) vermeiden, so kommt man beinahe
zwangsläufig zu Cantors Taktik, alle oder
zumindest möglichst viele Mengen und gar keine
Strukturierung zu betrachten, kurz:
Kardinalzahlarithmetik. Und die einfachste Art, hier
etwas Neues hineinzubringen ist, wieder. Cantors
Hauptanliegen: höhere Unendlichkeiten. Die
Öde dieser Fragestellung wird - bewusst oder
eher unbewusst - verschleiert durch Dramatisierung

von Fragen betr. die Existenz solcher
Dinge; vgl. Churchills Meinung, die Wahrheit
brauchte eine Leibwache von Lügen.
Verstärkte Übertragungsprinzipien. Man kann
sich gut vorstellen, dass sich Sätze, die in einem
Teil der mengentheoretischen Sprache formuliert

werden, auf eine grössere Klasse von
Strukturen (als nur isomorphe) übertragen
lassen. - Besonders bewährt hat sich die Sprache
der elementaren Logik, mit Variablen für die
Elemente einer festen Menge. (Logisch sensible
Mathematiker mögen den Ausdruck «elementare

Logik» nicht, weil ja die gesamte Mengenlehre

in diesem Formalismus angeschrieben
wird). Was Übertragungsmöglichkeiten
betrifft, gilt für Kenner das Stichwort: Ultraprodukte.

<c) Kontlikte zwischen den alten Zielen in (a)
und den neuen in (b) sind schon deshalb
unvermeidlich, weil in (a) heroische F'ragen der Art:
Was ist (das Objekt) X? das Ding X von allen
anderen Dingen unterscheiden wollten. Dagegen

werden in (b) Kenntnisse von X auf andere
Dinge übertragen. Ähnliches gilt für den
Anspruch, dass die elementare logische Sprache
die Gesamtheit präziser Definitionsmöglichkeiten

ausschöpfe. Im Gegenteil: die (verstärkten)
Übertragungsprinzipien sind nützlich, weil
ganz präzis definierte, aber verschiedene
(nichtisomorphe) Strukturen vorliegen, die sich nicht
elementar unterscheiden lassen!

Zusätzliche Bemerkungen (für Kenner). Auch
in der «höheren» Logik waren Akzentverschiebungen

nötig, die übrigens recht oft hinter einer
neuen Terminologie versteckt sind. Z.B. sind
die Begriffe der verzweigten und konstruktiblcn
Hierarchien von Poincaré/Russell bzw. Gödel
praktisch identisch (bis auf den Unterschied
zwischen den einfachen und kumulativen
Typen, die in der Zwischenzeit eingeführt worden
waren). Aber die relevanten Fragen sind
grundverschieden. Für Poincaré/Russell, mit ihren
prädikativistischen Anliegen, war es eine

Hauptfrage, wie «kompliziert» jene Verzweigungen

sein, also bis zu welcher Ordinalzahl sie

wiederholt werden dürfen. Für Gödels Ziel
von relativen WF Beweisen - war das
überhaupt kein Problem: so «kompliziert» wie möglich

(genauer: im jeweils betrachteten Mengenvorrat

möglich). Und seither hat sich der
Schwerpunkt weiter verlegt: von seinen relativen

WF-Beweisen zu Übertragungsprinzipien
der Art:
Welche Sätze über die konstruktiblcn Mengen
lassen sich auf die volle Hierarchie übertragen?
Das ist deshalb nützlich, weil die konstruktiblcn
Mengen strukturierter sind und z. B. raffinierte
induktive Beweise erlauben.
Manche ärgern sich darüber, dass die meisten
«Experimente» in der Mengenlehre, z.B. das
rein formal inspirierte System NF von Quine,
keine vergleichbar vernünftigen Ziele haben.
Ich denke dabei an die unvernünftigen
Kunststücke, auf die sich die frühe Elektronik eingelassen

hat. Die Firmen, die es taten, machten
Pleite (nachdem geschickte Spekulanten
kurzfristige Gewinne eingesteckt hatten). Aber
andere lernten daraus, was man nicht tun sollte,
z. B. darin langfristig zu investieren. - Da wir
schon von Computern reden, komme ich aufs
nächste Thema.

2. Formale Regeln: die nichtnumerische
Datenverarbeitung.

a) Wir behalten das Schema von §1 bei.
Wieder fing es mit einer Entdeckung, u.zw.
schon im letzten Jahrhundert, an. Boole und
Frege haben Kalküle für die Aussagen- bzw.
Prädikatenlogik aufgestellt, übrigens unter
Titeln, deren Übertreibungen sich z. B. die heutige
kommerzielle Werbung kaum leisten könnte:
die Denkgesetze (Laws of thought), Grundgesetze

(der Arithmetik), Dabei stellen jene Kalküle

keineswegs die tatsächlichen Möglichkeiten
des Denkens dar, sondern nur folgendes. Zu



jedem gültigen Satz der betrachteten logischen
Sprache gibt es auch eine Ableitung im
einschlägigen Kalkül. Kurz, das Denken wird als
schwarzer Kasten (auf englisch: black box)
behandelt. Beispiel. In der Aussagenlogik gilt
p<-»(~~i ):"p und wird vernünftigerweise durch
Nachzählen der Negationszeichen bewiesen;
aber dieses Nachzählen ist kein Beweis im
Booleschen Kalkül.
Bald wurde aus den Entdeckungen von Boole
und Frege eine Doktrin, die die Frage
Was ist (das Wesentliche am) Beweis?
zu erledigen behauptete, insbesondere im
Zusammenhang mit einem Hauptanliegen jener
Zeit, der Geschichte von der Sicherheit der
Mathematik oder der Strenge der Beweise (obwohl,
realistisch betrachtet, gerade bei der Mathematik

die Sicherheit meistens unsere kleinste Sorge
ist). Die Antwort war: Formalisierbarkeit
(offenbar, eine Verlegenheitslösung, da damit nur
die Möglichkeit einer Formalisierung gemeint
ist, obwohl vorher und nachher - nichtformalisierte

Beweise durchaus überzeugend waren
und bleiben). Natürlich musste diese Antwort
durch spezifische formale Regeln ergänzt werden,

etwa jene, die Frege konzipiert hatte und
Whitehead'Russell weiterführten. - Abschweifung

(für Kenner) betr. eine besonders witzige
Wendung, die Hilbert jenem Projekt gegeben
hat. Entgegen einer weitverbreiteten Meinung
stand Hilberts Formalismus, insbesondere sein

Steckenpferd: die Methodenreinheit, keineswegs

im Widerspruch zum Logizismus. Hilbert
wollte diesen verfeinern! statt sich mit einer
brutalen (globalen) Formalisierung in der
Mengenlehre zu begnügen, wollte er die einzelnen
Zweige der Mathematik (Geometrie, Arithmetik,

finite Kombinatorik usw.) sozusagen ras-
sen-( methoden)rein züchten, z. B. sollten in
der Geometrie nur elementargeometrisch
definierbare Mengen, insbesonders nur so
definierte Dedekitid'sche Schnitte benützt werden,
u. dgl. Wer. bewusst oder unbewusst, von
Hegels Warnung, alles hänge mit allem zusammen,
eingeschüchtert war, musste das Hilbert'sehe
Programm der Methodenreinheit als Erlösung
empfunden haben: zumindest in der Mathematik

braucht man sieh «prinzipiell» überhaupt
um nichts ausserhalb des jeweils betrachteten
Zweiges zu kümmern.
In diesem Jahrhundert gerieten jene übertriebenen

Ansprüche betr. Beweise, übrigens ganz
allmählich, in den Hintergrund; besonders nach
den Gödefschen Sätzen. (Wie Gödel selbst be¬

tonte, widerlegen seine Unvollständigkeitssätze
prinzipiell die Möglichkeit des HilbeiEschen
Ideals der Methodenreinheit in der Arithmetik,
während ihre Relevanz für das Hilbert'sehe
WF-Programin beschränkt ist.) Innerhalb der
Logik ging man von der spezifischen Anwendung

formaler Regeln als Schlussrcgeln auf das
allgemeine Gebiet der mechanischen Verfahren,
vor allem der sogenannten Entscheidungsverfahren

über. Dementsprechend änderte sich die
Terminologie. Man hörte immer weniger von
formaler Unvollständigkeit (die Gödel
betonte), und immer mehr von rekursiver Unent-
scheidbarkcit, aus der jene Unvollständigkeit
leicht folgt.
Aber diese Akzentverschiebung - von Beweisregeln

auf allgemeine mechanische Verfahren -
beseitigt noch nicht die philosophischen Zweifel
der schweigenden Mehrheit (erfahrener
Mathematiker). Zugegeben, der Begriff der rekursiven
Funktion trifft ausgezeichnet, was wir naiverweise

unter einer prinzipiell mechanisch
definierbaren Operation verstehen. Aber ist dieser
naive Begriff auch nur eine qualitativ vernünftige

Annäherung (auch «Idealisierung»
genannt) in den Bereichen, in denen wir ihn
naiverweise anwenden wollen? Aus der Informatik
ist einerseits bekannt, dass die Wachstumsordnung

ganz wesentlich ist, aber auch, dass es

jedenfalls für die heutige Physik keineswegs
selbstverständlich ist, dass jede verlässliche
hard ware (Analogcomputer im allgemeinen
Sinn) rekursive Gesetze erfüllt. Innerhalb der
reinen Mathematik kann man die Zweifel an
der Bedeutung des Begriffes eines (mechanischen)

Entscheidungsverfährens sehr deutlich
anhand des 10. Hilbert'schen Problems über die
Lösbarkeit diophantischer Gleichungen in ganzen

Zahlen illustrieren.
Seil etwa 1930, genauer: seit der bekannten
Arbeit von C. L. Siegel über binäre diophantische
Gleichungen, hat sich die Fragestellung selbst
geändert; % B. nicht: ob es überhaupt eine
Lösung gibt, sondern: unendlich viele. Besonders
viel Aufmerksamkeit wurde der «Struktur der
Lösungsmenge» gewidmet, u. zw. vor allem bei
rationalen Lösungen. Nach dem Satz von
Mordell/Weil weiss man, dass sich die Menge
als eine endlich erzeugte abefsche Gruppe
auffassen lässt, obwohl man i.ä. nicht weiss, ob sie

leer ist.
So gesehen, war das Hilbert'sehe 10. Problem
schon lange eskomptiert. Die rekursive Uniös-
barkeit, die Matyasevic 1970. also etwa 40
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Jahre später, tatsächlich beweisen konnte,
ratifiziert die Einstellung der Zahlentheoretiker.
Der nächste Abschnitt behandelt den heutigen
Stand der Dinge: vor allem die Rolle der formalen

Regel für die Informatik, mit einem kurzen
Zusatz über ihre Rolle in der reinen Mathematik.

(b) Heute: Einsichten für den Programmierer.
Der Begriff der formalen Regel und seine einfachen

Eigenschaften liefern Hinweise zur Frage:
Was hat man davon, wenn man Rechenregeln
kennt und nicht nur die so definierte Funktion?
(Die Voraussetzung ist beim Programmieren
sowieso erfüllt.) Offenbar ist die Frage besonders

dann nötig, wenn man sich vorher in die in
(a) beschriebenen Ideale der mengentheoretischen

Darstellung von Funktionen durch deren
Graphen verbissen hat. - Warnung. Es geht um
Einsichten, nicht praktische Rezepte. Für diese
wäre der allgemeine Begriff der formalen Regel
viel zu grob, und zwar gröber als so manche in
der üblichen Mathematik, worauf wir noch
zurückkommen. - Statt von «Einsichten» zu
reden, könnte man auch sagen: es handelt sich
nicht um eine Theorie des Programmierens,
sondern um ein paar gesunde (geistige) Reflexe
für den Programmierer, die er sich, je nach
Erfahrung, anhand von hübschen allgemeinen
Sätzen oder einprägsamen Beispielen aneignen
kann.
(i) Anwendung formaler Regeln auf formale
Regeln, inklusive der - vielleicht aus
tiefenpsychologischen Gründen - etwas überbetonten
Selbstanwendung oder Selbstbezüglichkeit.
Denn offenbar kann eine Regel - genauer: ihre
Kodierung - in einem Programm auch als

Argument derselben oder einer andern Regel
vorkommen.

Sicher gibt es Ähnliches in der üblichen Mathematik;

z.B. definiert bei Halbgruppen das
Element a auch die Operation: br->ab. Aber,
realistisch betrachtet, ist dieses Beispiel einfach bei
weitem nicht so eindrucksvoll wie die
entsprechenden Sätze der Rekursionstheorie, also, der
Theorie der formalen Regeln. Tatsächlich war
es ja der logisch versierte Mathematiker von
Neumann, der von Gödels Arithmetisierung
(die schliesslich zu jenen Sätzen der Rekursionstheorie

führte) sehr beeindruckt war und als
erster die Anwendung von Regeln auf Regeln
in der Programmierung ausnützte; vgl. den sehr
gescheiten Ingenieur Zuse, der (die Prädikatenlogik,

aber nicht die Rekursionstheorie kannte
und) diese Möglichkeit übersah.

(i§ Das Operieren mit Regeln ohne Sorge um
den Definitionsbereich: Einsatz von wesentlich
partiellen Funktionen. («Wesentlich» insofern,
als ja - vernünftig betrachtet » die meisten
üblichen Begriffe und Funktionen, z. B. der kleinste
gemeinsame Teiler, nur für bestimmte Bereiche
definiert sind. Aber da der Definitionsbereich
«gut» bekannt ist, ist der partielle Charakter
unwesentlich.) Bei Programmen ist i.a. die Regel

«besser» bekannt als ihr Definitionsbereich.
Im technischen Jargon: die Klasse der

Programme ist (primitiv) rekursiv, die Definitionsbereiche

sind i.a. nur rekursiv aufzählbar. (Es
versteht sich von selbst, dass es sich lohnen
kann, Kenntnisse des Definitionsbereiches
auszunützen. Es wäre hirnrissig zu verlangen, dass

alle Gleichungen für alle partiell definierten
Funktionen gelten müssen! (für Kenner) z.B.
müsste man n.O - 0 durch 0.0 0 und (n+1).
0 n.O in der rekursiven Definition der
Multiplikation ersetzen.)
Auch hier gibt es Beispiele in der üblichen
Mathematik, z. B. bei der analytischen Fortsetzung
in der Funktionentheorie, wo die Regel,
insbesondere die Potenzreihenentwicklung in der
Nähe von z 0, bekannt ist, aber nicht der
volle Bereich der Punktion. Aber das ist alles
viel zu aufwendig, um die erwünschte Einsicht
dem Gros der Programmierer klarzumachen,
(iii) Grenzen der Relevanz der in § 1 a erwähnten
Dirichlet'schen Entdeckung (der Irrelevanz von
Regeln, abgesehen vom Graphen, einer Operation).

Man kann » mit beschränkten Mitteln,
hier: mit Hilfe von formalen, d.h. mechanischen

Programmen mehr Funktionalgleichungen

lösen, wenn die Lösung vom
Programm und nicht nur vom Graphen der jeweiligen

Funktionsvariablen abhängen darf.
Folgendes Beispiel setzt nur die elementarsten
Kenntnisse der Rekursionstheorie voraus.
X und Y seien r. a. Mengen, bestimmt durch
primitiv rekursive Aufzählungen. Gesucht werden

r. a. X, und Y,:
X, n Y | 0 und X,uY, XuY
Die Operation (X, Yb-K.X,. Y,) lässt sich ohne
weiteres mechanisch programmieren (und
liefert Aufzählungen von X, und Y,), aber nicht,
wenn dazu noch die mengentheoretische
Äquivalenz erhalten bleiben soll, also wenn sowohl
X und X', als auch Y und Y' dieselben Elemente
haben, dies auch für X, und X,'. bzw. Y, und Y,'
gilt.
Wieder liefert die übliche Mathematik analoge
Beispiele, z. B. wenn - statt der Forderung einer
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mechanischen Lösung - Stetigkeit m.B.a. eine
passende Topologie verlangt wird, Für Kenner:
es handelt sieh darum, die Daten anreichern
und damit das Problem auch unter zusätzlichen
Forderungen an die Lösung erledigen zu können.

- Übungsaufgabe. Es gibt keine global
stetige Lösung für x als Funktion von (ai,.,.,ani|)
der Gleichung:
X"°*1 +a1x*n+ .~Fh2i)A 0
für die übliche Topologie des Körpers R; aber
doch, für die Anreicherung der reellen Zahlen
durch ihre oszillierenden Dezimalreihen und die
dafür angemessene Produkttopologie.
Zusammenfassend: die allgemeinen Einsichten
(i) - (lii) werden am besten durch die (elementare)

Theorie der formalen Regeln oder durch
Beispiele aus diesem Gebiet vermittelt.
Aber, wie z. B. die Aufgabe aus der reellen Algebra

in (iii) zeigt, wird man Richtlinien für eine
ergiebige Anwendung jener Einsichten in (iii):
der Anreicherung der Mengen X durch eine
Aufzählung, bzw. der reellen Zahlen a durch
oszillierende Dezimalbrüche - im einschlägigen
Zweig der Mathematik suchen,
(b'j Abschweifung zur heutigen Rolle des
Begriffes der formalen Regel in der reinen Mathematik.

Wie schon erwähnt, ist man davon
abgekommen, (rekursive) Unentscheidbarkeit zu
betonen. Ohne zu übertreiben: diese
allgemeine, auch «fundamental» genannte, Eigenschaft

einer Klasse von Problemen lenkt von
heikleren, aber fruchtbareren Eigenschaften ab,
wie z. B. von der Auswahl der betrachteten
Objekte und der sie betreffenden Fragen; man
denke an das Beispiel von den diophantischen
Gleichungen am Ende von 2 (a).

Ganz überzeugend ist dagegen folgende
Wendung, die auf Higman zurückgeht, u. zw. in
seiner Arbeit 1960 zum Wortproblem für endlich

präsentierte Gruppen. Er benutzt die
Gedanken, die ein weniger genialer Mathematiker
nur zu einem einfacheren Beweis der
Unentscheidbarkeit des Wortproblems für solche
Gruppen gebraucht hätte, um folgende Frage
zu präzisieren und zu beantworten :

Welche endlich erzeugten Gruppen können in
einer endlich präsentierten eingebettet werden?
Genau jene, bei denen die Menge der Nullwör-
ter rekursiv aufzählbar ist.
Ähnliches gilt für die (negative) Antwort auf
das 10. Hilbert'sche Problem:
Welche zahlentheoretischen Prädikate sind dio-
phantisch?
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Sobald diophantische Definitionen
x,... xp[P(X|,...,xp.n) » 0] mit zumindest 9

Variablen (p É 9) in Frage kommen, so sind alle
r. a. Prädikate diophantisch definierbar. Dies
ist wohl die interessanteste bekannte Eigenschaft

der Klasse aller diophantischen Definitionen.

Letzten Endes ist dies wohl auch das
Beste, was man heute zu einer weiteren natürlichen

Frage sagen kann.
Wodurch sind die Addition und Multiplikation
der natürlichen Zahlen ausgezeichnet?
Offenbar beruht die Nützlichkeit der Antworten

(und damit der Fragen) darauf, dass wir uns
leicht mit dem Begriff der rekursiv aufzählbaren

Mengen, insbesondere mit ihren
Abgeschlossenheitseigenschaften vertraut machen.
Und dies hängt wieder damit zusammen, dass

uns unser naiver Begriff des mechanischen
Verfahrens vertraut ist, selbst wenn er wie in (a)
betont wurde - für die geplanten wissenschaftlichen

Anwendungen nicht besonders geeignet
ist.
Bemerkung. Es ist beinahe peinlich, sozusagen
im selben Atemzug von Nützlichkeit in der
reinen Mathematik, wie im letzten Absatz, und in
der Informatik, wie in (b), zu sprechen. Denn
mehr oder weniger vernünftige Menschen
geben im Jahr über 250 Milliarden Schweizer
Franken aus, um ihre Bedürfnisse mit Hilfe der
numerischen und nichtnumerischen Datenverarbeitung

zu decken. Aber als «chemisch
reines» Paradigma verschiedener Probleme, die in
der alltäglichen Programmierung auftreten, ist
die reine Mathematik oft recht leistungsfähig,
(c) Was nun Konflikte betrifft, so besteht
überhaupt keiner zwischen den «Einsichten» in
§2(b) und den Übertragungsprinzipien in § 1 (h);
und kein formaler Konflikt mit den
mengentheoretischen Grundlagen. Denn z. B. oszillierende

Dezimalbrüche können ohne weiteres als

Mengen und partielle Funktionen als Paare von
Mengen aufgefasst werden (wobei das erste
Glied des Paares der Graph der Funktion und
das zweite der intendierte Defmitionsbereich
ist). Aber man hat hier nichts von der
mengentheoretischen Sprache: sie liefert hier genausowenig

Richtlinien für die richtige Auswahl wie -

nach §la - für die axiomatische Mathematik.
Da leistet sogar die elementare Theorie formaler

Regeln, d.h. der rekursiven Funktionen,
bedeutend mehr.
Dagegen besteht ein markanter Konflikt
zwischen den Eigenschaften von formalen Regeln,
die für eine vernünftige Informatik, und jenen,
die für die ursprünglichen grundlagentheoreti-



schert Ziele in §2a - also betr. (Beweise und)
präzise Verfahren relevant sind. Vor allem
beschäftigt sich die grundlagentheoretische
Literatur mit jener Stabilität, die zeigen soll, dass

wir überhaupt einen deutlichen Begriff der
formalen Regel haben; genauer; dass die uns als
definierende Eigenschaften einleuchtenden
«Definitionen« tatsächlich äquivalent sind.
(Kenner werden hier unterscheiden zwischen
der groben Äquivalenz für die Klasse der
formal definierten Operationen und der feineren
Äquivalenz zwischen den Regeln selbst.)
Danach kommt die Kernfrage, ob dieser (deutliche)

Begriff tatsächlich auf die geistigen Fähigkeiten

des sogenannten idealisierten Mathematikers

passt. Am bekanntesten sind da die
Überlegungen Turings und die Einwände Gödels,
nämlich, dass Turing die Wachstumsmöglichkeiten

des Intellekts oder Gehirns - auf den
Unterschied kommt es hier nicht an - übersehen

hätte (ohne dass Gödel je spezifische
Wachstumsgesetze vorschlug).
Eine vernünftige Informatik schert sich i.a.
überhaupt nicht darum, ob Computer - etwa in
der Mathematik ~ prinzipiell alles machen können,

was der Mensch kann. Im Gegenteil: Computer

sollen gut und billig leisten, was die
Menschen nur schlecht oder teuer machen. Und da
ist es ganz am Platz, nur das Ergebnis, nicht den

(Denk-) Prozess zu berücksichtigen, also diesen
als schwarzen Kasten zu betrachten. Die oben
erwähnte Stabilität spielt in der Informatik eine

recht bescheidene Rolle. Denn, wenn wir mit
verschiedenen «Begriffen», also zwei
Programmiersprachen verschiedener Ausdrucksfähigkeit,

zu tun haben und eine Operation in beiden
definierbar ist, so fragt man, welche besser

funktioniert. Jene Stabilität bedeutet nur. dass

wir diese Frage prinzipiell für alle stillschweigend:

rekursiven - Funktionen stellen können.
Wie schon in §2 (a) angedeutet wurde, hat die
heroische Frage nach den vom idealisierten
Mathematiker - verlässlich ausführbaren
Regeln ein Analogon in der Informatik, u.zw. für
«Analogrechner, also idealisierte physikalische

Systeme, die den bekannten Gesetzen der

heutigen theoretischen Physik, etwa der Mechanik

gehorchen. Es ist gar nicht selbstverständlich,

dass das Verhalten solcher Systeme (kurz:
hard ware) immer rekursiv ist, d.h. von einem

Digitalrechner simuliert werden kann. Noch
skeptischer wird man - gegenüber der
heroischen Frage - wenn man bedenkt, dass selbst in
den Fällen eines rekursiven Verhaltens oft ganz

spezifische Eigenschaften der physikalischen
Gesetze in den Beweis eingehen. Bei dem heutigen

Stand unserer Kenntnisse der geistigen
Fähigkeiten des Menschen kann man bestenfalls
hoffen zu zeigen, dass so plumpe «Idealisierungen»

wie die der formalen Regel nicht stimmen.
Es wird dem Leser nicht entgangen sein, dass

die eben erwähnte Problematik die in §2(b')
beschriebenen Anwendungen des Begriffs der
formalen Regel in der reinen Mathematik
überhaupt nicht berührt.
Soziologische Vermutungen. Ich habe schon
lange den Eindruck, dass die Entdeckung der
logischen Kalküle für die Entwicklung der
mechanischen, nicht-numerischen Datenverarbeitung

ganz wesentlich war; vor allem dadurch,
dass sie das Vertrauen zur Möglichkeit einer
solchen Mechanisierung ungeheuer bestärkte;
u.zw. bedeutend mehr als etwa die algebraischen.

also auch nichtnumerischen Kalküle.
Aber ich wüsste nicht, wie dieser Eindruck
dokumentiert werden könnte. Wenn er aber
stimmt, so dürfte jenes Vertrauen mit einem
Wortspiel zusammenhängen!
Denn schon die Aussagenlogik kann imponieren,

wenn man sie als Lehre oder «Theorie»
beliebiger Aussagen betrachtet. Man vergisst
eben, wie wenig diese Theorie über Aussagen
aussagt. Wenn nun - so ginge das Wortspiel -
diese allgemeine Theorie mechanisiert werden
kann, dann doch sicher jede Theorie von
spezifischen Aussagen, z. B. die Arithmetik.
So - und vielleicht nur so - wird die lustige
historische Tatsache verständlich, dass (vor 100

Jahren) Freges Formalisierung der elementaren
Logik einerseits und (vor 50 Jahren) Gödels
Entdeckung der Nichtformalisierbarkeit der
Arithmetik andererseits beide als eine Art Wunder

angesehen wurden. - Es ist also kein Wunder,

dass Mathematiker, die sich mit endlichen
Gruppen oder Körpern abplagen, - bewusst
oder unbewusst die Logik um ihre populären
Erfolge beneiden.

II. Zum Prozess der Korrektur von Zielen

Bis jetzt ging es nur um das Ergebnis einiger
solcher Korrekturen. Aus meiner eigenen
Erfahrung kann ich aber auch über die Etappen
zumindest einer Korrektur berichten, die mich
vor genau 40 Jahren zu beschäftigen anfing: sie

führte von einer Kritik des (Hilbert'sehen) WF-
Programms schliesslich zu einer erfolgreichen
Programmiertechnik.
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L Vorgeschichte

Bekanntlich haben sich schon Russell und
Brouwer über den Anspruch lustig gemacht, die
WF wäre eine hinreichende Bedingung für die
Brauchbarkeit von (formalen) Regeln. Diese
Kritik war unbefriedigend, weil sie überhaupt
nichts Positives betr. die WF aussagte. Viel
weniger bekannt ist die nuanciericre Kritik von
Gödel und Gentzen: die WF garantiert zwar
stillschweigend: für die üblichen Systeme - die
Gültigkeit von bewiesenen Allsätzen, aber nicht
einmal von reinen Existenzsätzen. Dabei bezog
sich die sogenannte konstruktivistische Problematik,

die durch WF-Beweise erledigt werden
sollte, vor allem auf brenzlige Existenzsätze und
andere logisch komplizierte Aussagen. Aber
auch diese Kritik führte nicht weiter. Einerseits
ist die erwähnte «Rechtfertigung» der WF als
Brauchbarkeitskriterium im Fall von Allsätzen

sowieso der Gnadenschuss aufs Hil-
bert'sche Programm, das ja den Begriffder
Gültigkeit überhaupt vermeiden und durch die WF
ersetzen wollte. Andererseits hatte weder Gödel
noch Gentzen einen konkreten Vorschlag für
eine Bedingung, die der WF vorzuziehen wäre.
Herr Bernays hat im Grundlagenbuch ein Ko-
rollar zu einem gewissen WF-Beweis, u. zw. für
die elementare Logik, in den sogenannten e-
Theoremen formuliert und ihre Bedeutung für
Beweise von reinen Existenzsätzen betont. Aber
er hat es unterlassen, die Schwächen des WF-
Programmes zu unterstreichen. Es lag also
(noch) kein klarer Grund vor. den Schwerpunkt
von der WF weg auf jene Korollare - genauer:
passende Varianten davon zu verschieben. Im
Gegenteil: naiverweise sah man weiterhin das
Hauptproblem (der Beweistheorie) darin, die
WF auch für die Zahlentheorie und andere
«stärkere» Systeme (als die elementare Logik)
mit beschränkten metamathematischen Mitteln
zu zeigen, und nicht in einem besseren
Verständnis der Bedeutung des WF-Beweises für
die elementare Logik und in (jener Bedeutung)
angemessenen Verschärfungen.

2. Mathematische Anwendungen

Schon in den 40er Jahren stellte es sich entgegen

einer weitverbreiteten Meinung heraus,
dass grosse Teile der Mathematik, u. zw. solche,
in denen brenzlige Existenzbeweise vorkommen.

recht elementar formalisiert werden konn¬

ten. Genauer: in der elementaren Logik,
vorausgesetzt, dass gewisse gültige Allsätze als
zusätzliche Prämissen benutzt werden. Dies war
deshalb wichtig, weil dabei wie schon damals
betont wurde derselbe Algorithmus für Exi-
slenzsätzc herauskam; im Jargon jener Zeit: die
Klasse der beweisbar rekursiven Funktionen
blieb gleich.
Kurz, Beweise von Allsätzen, die fürs WF-Pro-
gramm die zentrale Rolle spielen, werden hier
einfach total ignoriert.
Diese neuen Einsichten führten bald zu praktischen

Anwendungen der in §1 erwähnten e-
Theoreme. z. B. zu Schranken für Artins
Lösung des n.Hilbert'schen Problems (betr.
Quadratsummen) und zu einer (negativen) Antwort
auf Littlewoods heiklere Frage, ob die von Ske-
wes benützte Modifikation des ursprünglichen
Beweises betr. Vorzeichenwechsel von 7r(.\->-
11(a wirklich nötig war.
Die erwähnten Einsichten haben auch noch in
jüngster Zeit neue Anwendungen gefunden,
z. B. um dem einschlägigen Beweis von Jacquet
und Shalika aus den 70er Jahren Schranken für
|L,(1)| abzulesen; übrigens nachdem Landaus
Beweis von L(l, /), der eine ähnliche logische
Struktur besitzt (und schon über 70 Jahre alt
ist), präpariert und «ausgefaltet» worden war.
Dabei wurde klar, dass mathematisch triviale
Änderungen in den ursprünglichen nicht-konstruktiven

Beweisen sowohl den Prozess als
auch das Endergebnis jenes Ausfaltens
beträchtlich beeinflussen können; im Einklang
mit der Erfahrung in diesen Dingen in der
üblichen mathematischen Praxis,
So gesehen, liefert hier die Logik auch Begriffe,
insbesondere (logische) Komplexitäts«masse»,
die es gestatten, manches aus der Trickkiste der
Praxis zu interpretieren und damit ihre Erfolge
zu erklären - abgesehen von Lösungen alter
Fragen über effektive Schranken.
Warnung. Die Nützlichkeit des ganzen Projekts
(des Ausfältens) ist in der Mathematik durch
zwei Umstände eingeschränkt. Erstens einmal
ist der ausgefaltete Beweis oft unergiebig, t. B.

wenn die Schranken zu gross oder sonstwie
unhandlich sind: in solchen Fällen ist dann eben
das Ziel - oder: konstruktivistische Ideal des
Ausfaltens widerlegt. Für einen weiteren
Fortschritt braucht man neue Fragen wie. z. B. am
Ende von I §2a über die «Struktur» der
Lösungsmenge diophantischer Gleichungen, Bei
der Auswahl solcher neuer Fragen hat die Logik

jedenfalls bis jetzt nicht wesentlich geholfen.
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Der zweite Umstand, der den Wert einer
logischen Theorie beeinträchtigt, ist ganz trivial,
aber praktisch doch wichtig: begabte
Mathematiker brauchen hier, ebensowenig wie in
anderen Gebieten, die Krücken einer Theorie des

Aushaltens, meistens genügen ein paar gesunde
geistige Reflexe, Aber gerade deshalb ist es

bemerkenswert, dass jetzt schon über 30 Jahre
lang immer wieder Ausnahmen vorkommen,
bei denen erst versierte Logiker die «blinden
Punkte» der Experten wegräumen konnten.

3. Informatik

Hier wird das Ausfalten relevant, wenn der un-
ausgefaltete Beweis als Programm in einer
höheren Programmiersprache und der ausgefaltete

als computerfreundliches Programm aufge-
fasst werden, d. lt.. das Ausfalten wird für ein in
der Informatik vertrautes und bewährtes Ziel
verwendet: das Neue liegt darin, dass Erfahrungen

aus der «höheren» Beweistheorie benützt
werden. Hier fallen die beiden Einschränkungen,

in der Warnung im letzten Absatz, weg.
Die erste sowieso, da es auf den ausgefalteten
Beweis ankommt; die zweite, wenn immer
hinreichend viele Einzelfälle in der Praxis vorkommen:

denn dann ist es eine Leistung, das Ausfallen

mechanisiert zu haben, selbst wenn jeder
Einzelfall für einen Mathematiker trivial ist.
Schon bei oberflächlicher Betrachtung dieses

neuen Projekts (Mitte der 70er Jahre) ergaben
sich Konflikte zwischen den Eigenschaften von
Beweisumformungen, die für das Ausfalten
einerseits und seinem Analogen in den Grundlagen.

dem sogenannten Normalisieren (das zu
kanonischen Beweisen führen soll), andererseits
wichtig sind. Z, B. wird man beim Ausfalten
geschickte von ungeschickten Umformungen
trennen, wobei die «Geschicklichkeit» vor
allem zu einem besseren, d.h. leistungsfähigeren
Endergebnis führen soll. Dies steht im Gegensatz

zum Ideal eines kanonischen Beweises, das
bei allen Umformungsprozessen dasselbe
Endergebnis fordert. Dieses Ideal legt Wert darauf,
dass jeder gültige Beweis eine kanonische Form
besitzt, während man in der Informatik von
einem geschickten Programmierer erwartet,
dass er - sei es nach formalen Kriterien, sei es

mit Fingerspitzengefühl — solche Beweise
auswählt, bei denen sich das Ausfalten überhaupt
und dann eine passende Methode lohnt.
Zum Erfolg dieser allgemeinen Betrachtung
braucht man aber vor allem praktisch wichtige

Probleme, deren Entdeckung eine noch viel
heiklere Aufgabe stellt. C. A. Goad hat sie gelöst.
Für Kenner: däs Programm in der höheren
Programmiersprache bleibt gleich, während die
ausgefalteten Programme Eigentümlichkeiten
der eingegebenen Daten, z. B. Redundanzen,
ausnützen.
Zusätzliche Bemerkungen, (a) Die Ünterdrük-
kung aller (Teil-)Beweise von reinen Allsätzen
und anderen Sätzen ohne algorithmischen
«Gehalt» -, die schon in §2 betont wurde, hat auch
hier eine Schlüsselstellung. Sonst wären nämlich

formalisierte (unausgefaltete) Beweise in
der «höheren» Programmiersprache zu
aufwendig, um überhaupt verlässlich zu sein, und
das Ausfalten selbst viel zu lang, (b) Ein gesunder

Skeptizismus gegenüber der sogenannten
Komplexitätstheorie war Voraussetzung für
den Erfolg des Projektes. Denn bekanntlich
sind nach den in dieser Theorie üblichen Massen

alle in der Beweistheorie üblichen
Umformungen praktisch unerschwinglich. Stillschweigend

wird aber bei jeder dieser Methoden
angenommen, dass man sich für alle Beweise in einer
aus der Logik vertrauten Klasse interessiert.
Eine vernünftige Informatik hat diese
Fragestellung schon lange eskomptiert; vgl. hier die
Einstellung der Zahlenlheoretiker zu diophan-
tischen Gleichungen (obwohl, bis jetzt, die Auswahl

von Problemen in der Informatik wohl
nicht so geistreich ist wie Siegels in der
Zahlentheorie). Übrigens gibt es meines Wissens kein
Beispiel, wo besonders gründliche Untersuchungen

jener vertrauten, beweisbarerweise
nutzlosen Klassen bei der Auswahl von
vernünftigen Problemklässen geholfen hätten.
Kurz, die Komplexitätstheorie dient - wie es in
Österreich heisst der Arbeitsplatzbeschaffung
in der theoretischen Informatik; sonst wäre sie
ein gutes Beispiel für Wittgensteins Warnung
vor dem unheilvollen Einbruch der Logik in die
Mathematik; genauer, ihr Teilgebiet: die
theoretische Informatik. Die folgenden
Bemerkungen sind Warnungen vor Missverständnissen.

(c) Die hier betrachtete Umformung oder
Manipulation von Beweisen, d.h. Programmen,

ist grundverschieden von den viel bekannteren

Projekten des automatischen Beweisens
oder der mechanischen Synthese von Programmen.

Bei diesen sensationslüsternen Unternehmen

ist der Ausgangspunkt eine Formel. z.B.
eine Vermutung, die automatisch bewiesen oder
widerlegt, oder ein Problem, für welches eine
Lösung automatisch programmiert werden soll.
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In beiden Fällen handelt es sich um typisch
«schöpferische» Leistungen, die die Menschen
verhältnismässig billig und gern liefern (inklusive

«schöpferischen» Zielen, die sich nicht
bewähren). Das Ausfalten von Beweisen und die
hier gemeinte Umformung von Programmen
sind langweilige Prozeduren, die die (meisten)
Menschen nur ungern und (daher) unverläss-
lich ausführen. NB. Übrigens hängen jene
Projekte, die traditionelle Beweistheorie fürs
automatische Beweisen zu verwenden, mit dem

Aberglauben zusammen, dass uns diese Theorie
helfe, Beweise zu finden oder zu kontrollieren.
Tatsächlich aber ist ihr Hauptziel, sogenannte
abstrakte in elementare Beweise umzuformen,
um jene zu rechtfertigen. In der Informatik werden

die dafür entwickelten Methoden — modifiziert

und - verwendet, um Programme in höheren

Programmiersprachen zu «straight code»
umzuformen und damit dem Computer
vorzukauen. (d) Schliesslich sei daran erinnert, dass
die in I §1 (b) erwähnte axiomatische Methode
der Zergliederung von Beweisen mit Hilfe von
Grundstrukturen in ganz offenbarer Weise als
Modell für eine Programmiersprache mit
entsprechenden Grundzeichen angesehen werden
kann; nur braucht die alltägliche Informatik
eher Bäume, Listen und dgl. als die spezifischen
Grundstrukturen im engeren Sinne von Bour-
baki, wie Gruppen. Körper usw. Dabei ist die
Möglichkeit, Bäume usw. mengentheoretisch
zu definieren, für die Informatik le côté le moins
intéressant, genauso wie im Fall der axiomati-
schen Mathematik. - Aber auch jener, in der
heutigen axiomatischen Mathematik verpönte
Stil, möglichst viel in Beweisen physikalisch zu
interpretieren (z. B. Definitionen als Energieintegrale,

Hilfsätze als Erhaltungssätze), kann für
die Informatik nützlich sein; u.zw. wenn
Analogrechner eingesetzt werden sollen. Hier sind
«Analogrechner» im allgemeinen Sinn gemeint;
komplizierte Teilrechnungen werden mit Hilfe
eines geeignet präparierten, sozusagen
programmierten physikalischen Systems erledigt,
dessen Verhalten - gemäss einer verlässlichen
Theorie eben jenen Rechnungen entspricht.
(Wie schon in I §2 (c) erwähnt wurde, braucht
das System kein Digitalrechner zu sein und
kann vielleicht gar nicht von einem solchen
simuliert werden.) - Kurz, es wird nicht behauptet.

dass die höhere Beweistheorie, wie sie hier
verwendet wird, der einzige Teil der höheren
Mathematik sei, der für die Informatik nützlich
ist!

III Von den Grundlagen zur Technologie

Gemeint sind in diesem Titel die traditionellen
logischen Grundlagen, den die eben beschriebene

Entwicklung einer Programmiertechnik
nahelegt. Aber auch unabhängig von diesem
spezifischen Erfolg scheint er mir aus folgendem

Grund plausibel : wie sich auch die Auffassungen

von den Grundlagen unterscheiden mögen,

stammen die traditionellen Grundlagenfragen,

etwa der alten Griechen, aus einer Zeit
sehr beschränkter wissenschaftlicher Erfahrung.

Sicher sind sie nicht leer. Also ist
anzunehmen. dass sie für jene beschränkte Erfahrung

mehr oder weniger angemessen sind; aber
auch, dass das Grübeln über eine so
beschränkte Erfahrung sehr bald den Punkt vom
abnehmenden Ertrag erreicht. Dagegen können
jene Fragen - oder genauer: die Vorstellungen
hinter ihnen - wieder aktuell werden, wenn uns
die Technik neue Erfahrungen, insbesondere
neue Dinge verschafft, auf die die alten Vorstellungen

qualitativ passen. Im Falle der elektronischen

Grossrechner handelt es sich um die
alte Vorstellung eines mechanischen Verfahrens.

Hier sei nochmals betont, dass dies zwar
auf die elektronischen Rechner zutrifft, aber es

offenbleibt, ob die Mechanik der heutigen
theoretischen Physik in diesem (alten) Sinn mechanisch

ist! vgl. die Bemerkung in II zu
Analogrechnern.

Es mag unhöflich klingen, wenn wir den
traditionellen Grundlagen nachsagen, sie kümmern
sich nur darum, wie sich der kleine Moritz die
Dinge und das Denken vorstellt.
Mancher Philosoph » zumindest einer, der den
Vorstellungen des kleinen Moritz entspricht
wird sich beleidigt fühlen. Aber gewiss nicht
jene, wie Aristoteles, Leibniz, Hume usw., die
sich in die Politik einmischen oder Geschäfte
machen (wollen). Denn sie wissen sehr gut, dass
es viel mehr kleine Moritzchen gibt als reife,
also, dass ihnen eine breite Popularität bzw. ein

grosser Markt sicher ist.
Andererseits wäre es m. E. verfehlt, in staunender

Ehrfurcht vor den Erfolgen der primitiven
Vorstellungen (des kleinen Moritz) aufzugehen,
wie überhaupt vor den erfolgreichen Anwendungen

der Mathematik. Denn dabei übersieht
man nicht nur die vielen vergessenen Misserfolge,

sondern vor allem die Phantasie und
andere geistige Leistungen, die nötig sind, um
fruchtbare Anwendungsgebiete auszuschnüffeln;

Leistungen, die zumindest im Fall der Lo-
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gik anspruchsvoller sind als die ursprünglichen
mathematischen Entdeckungen, Dieser Aspekt
der Forschung und, allgemeiner, des
wissenschaftlichen Fortschritts scheint mir in den
bekannten Schlagworten vernachlässigt zu sein,
wie z. B. in den Geschichten von These - Antithese

- Synthese, Verifizieren, Falsifizieren,
Paradigmenwechsel (besser: Abwechslung bei

Langeweile).
Die Korrektur von Zielen und, insbesondere,
der Schritt von den Grundlagen zur Technologie

sind manchmal entscheidender.

IV Abschliessende Bemerkungen

Für manche Leser dürfte es eine dankbare Aufgabe

sein, zwei Fragen, die hier nur kurz
berührt wurden, näher zu betrachten.
1. Heroische Fragen aus der Philosophie der

Mathematik. Die logischen Grundlagen bieten

hier nicht nur wenig, sondern bedeutend
weniger als die Entwicklung innerhalb der
Mathematik. Z. B. liefert m.E. die axiomati-
sche Mathematik, mit ihrer Zergliederung
von Beweisen in ein überschaubares Gefüge
einprägsamer Hilfssätze über einige wenige
Grundstrukturen, einfach Wesentlicheres
über die tatsächlichen Beweismöglichkeiten
als die logischen Sätzchen über Gültigkeit,
Vollständigkeit, Unvollständigkeit u.dgl.
(obwohl natürlich niemand bezweifelt, dass
überzeugende Beweise u.a. auch gültig sein
sollen!). Diese Situation ist - für die
Mathematiker, bewusst oder unbewusst -
ausgesprochen peinlich. Denn die logischen
Begriffe und Sätzchen sind durchaus mathematisch

sauber und unmittelbar verständlich,
während die mathematische Axiomatik ihre
Auswahl der Grundstrukturen (und dann
die für die Zergliederung eines Beweises

angemessene Auswahl spezifischer Grund-
slrukturen) nur durch den «Erfolg» oder
bestenfalls durch ein paar, meist grunzende
Hinweise auf die mathematische «Erfahrung»

vermitteln kann. Es scheint mir ganz
natürlich, dass diese Sprachlosigkeit der
Mathematiker, was ihre eigenen (wesentlichen)
Beiträge betrifft, zu einer völlig verkehrten
Kritik der mathematischen Logik geführt
hat. Ein Beispiel: Bekanntlich kümmert sich
die Logik wenig um die Begriffe, die wir der
geometrischen Anschauung, etwa des Konti-
nuums verdanken. Daraus wird dann - ganz
gedankenlos - geschlossen, dass das Übel in

der diskret-kombinatorischen Natur der Logik

liege. Aber die Logik kümmert sich auch
nicht um die Auswahl angemessener diskret-
kombinatorischer Grundstrukturen!
Zu beachten : auch für die heroischen Fragen
in der Naturphilosophie wie etwa: Was ist
(der Aufbau der) Materie? haben die
Entwicklungen innerhalb der Naturwissenschaft
viel mehr geleistet als logische Untersuchungen.

d.h. als die Vorstellungen des kleinen
Moritz. Hier wäre das Analogen zum
logischen Ideal, mit der Gültigkeit etwa von
Beweisen, anzufangen und dann, schrittweise,
auf tatsächlich überzeugende einzuschränken,

dies: die Gesamtheit aller möglichen
Welten zu analysieren und dann, schrittweise,

zur tatsächlichen Welt und ihren
Gesetzen zu kommen. So ging es nicht... Es ist
geradezu grotesk, wie selbstgefällig die Logiker

über alle möglichen Wellen reden, wo
doch die Haupterfolge der Physik darin
bestehen, unsere Welt und ihre Besonderheiten
zu verstehen.

2. Zum Prozess der Korrektur von Zielen
wurde in Teil II nur ein einziges Beispiel,
sozusagen eine Anekdote, angeführt. Aber
es scheint mir der Mühe wert, auch ein paar
anderen Beispielen nachzugehen. Denn
einerseits ist zumindest die logische Forschung
in den letzten 50 Jahren noch durchaus
überschaubar; z. B. sind Misserfolge noch nicht
vergessen. Andererseits drängen sich, schon
in diesem Gebiet, Fragen von allgemeinem
Interesse auf: Welche Rolle spielt die
Planung, sozusagen die künstliche Züchtung,
die durch Schlagworte andere zur Mitarbeit
anzog? Welche Rolle spielte die sogenannte
wissenschaftliche Freiheit, sozusagen
verschwenderisch eine Fülle von Varianten zu
produzieren und für sie zu werben, bei
welchen dann durch natürliche Auslese die
angemessenen von den Fehlentwicklungen
unterschieden wurden. Gerade deshalb, weil
diese (soziologischen) Fragen die
Weltgeschichte kaum berühren, also weil nicht gar
zu viele Querverbindungen bestehen, könnte
man hoffen, hier eine vielleicht bescheidene,
aber zumindest verlässliche Einsicht in den
Wissenschaftsbetrieb zu gewinnen.
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