Zeitschrift: Jahrbuch der Schweizerischen Naturforschenden Gesellschaft.

Wissenschaftlicher und administrativer Teil = Annuaire de la Société Helvétique des Sciences Naturelles. Partie scientifique et administrative

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 160 (1980)

Artikel: Die neue Lysimeteranlage der Forschungsanstalt Liebebfeld-Bern

Autor: Furrer, Otto Josef / Stauffer, Werner DOI: https://doi.org/10.5169/seals-90780

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die neue Lysimeteranlage der Forschungsanstalt Liebefeld-Bern

Otto Josef Furrer und Werner Stauffer

Zusammenfassung

Die neue Lysimeteranlage der Eidg. Forschungsanstalt Liebefeld wird vorgestellt. Die Anlage umfasst 64 Gefässe aus glasfaserverstärktem Polyester, die in die ausgesparten kreisrunden Löcher in der Betondekke der kellerartigen Anlage eingehängt sind.

Die Gefässe fassen 1,5 m³ bei einer Oberfläche von 1 m² (\emptyset 1,13 m, h = 1,5 m).

Für die Abflussmessung wird ein abgewandeltes Regenmessgerät nach Joss-Tognini verwendet. Die Abflussdaten werden zentral auf einer Zähleinheit registriert.

Für die Entnahme von Wasserproben wurde eine Einrichtung geschaffen, die es erlaubt, abflussproportionale Mengen zu entnehmen.

Résumé

Dans ce travail on présente la nouvelle installation de cases Lysimétriques de la Station fédérale de Liebefeld.

L'installation compte 64 cases en polyester renforcé par de la fibre de verre; ces cases sont suspendues dans des ouvertures circulaires aménagées dans le plafond en béton de la construction en sous-sol.

Les cases ont une capacité de 1,5 m³ et une surface de 1 m² (\varnothing 1,13 m, h = 1,5 m).

Pour les mesures de percolation on utilise un pluviomètre selon Joss-Tognini, transformé à cet effet. Les données de percolation sont enregistrées par un multi-compteur central. Pour la prise des échantillons de percolat, on a créé une installation qui permet de prélever des quantités proportionelles à la perco-

lation totale.

Einleitung

In den Aufgabenkreis der Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC), CH-3097 Liebefeld-Bern, fallen Forschungsarbeiten über den Einfluss der landwirtschaftlichen Aktivitäten auf die Gewässerbelastung durch Nährstoffauswaschung. Die Untersuchungen werden auf verschiedenen Ebenen durchgeführt: an Bodensäulen im Labormaßstab, in einer klei-Gefässe. Lysimeteranlage (23) $F = 0.45 \text{ m}^2$, $V = 0.4 \text{ m}^3$), an Wägelysimetern (3 Monolithen, F=1 m², V=1,5 m³), an Feldlysimetern (6 Einheiten, $F = 3.8 \text{ m}^2$, $V = 5.7 \text{ m}^3$), an Düngungsversuchen mit Installationen zur kontinuierlichen Entnahme von Bodenwasserproben, an Drainagen, in Bacheinzugsgebieten und im Grundwasser.

Zweck der Anlage

Im Gegensatz zu den praxisnahen Untersuchungen in Einzugsgebieten lassen sich in Lysimetern systematische Untersuchungen unter genau definierten Bedingungen durchführen. Sie sind ein unentbehrliches Mittel zur Abklärung grundlegender Probleme hinsichtlich Nährstoffauswaschung. Im Zusammenhang mit dem Neubauprojekt für die Eidg. Forschungsanstalt für Milchwirtschaft ergab sich die Möglichkeit, die Lücke zwischen der kleinen Lysimeteranlage und den Feldversuchen zu schliessen. Auf der neuen Anlage soll vor allem die Nitratauswaschung studiert werden, wobei nebenher auch Untersuchungen über die Auswaschung von P, K, Na, Ca und Mg laufen. Die Versuchsfrabetreffen Düngung, Düngungszeitpunkt, Düngerart, Düngerdosierung, Hofdüngeraufbereitung, Fruchtfolge, Gründüngung, Bodenbearbeitung, Simulation unterschiedlicher Lagerkapazität für Gülle und Klärschlamm. Gleichzeitig soll der Einfluss unterschiedlicher Bodenarten, Wasserspeicherkapazität und variablen Grundwasserstandes geprüft werden.

Baubeschrieb

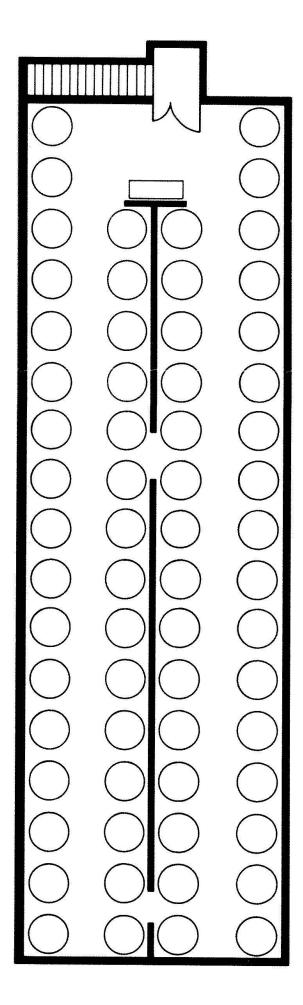

Die ganze Anlage ist kellerartig angelegt, die Oberfläche der Lysimeter liegt auf dem Niveau des umgebenden Bodens. Boden, Dekke, alle 4 Seitenwände und eine Mittelwand sind aus armiertem Beton. In der Betondecke sind zum Einhängen der Lysimetergefässe 64 kreisrunde Löcher ausgespart, die je durch ein 50 cm langes senkrecht stehendes Zementrohr mit einem Innendurchmesser von 125 cm umgeben sind. Diese Zementrohre dienen als Halterung und Auflage für die eingehängten Lysimetergefässe.

Abbildung 1 zeigt den Grundriss der Anlage, die rund 30 m lang und 9 m breit ist. Der Zugang erfolgt über eine aussen angebaute Treppe durch eine breite Türe. Durch Weglassen von 4 Lysimetergefässen wurde ein Vorraum von rund 4 m×5 m freigehalten, der als Arbeitsbereich mit entsprechender Beleuchtung, Telefon-, Strom- und Wasseranschlüssen und einem Wassertrog ausgerüstet ist.

Abbildung 2 zeigt den Querschnitt durch die Anlage. Dadurch, dass die Gefässe oben eingehängt sind, entsteht unten viel freier Raum und eine gute Zugänglichkeit. Die Mittelwand gestattet eine wesentlich leichtere Deckenkonstruktion, obwohl pro Gefäss mit einem Gewicht von rund 3 Tonnen zu rechnen ist. Über der wasserdicht abgedeckten Betondecke ist ein Kultursubstrat aus Lecca und torfreichem Humus mit automatischer Bewässerung aufgebaut. Als Deckpflanze wurde Sedum verwendet, wodurch eine zu starke Erwärmung der Umgebung der Lysimeter verhindert wird. Zur Erleichterung des Zuganges zu den Lysimetern sind zwei 50 cm breite Plattenwege angelegt. Die Planung der Anlage erfolgte durch das Architekturbüro B. de Montmollin, Biel.

Gefässe

Die Lysimetergefässe sind aus glasfaserverstärktem Polyester hergestellt. Sie haben eine Wandstärke von 10 mm. Der Innendurchmesser beträgt 113 cm, was eine Oberfläche

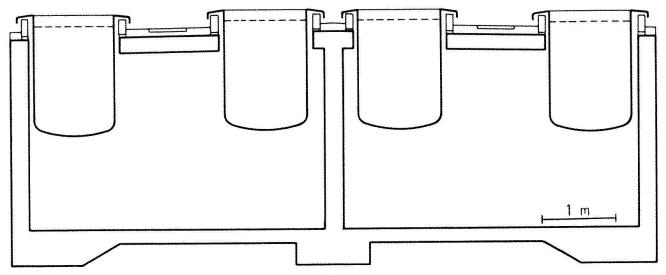


Abb. 2. Querschnitt durch die Lysimeteranlage Liebefeld.

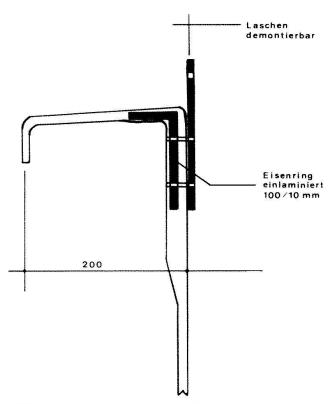


Abb. 3. Konstruktion des obern Randes der Lysimetergefässe. Masse in mm. Werkstoff: glasfaserverstärkter Polyester mit Randverstärkung durch einen Stahlring. Zum Wegheben der Lysimetergefässe können 3 Stahllaschen angeschraubt werden.

von 1 m² ergibt. Die Höhe des Gefässes beträgt 150 cm. In Abb. 3 wird die Konstruktion der Aufhängung gezeigt. Ein 10 mm starker, 100 mm breiter Stahlring ist am obern Rand des Gefässes in die Wand einlaminiert. Er gibt dem Gefäss eine solide Stabilität. Am Stahlring sind sechs Nocken angebracht, die auf dem obern Rand der Zementröhre aufliegen und das Gewicht des Lysimeters tragen.

An den Stahlring können drei Laschen angeschraubt werden, an denen ein Stahlseil befestigt werden kann, um die gefüllten Lysimeter mit einem Kran herauszuheben. Dies erleichtert das Leeren der Gefässe sehr stark. Um ein Eindringen von Wasser in den Kellerraum zu verhindern, weisen die Gefässe am oberen Rand zudem einen breiten, nach aussen abfallenden Kragen auf. In der Mitte des Gefässbodens ist eine Offnung mit Schraubengewinde vorhanden, in die ein Kunststoffnippel mit Abdecksieb eingeschraubt werden kann. An diesen wird ein Schlauch zum Ableiten des Sickerwassers befestigt. Die Konstruktion der Gefässe erfolgte durch die Firma Eschmann AG, Thun.

Abflussmessung

Da es für unsere Versuche sehr wichtig ist, dass unveränderte, nicht kontaminierte Sikkerwasserproben erhalten werden, musste ein Abflussmessgerät geschaffen werden, das aus korrosionsfreiem Material, staubdicht und restlos ausfliessend hergestellt ist. Die Firma H. Gertsch & Co. AG, Zürich entwikkelte nach diesem Pflichtenheft ein modifiziertes Abflussmengenmessgerät zu Lysimetern LY 100, geeignet zur Messung von instationär auftretenden Flüssigkeitsmengen. Es ist eine Abwandlung des seit Jahren be-

währten Niederschlagsmessers nach dem System Joss-Tognini (MZA Locarno-Monti). Funktionsprinzip (Abb. 4): Eine auf Schneiden gelagerte Wippe (1) ist mit einer Trennwand (2) in zwei Kammern aufgeteilt. Ein Gegengewicht (3) drückt die Wippe an den einen Anschlag (4). Die rechte Kammer ist dabei entleert, durch die Düse (5) eintretendes Wasser wird durch die Trennwand in die linke Kammer geleitet. Die Wippengeometrie und das Gegengewicht sind so ausgebildet, dass bei einer bestimmten Füllmenge

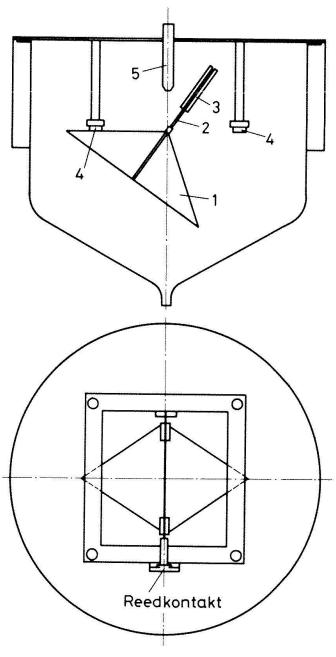


Abb. 4. Abflussmengenmessgerät LY 100 mit Wippe. Vertikal- und Horizontalschnitt.

die Wippe vom Anschlag abgehoben wird. Damit ist ein instabiler Vorgang eingeleitet, da auch bei gestoppter Wasserzufuhr der Schwerpunkt der Flüssigkeit sich mit der Verdrehung von der Drehachse entfernt. Die Wippe kippt deshalb schlagartig und die gefüllte Kammer wird entleert. Durch Verstellen des Gegengewichtes (3) lässt sich die Flüssigkeitsmenge pro Füllung verstellen. Für die Lysimeter mit 1 m² Fläche wurde eine Füllmenge von 100 ml gewählt, was einer Wassermenge von 0,1 mm Niederschlag entspricht.

Die Impulse werden in einer zentralen Zähleinheit registriert. Später soll ein direkter Anschluss an den Computer erfolgen.

Messfehler werden verursacht durch die Trägheit der Wippe, durch Oberflächeneffekte und durch Verschmutzungen, die beim Leeren nicht aus der Wippe ausfliessen. Der durch die Trägheit verursachte Fehler besteht darin, dass von Beginn des Kippens bis zum Durchgang der Trennwand unter der Düse weiterhin Wasser in die volle Kammer fliesst. Durch Verwendung von hochfestem. dünnem Wippenblech (rostfreier Stahl) kann das Gegengewicht möglichst klein gehalten werden. Dies und die reibungsarme Lagerung mit Schneiden und Teflon-Lagerstellen bringt eine möglichst hohe Eigenfrequenz der Wippe und damit eine Minimierung dieses Fehlers. Da dieser Fehler mit zunehmender Durchflussmenge grösser wird, ist die Düse als Durchflussbegrenzung ausgebildet. Oberflächeneffekte können durch geeignete Formgebung der Wippe klein gehalten werden. Damit sich möglichst wenig Wasser in den Randzonen der Wippenschale befindet, sollen alle Flächen der Schale, die von Wasser benetzt werden, grosse Neigungswinkel aufweisen. Damit rasches und vollständiges Ausfliessen des Wassers und damit auch von Schmutzpartikeln, garantiert ist, müssen auch während der Entleerung die Neigungswinkel aller benetzten Flächen möglichst gross sein. Diese Forderungen werden mit einer Wippe, bei der die Begrenzungswände zueinander senkrecht stehen, optimal erfüllt. Beim Aufbau wurde vor allem Wert auf Robustheit und Korrosionsfreiheit gelegt. Dies konnte durch die ausschliessliche Verwendung von rostfreiem Stahl, Teflon und anodisch eloxiertem Anticorodal-Aluminium erreicht werden.

Datenausgang: Beim Durchgang durch die Mittelstellung wird ein Kontakt durch den an der Wippentrennwand befestigten Magnet geschlossen. Diese berührungslose, verschmutzungsunempfindliche Abtastung und die Verwendung eines Reedkontaktes (Kontakte Platin, eingeschmolzen in Schutzgas

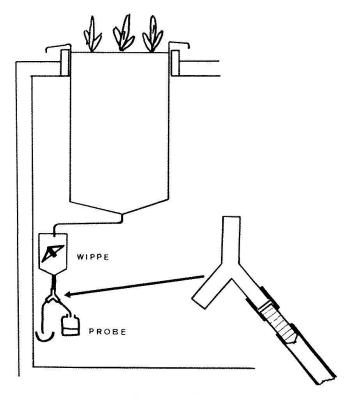


Abb. 5. Lysimetergefäss mit Abflussmengenmessgerät und Probenahmeeinrichtung.

gefüllter Glasampulle) ergeben einen störungsfreien Betrieb für bis zu 50·106 Wippenkippungen.

Probenahme

Bei der vorliegenden Lysimetergrösse können monatliche Abflussmengen von über 100 Liter auftreten. Für die chemischen Analysen reicht eine Probemenge von 100 ml. Es wurde daher eine Einrichtung geschaffen, die eine abflussproportionale Entnahme einer kleinen Probe erlaubt (vgl. Abb. 5). Bei jeder Entleerung der Wippe werden von den 100 ml Wasser 5 ml in das Probenahme-Gefäss abgeleitet. Auch hier wurde darauf geachtet, dass kein Staub eintreten kann und dass die Entleerung vollständig ist. Um Algenbildung zu verhindern, wird jeder Lichtzutritt verhindert. Es ist vorgesehen, im Frühling 1981 mit der Versuchstätigkeit zu beginnen.

Adresse der Autoren:

Dr. Otto Josef Furrer und Werner Stauffer Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene Schwarzenburgstrasse 155 CH-3097 Liebefeld-Bern