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D. Fachvorträge / Conférences spécialisées

1. Logik / Logique

M. Sanchez-Mazas (Genève): Un modèle mathématique de la logique peut-il
se fonder sur l'intension?

Le but de cette communication est d'étudier le problème de la construction
de modèles mathématiques — et, plus spécifiquement, arithmétiques — de
certaines théories ou systèmes logiques, d'abord au niveau des classes et de
la syllogistique, ensuite au niveau propositionnel, lorsque, dans une stricte
optique leibnizienne, on donne priorité à l'aspect intensionnel, plutôt qu'à
l'extensionnel.

Il serait, à mon avis, utile, dans ce cadre, de discuter de la viabilité et de
l'éventuel intérêt théorique et pratique d'un type très simple de modèle
arithmétique qui pourrait être utûisé non seulement dans le domaine logique
pur, mais également dans l'application de la logique à l'analyse des classifications

et des théories scientifiques ou même des systèmes normatifs, conçus
comme des classifications déontiques (1), ainsi qu'au traitement informatique

des unes et des autres. Les réflexions suivantes sont fondées sur les
premiers résultats d'une recherche personnelle dans ce sens, malheureusement
trop isolée et qui se veut bien modeste.

Cette recherche a été stimulée et orientée par la curiosité ressentie
depuis toujours (2) de savoir si, en suivant de façon conséquente la voie
marquée par Leibniz » ans ses calculs logiques de base intensionnelle (3), mais en
y introduisant quelques corrections importantes et en utilisant le formalisme
et le symbolisme de la logique mathématique d'aujourd'hui, il n'était pas
possible d'arriver à obtenir un modèle arithmétique simple, cohérent et
approprié d'un système logique tout entier, comme le calcul des classes, la
syllogistique ou le calcul propositionnel, ainsi qu'un système non tautolo-
gique de classes (classification), de propositions scientifiques (théorie
extralogique) ou de propositions normatives (système normatif) (4).

Les intuitions géniales de Leibniz sur les profondes analogies formelles
entre la structure du nombre et celle du concept, et par là sur le pouvoir
d'expression des nombres dans tous les domaines de notre raisonnement (5),
ont été, pendant des siècles, une source inépuisable d'inspiration et une
tentation permanente de l'esprit humain. Cet intérêt pour une pensée créatrice
qui se trouve à l'origine même de toute la logique mathématique actuelle ne
s'est pas éteint aujourd'hui, loin de là, et cela tout en ayant pleine
conscience du caractère utopique et irréalisable de la mathesis universalis et du
programme algorithmique leibnizien et tout en acceptant, comme un fait
scientifique irréversible, l'existence des nouvelles frontières de la raison
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logico-mathématique révélées par les théorèmes de Gödel, Church, Kleene,
Löwenheim-Skolem et d'autres, et magistralement décrites parle philosophe
et logicien belge Jean Ladrière dans son livre "Les limitations internes des
formalismes" (6), paru il y a vingt ans.

Il est bien connu, d'autre part, que le philosophe et mathématicien français

Louis Couturat, qui fut, par ses recherches parmi les manuscrits de la
Bibliothèque Royale de Hanovre (7), le véritable découvreur de la plus
importante partie de l'œuvre logique de Leibniz, ainsi que le premier grand
expositeur et critique de cet œuvre, avec Bertrand Russell (8), condamnait
sans appel dans son livre "La logique de Leibniz", paru en 1901 (9), la
préférence accordée par le philosophe allemand au point de vue de l'intension
ou compréhension, qu'il tint pour responsable de l'échec du grand
programme logico-mathématique leibnizien. Leibniz... — disait, en effet,
Couturat — "a été constamment tiraillé entre deux tendances contraires: l'une,
provenant de la tradition, qui le portait à considérer surtout les rapports
de la compréhension; l'autre, plus conforme à son esprit mathématique, qui
l'amenait parfois à préférer la considération de l'extension. Or - juge
Couturat — celle-ci est la seule qui permette de soumettre la logique au traitement

mathématique, parce que, comme on l'a déjà vu — et Couturat se

fonde, pour cette dernière affirmation, sur une représentation incorrecte du
syllogisme Celarent, selon la perspective intensionnelle (10) —, c'est la seule
qui satisfasse aux conditions de l'intuition et de l'imagination" (11).

Et le philosophe français tire de son erreur une autre conclusion générale,

également fausse (mais qui n'aura pas manqué d'influencer le développement

ultérieur de la logique mathématique, où l'orientation extension-
nelle s'est imposée de façon dominante), allant jusqu'à nier l'isomorphisme
entre une structure fondée sur l'extension et la structure correspondante,
fondée sur l'intension ou compréhension. Il affirme, en effet: "Les rapports
de compréhension ne sont pas susceptibles de figuration géométrique
comme les rapports d'extension... Et il ne suffit pas de renverser ou d'intervertir

ceux-ci pour en tirer ceux-là. Leibniz s'était donc trompé en croyant
que les uns étaient purement et simplement inverses des autres; nous verrons
que cette erreur a entaché ses essais de Calcul logique et a contribué à les
faire avorter" (12).

Or, il est clair que tout le monde ne pouvait pas être du même avis sur
ce point. Ainsi, par exemple, en 1954, le grand logicien américain Nicholas
Rescher, professeur à l'Université de Pittsburgh, écrivait dans un important
article consacré aux calculs logiques de Leibniz et à la critique de ces calculs
par Couturat: "L'on pourra difficilement surestimer la dette que tous les
chercheurs contemporains intéressés par la logique de Leibniz ont envers
Couturat. Cette gratitude doit, toutefois, être accompagnée de la constatation

des graves carences de la conception logique du propre Couturat. En
effet, le logicien français était persuadé que la perspective extensionnelle est
la seule qui soit correcte en logique... Or, ce préjugé de Couturat a défiguré
son exposition de Leibniz et l'a amené à lutter contre des moulins à vent.
Couturat a vu, en effet, dans la logique de Leibniz, de nombreuses insuffisances

dont l'origine était, à son avis, justement la perspective intensionnelle
adoptée par le philosophe allemand" (13).

Il faut ajouter aussi, toutefois, que ces justes critiques de la position de
Couturat affirmant que les rapports intensionnels sont par nature refractai-
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res au traitement mathématique, n'ont pas été suivies jusqu'ici de résultats
constructifs assez importants pour invalider définitivement dans la pratique
les thèses du philosophe parisien. Et le logicien italien Giarretta se demandait

très justement il y a cinq ans dans la revue Pensiero: "Pourquoi ont
échoué de si nombreuses tentatives de réfuter les thèses de Couturat sur
l'impossibilité d'un calcul logique intensionnel?" (14).

Or, je dois dire à ce sujet que c'est justement en adoptant la perspective
intensionnelle et les suggestions de Leibniz contenues surtout dans ses essais
d'avril 1679 (15), bien qu'en introduisant des modifications essentielles en
ce qui concerne la traduction arithmétique de certaines opérations logiques
comme la combinaison et l'alternative de caractères ainsi que la négation,
que je suis arrivé à construire un type de modèle arithmétique qui me paraît
utilisable dans différents domaines de la logique pure et appliquée, et dont
l'emploi est simple et facile, même dans la perspective informatique (16).

La méthode d'arithmétisation des composants, des opérations et des
relations logiques, dont je vais essayer de donner ici quelques exemples,
pourrait être utilisée, à mon avis, dans deux domaines fort différents que
nous pourrions appeler, respectivement, "le domaine tautologique" et "le
domaine non tautologique". Dans le premier, elle peut constituer un instrument

de simplification de la déduction ou de la vérification de la validité
d'une formule logique; dans le deuxième, la méthode pourrait permettre la
traduction arithmétique de certaines classifications d'une part, et de certains
systèmes scientifiques ou même juridiques formalisés au niveau proposition-
nel d'autre part, simplifiant l'analyse logique et la recherche des conséquences

logiques des uns et des autres, ainsi que leur traitement automatique ou
informatique.

On sait que la construction d'un modèle pour un système formel
constitue, en soi-même, une preuve suffisante de la consistance ou, si on veut, du
caractère non contradictoire de ce système. A son tour, d'après le théorème
bien connu de Löwenheim-Skolem-Gödel, tout système formel consistant
admet un modèle ou une interprétation vraie dans le domaine des nombres
naturels, ou, si on veut, à tout axiome du système mentionné on peut associer

une proposition vraie concernant les nombres naturels, c'est-à-dire un
théorème arithmétique (17).

D'autre part, dès que nous disposons d'un modèle arithmétique d'un
calcul logique permettant d'associer à chaque formule de ce calcul une autre
formule, dont la vérité ou la fausseté peut être vérifiée sans sortir de
l'arithmétique, le problème de décider si une formule logique de n variables est
valide ou non devient beaucoup plus simple et plus rapide que lorsque l'on
utilise, selon la méthode habituelle dans le calcul propositionnel, les tables
de vérité pour évaluer une telle formule, puisque dans ce dernier cas il faut
procéder à 2n substitutions de valeurs ou, si on veut, à 2n tests ou essais
différents.

Le type de modèle arithmétique de base intensionnelle que nous proposons

peut être utilisé au moins à deux niveaux logiques différents, à savoir,
le niveau des classes et de la syllogistique et le niveau des propositions
inanalysées. Considérons successivement ces deux niveaux.

Au niveau des classes, rappelons tout d'abord les notions de base —

respectivement composants, opérations ou fonctions et relations — qui, dans la
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perspective intensionnelle, correspondent aux notions homologues de la
perspective extensionnelle (Tab. 1):

Tab. 1 Interprétation extensionnelle et intensionnelle d'un calcul des classes.

Notions Perspective extensionnelle Perspective intensionnelle

Classes Ensemble des éléments Propriété ou caractère
possédant un certain possédé par un certain

a, b, c, caractère ou propriété ensemble d'éléments
(Exemple: les hommes) (Exemple: homme)

a n b Intersection des Combinaison des

ensembles a et b caractères a et b

(Exemple: les animaux (Exemple: animal
raisonnables) raisonnable)

a u b Réunion des Alternative des
ensembles a et b caractères a et b

(Exemple: les animaux (Exemple: animal
et les végétaux) ou végétal)

V Classe totale Caractère universel
(inclut toutes les (est contenu dans tous
classes) les caractères)

A Classe vide Caractère irréel (ou faux)
(est incluse dans (contient tous les
toutes les classes, caractères, même
mêmes disjointes) opposés)

â Classe complémentaire de a Caractère opposé à a

telle que: aüä V (totale) tel que: (auâ V (universel)
\ anâ A (vide) "1 anâ A (irréel)

(Exemple: l'ensemble des (Exemple: le caractère

non hommes) non homme)

a çb a est incluse dans b a contient b

a b a est égal à b a est égal à b
(a inclut b et b inclut a) (a contient b et b contient a)

A la considération extensionnelle de la classe, où l'accent est mis sur
l'ensemble des éléments qui lui appartiennent et qui peuvent être désignés
de n'importe quelle manière, même simplement ostensive, comme dans le
cas de la classe formée par ce stylo et ces lunettes, correspond une considération

intensionnelle, où la classe est identifiée essentiellement au caractère
qui la définit, par exemple "triangle rectangle", sans qu'aucune référence
directe et explicite aux objets ou individus auxquels ce caractère s'applique
ou pourrait s'appliquer ne soit nécessaire.

Aux opérations extensionnelles d'intersection, de réunion et de
complémentarité de classes, correspondent, respectivement, dans la perspective
intensionnelle, les opérations de combinaison, alternative et opposition de
caractères; à la constante logique extensionnelle dénommée "classe totale",
et qui contient toutes les classes, correspond la constante intensionnelle que
nous appelons "caractère universel", et qui est contenu dans tous les caractères

; à l'autre constante logique extensionnelle, dénommée "classe vide",
et contenue dans toutes les classes, correspond la constante intensionnelle
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que nous appelons "caractère irréel" - il correspond au "terminus falsus"
(terme faux) ou "non-ens" (non-être) de Leibniz (18) — et qui contient
tous les caractères, mêmes opposés, comme "rectangle" et "non-rectangle";
finalement, à la relation la classe a est incluse (extensionnellement) dans la
classe b, par exemple "la classe des hommes est incluse dans la classe des
mammifères", correspond la relation le caractère a contient (intensionnelle-
ment) le caractère b, par exemple "le caractère homme contient le caractère
mammifère".

Nous construisons, sur cette base intensionnelle, un modèle arithmétique
(19) du système logique L, constitué par la logique des classes et la syllo-

gistique, en établissant entre ce système logique L et une structure
mathématique M une correspondance biunivoque C, en vertu de laquelle:
1) aux constantes et variables de caractère de L (lettres minuscules) on
associe dans M respectivement des nombres entiers - qui seront premiers ou
composés selon que les caractères auxquels ils sont associés sont simples ou
complexes — et des variables prenant leurs valeurs dans l'ensemble des nombres

entiers (lettres majuscules correspondantes); plus spécialement, on asso-
ciera:
a) au caractère universel de L, qui est contenu dans tous les caractères de

L, le nombre 1 (unité ou nombre vide), qui est diviseur de tous les nombres

de M et, plus précisément, leur plus grand commun diviseur;
b) au caractère irréel de L, qui contient tous les caractères de L, le nombre

plein 0 de M, qui est multiple de tous les nombres de M et, plus
précisément, leur plus petit commun multiple.

2) aux opérations ou fonctions logiques de L, dont les arguments sont des
caractères, on associe dans M des opérations ou fonctions arithmétiques,
dont les arguments sont des nombres entiers; plus spécialement, on
associera:

a) à la combinaison de deux caractères a, b, le plus petit commun multiple
de leurs nombres caractéristiques respectifs A, B (au lieu de leur
produit, comme proposait Leibniz);

b) à l'alternative de deux caractères a, b, le plus grand commun diviseur de
leurs nombres caractéristiques respectifs A, B;

c) au caractère â (non-a), opposé à un caractère a, le nombre A (non-A),
qui est le quotient 0/A de la division du nombre plein 0 par le nombre
A.

3) aux propositions de L, exprimant des relations logiques entre des caractères

et/ou des fonctions de caractère, on associe dans M des équations ou
inéquations exprimant des relations arithmétiques entre des nombres et/ou
des fonctions arithmétiques; plus spécialement, on associera:
a) à la relation le caractère a contient le caractère b, la relation le nombre

A est multiple du nombre B ou, si on veut, B divise A, exprimée par une
des deux équations suivantes:
[ A, B ] i A (plus petit commun multiple de A et B égal à A)
(A, B) B (plus grand commun diviseur de A et B égal à B);

b) à la relation le caractère a est égal au caractère b, la relation le nombre
A est égal au nombre B, exprimée par l'équation A B.
La correspondance entre le système logique intensionnel L et son

modèle arithmétique M peut être schématisée de la façon suivante: voir tab. 2.
Dans ces conditions, la structure M est un modèle arithmétique:
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Tab. 1 Correspondance entre le système logique L et son modèle arithmétique M.

Système logique intensionnel L

Caractères simples:

a2,an
Caractères quelconques:

a, b, c,

Combinaison de a et b:

a n b

Alternative de a et b :

a u b

Caractère universel: V
V est contenu dans tous les

caractères de L, en étant
contenu dans tous les
caractères simples de L
V ajUa2u...Uan

Caractère irréel: A
A contient tous les caractères

de L, en contenant tous les
caractères simples de L
A — f^a2 ^ ^...aj-J

Caractère opposé à a: ä
f a n à A]
\ a u â vi

Le caractère a contient le
caractère b:

açb
a n b a

'

a u b b

Le caractère a est égal au
caractère b:

a b
(a=b) =df (açb).(bça) (20)

Structure arithmétique M qui sert de modèle au
système logique intensionnel

Nombres premiers:

Ai > A2, An
Nombres entiers:

A, B, C,

Plus petit commun multiple de A et B:

[A, B]

Plus grand commun diviseur de A et B:

(A, B)

Nombre vide (unité): 1

1 est facteur de tous les nombres de M, en étant
facteur de tous les nombres premiers de M

1 - (Aj, A2, An)

Nombre plein: 0
0 est multiple de tous les nombres de M, en
étant multiple de tous les nombres premiers
de M

0 [ Aj, A2, An]

Nombre_opposé à A: A. A df 0/A
[ A, A] 0]
£A, A) 1

A A

Le nombre A est multiple du
nombre B :

[ B I A (B divise A)
[A, B] A

l (A, B) B

Le nombre A est égal au
nombre B:

A B
(A=B) =df (B I A).(A IB)

a) de la logique des classes, dans la mesure ou à chaque théorème de cette
logique reste associée dans M, en vertu de la correspondance C, une équation
arithmétiquement vraie, quelles que soient les valeurs numériques attribuées
aux variables, et réciproquement;
b) de la syllogistique, dans la mesure où à chaque antécédent syllogistique,
constitué par une proposition unique (dans le cas des inférences immédiates)
ou par un couple de prémisses (dans le cas des modes syllogistiques proprement

dits) et admettant comme conséquence une nouvelle proposition,
logiquement déductible de la (des deux) première(s) — ou de celle(s)-ci et d'une
condition d'existence pour les inférences immédiates et les modes syllogistiques

conditionnellement valides (21) —, reste associé dans M, en vertu de la
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correspondance C, respectivement une équation ou un système d'équations
et/ou inéquations, admettant, comme conséquence arithmétique, une nouvelle

équation ou inéquation, associée par C à la conclusion ou conséquence
logique de la (des) prémisse(s) précitée(s).

Une construction entièrement analogue est prévue pour fournir un
modèle arithmétique de base intensionnelle (22) au calcul propositionnel.

Regardons maintenant les choses de plus près, à commencer par
l'expression arithmétique des propositions, ou si on veut, les équations et
inéquations associées à chaque type de proposition formulable dans la logique

des classes.
Signalons, pour commencer, que les quatre espèces de propositions

catégoriques d'Aristote, énoncées traditionnellement sous des formes
comme les suivantes:
"tout triangle équilatéral est équiangle" (universelle affirmative);
"aucun homme n'est pierre" (universelle négative);
"quelque tueur est salarié" (particulière affirmative); et
"quelque politicien n'est pas menteur" (particulière négative)
sont formalisées dans la perspective intensionnelle respectivement de la
façon suivante :

"le caractère triangle équilatéral contient le caractère équiangle
"le caractère homme contient le caractère non-pierre";
"le caractère tueur ne contient pas le caractère non-salarié et
"le caractère politicien ne contient pas le caractère menteur

On peut comprendre déjà qu'à côté des propositions ayant comme
image, dans le modèle arithmétique, des équations (ce sont les propositions
universelles, exprimant que le caractère-prédicat ou son opposé est contenu
dans le caractère-sujet), il y a aussi d'autres propositions ayant comme
image, dans le modèle arithmétique, des inéquations. Ce sont les propositions

particulières exprimant que le caractère-prédicat ou son opposé n'est
pas contenu dans le caractère-sujet.

Dans le tableau 3 on constatera qu'à chaque proposition catégorique
d'Aristote restent associées dans le modèle arithmétique 6 équations ou
inéquations, de présentation différente, mais arithmétiquement équivalentes;
réciproquement, la même équation ou inéquation peut rester associée à des

propositions catégoriques de présentation différente, mais exprimant la
même relation logique. En reprenant l'exemple de Church (23), qui se réfère
à Aristote: la proposition affirmant que le caractère homme contient le
caractère animal est logiquement équivalente à la proposition affirmant que
le caractère non-animal contient le caractère non-homme: Asp Aps.

On constatera aussi que 3 des 6 équations ou inéquations associées à

chaque espèce de proposition catégorique contiennent le plus grand commun

diviseur des deux nombres caractéristiques associés respectivement au

Tab. 3 Equations et inéquations associées aux différentes propositions catégoriques

Proposition Valeur de Valeur de Valeur de Valeur de Proposition
N°-Formule (S,P) et (S,P) et (S,P)er (S,P) et Formule-NO

I Asp
I Aps

de [S,P] de [S,P] de [S,P] de [S,P]

(S,P)=P (S,P)=1 (S,P)=S

[S,P]=S [S,P]=0 [S,P]=P

Esp

Eps
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Esp (S,P)=P (S,P)=S (S,P)=1 Asp

Eps)[ [S,P]=0 [S,P]=S [S,P]=P Aps

Isp 1 (S,P)<P (S,P)<S (S,P)>1 Osp 1

Ips f [S,P]<0 [S,P]>S [S,P]>P ops j

Osp (S,P)<P (S,P)>1 (S,P) <s Isp

Ops [S,P]>S [S,P] <0 [S,P] >P Ips

Définition de chaque Perspective
proposition catégorique: extensionnelle:

Asp df s ç p

Esp df s ç p

Isp df (s C p)

Osp df (s Ç P)

Tout s est p

Aucun s n'est p

Quelque s est p

Quelque s n'est
pas p

Perspective
intensionnelle:

Le caractère s contient
le caractère p

Le caractère s contient
le caractère p (non-p)

Le caractère s ne contient
pas le caractère p (non-p)

Le caractère s ne contient
pas le caractère p

sujet et au prédicat de la proposition, tandis que les 3 autres contiennent le
plus petit commun multiple des deux nombres en question.

Passons maintenant à la syllogistique et commençons par les 36 lois de
l'inférence immédiate. Toutes ces lois ont la forme d'une implication dont
l'antécédant et le conséquent sont des propositions catégoriques d'Aristote.
Parmi ces lois, 24 sont universellement valides et ne dépendent pas d'une
condition d'existence, à savoir: les 8 lois de la contradiction, les 8 lois de

l'obversion, les 4 lois de la conversion simple, et les 4 lois de la conversion
par contraposition.

A l'antécédent et au conséquent de chacune des 24 formules exprimant
ces 24 lois sont associées dans le modèle arithmétique respectivement une
équation j. inéquation qui figure comme antécédent et une équation ou
inéquation qui figure comme conséquent d'une implication arithmétique
vraie, quelles que soient les valeurs attribuées aux variables. En vertu du
modèle, il est donc possible de démontrer la validité de ces 24 lois en
s'appuyant sur les lois de l'arithmétique.

Les 12 autres lois de l'inférence immédiate, dont la validité dépend
d'une condition d'existence, sont les suivantes: les 4 lois de la subalterna-
tion, les 2 lois de la contrariété, les 2 lois de la sous-contrariété, les 4 lois de
la conversion partielle.

La condition d'existence, qui prend la forme d'une proposition
particulière dont le sujet et le prédicat sont l'un et l'autre le terme dont l'existence

est une condition de la validité de la loi, figure, à côté de l'antécédent,
comme une deuxième prémisse. Arithmétiquement, la déduction prend la
forme d'un système de deux équations ou/et inéquations qui admet, comme
conséquence arithmétique, une troisième équation ou inéquation, associée
dans le modèle arithmétique à la conclusion logique des deux prémisses.
(Voir tab. 4).
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Tab. 4 Démonstration arithmétique des 36 lois des inferences immédiates de la logique classique

A. Lois universellement valides (dont la validité ne dépend pas d'une condition d'existence)

N° Formule logique

I. Lois de la contradiction

1.

2.

3.

4.

5.

6.

7.

Asp -*

Osp->

Esp -»

Isp -
Isp -*

Esp -»•

Osp-*
Äsp -»

Ospl

Asp)

Isp |

Esp j

Esp 1

Isp I

Aspl

Osp I

Asp Osp

Esp ^ Isp

Isp Esp

Osp Äsp

II. Lois de l'obversion

9. Asp-* Esp

10. Esp -* Asp

11. Esp -* Asp

12. Asp-* Esp

13. Isp -* Osp

14. Osp-* Isp

15. Osp-* Isp

16. Isp -* Osp

Asp «> Esp

Esp ** Asp

Isp «* Osp

Osp «* Isp

III. Lois de la conversion simple

Esp «* Eps

Isp ** Ips

17. Esp -> Eps

18. Eps -* Esp

19. Isp -* Ips

20. Ips -* Isp

Démonstration arithmétique

3 h ^0 (S,P) < P

(S,P) < P -> (S,P) P

(S,P)= P -> (S,P) < P

(S,P) < P -> (S,P) P

(S,P) < P -> (S,P) p

(S,P) p (S,P) < p

(S,P) < p -> (S,P) p

(S,P)= p -> (S,P) < p

(S,P)= 1 (S,P)= 1

(S,P)= 1 -> (S,P)= 1

(S,P)= s -> (S,P) s

(S,P) s -> (S,P) s

(S,P) < s (S,P) < s

(S,P) < s - (S,P) < s

(S,P) > 1 -> (S,P) > 1

(S,P) > 1 -> (S,P) > 1

(S,P)= 1 -> (P,S)= 1

(P,S)= 1 -> (S,P)= 1

(S,P) > 1 -> (P,S) > 1

(P,S) > 1 -> (S,P) > 1

(S,P) P (S,P) < P

(S,P) P (S,P) < P

(S,P) < P (S,P) P

(S,P) < P <> (S,P) P

(S,P) 1 ~ (S,P)= 1

(S,P) S ~ (S,P) s

(S,P) < S (S,P) < s

(S,P) > 1 (s|) > 1

(S,P)= 1 < (P,S)= 1

(S,P) > 1 (P,s) > 1



u>

o

N° Formule logique Démonstration arithmétique

IV. Lois de la conversion par contraposition

21. Asp-> Apsl
Asp+> ApS (S^) P -» (P,S) S)

(s,P) p « (P,S) S

22. Aps -> Asp I (P,S) S -* (S,P) PI

23. O^Opl (S,P) < P - (P« < S

24. Ops -*Osp[ (P,S) < S - (Sf) < P

B. Lois conditionnellement valides (dont la validité dépend d'une condition d'existence)

N° Formule logique Démonstration arithmétique

V. Lois de la subalternation

25. Asp • Iss -> Isp (S,P) S • S > 1 -> (S,P) > 1

26. Esp • Iss Osp (S,P) S • S > 1 -» (S,P) > 1

27. Isp • Iss -+ Asp (S,P) > 1 • S > 1 (S,P) S

28. Öip • Iss Esp (S,P > 1 • S > 1 -> (S,P) S

VI. Lois de la contrariété

(S,P) < P (P,S) < S

29. Asp • Iss Esp (S,P) S • S > 1 -* (S,P) 1

30. Esp • Iss -> Äsp (S,P) 1 • S > 1 (S,P) S

VII. Lois de la sous-contrariété

31. Ösp • Iss ^ Isp (S,P) < S • S > 1 ^ (S,P) > 1

32. îsp • Iss -> Osp (S,P) > 1 • S > 1 -» (S,P) < S

VIII. Lois de la conversion partielle

33. Asp • Iss -» Ips (S,P) S • S > 1 -> (P,S) > 1

34. Esp • Ipp -* Ops (S,P) P • P > 1 (P,S) > 1

35. îps" • Iss Äsp (P,S) > 1 • S > 1 -* (S,P) S

36. Ops • Iss -» Ësp (P,S) > 1 • P > 1 (S,P) P



Passons maintenant à la démonstration arithmétique des différents
modes syllogistiques. Dans notre premier exemple (Tab. 5), nous avons, à

gauche, le schéma logique du mode syllogistique CESARE, de la deuxième
figure, que nous pourrions lire dë la façon suivante:

Aucun p n'est m
Tout s est m

donc Aucun s n'est p
A droite du tableau, en haut, nous avons les deux équations associées

dans le modèle arithmétique aux deux prémisses du syllogisme. Ces deux
équations forment un système qui admet comme conséquence, l'équation
correspondante à la conclusion du syllogisme.

Dans la chaîne des égalités, sous la ligne horizontale, chaque passage
d'un membre au membre suivant est effectué soit en vertu d'une des équations

associées aux prémisses (premier, troisième et dernier passages), soit
par l'application de la propriété associative de l'opération plus grand commun

diviseur. L'égalité entre le premier membre de la chaîne — à savoir, plus
grand commun diviseur du complément de S et de P — et le dernier — à

savoir, le complément du nombre S — constitue l'équation associée à la
conclusion du syllogisme.

Pour tous les modes syllogistiques, on opère d'une manière analogue, en
appliquant, le cas échéant, en plus de la propriété associative du plus grand
commun diviseur, d'autres propriétés arithmétiques simples.

Dans notre deuxième exemple (Tab. 6), nous montrons comment
s'effectue la déduction arithmétique du mode syllogistique FERISON, de la
troisième figure. Dans notre troisième exemple (Tab. 7), nous passons à la
déduction arithmétique d'un syllogisme indirect, à savoir BAMALIP, de la
quatrième figure, dont la validité dépend d'une condition d'existence, en
l'occurrence Ipp, que nous pouvons lire "quelque p est p", c'est-à-dire, en

Tab. 5 Démonstration arithmétique d'un syllogisme direct de la deuxième figure:
mode CESARE.

Prémisses et conclusion

h Epm

h Asm

Equations et/ou inéquations associées

(P, M) M ] Système d'équations
associé au système

(S, M) de prémisses

Esp (S, P) ((S, M), P) (S, (P, M))

ï (S, M) S

Explication des symboles d'égalité:

signifie :

signifie :

signifie :

a

égal d'après l'équation
associée à la majeure (première prémisse);

égal d'après l'équation
associée à la mineure (deuxième prémisse);

égal d'après les lois ou théorèmes
arithmétiques du plus grand commun diviseur (propriété
associative, commutative, etc.).
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termes extensionnels, "il y a au moins un objet p" et, en termes intension-
nels, "le caractère p n'est pas irréel".

Il est facile de constater que l'équation (S, P) S, obtenue comme
conséquence arithmétique nécessaire du système d'équations associée aux
prémisses, est associée dans le modèle à la proposition Esp, conclusion
légitime des prémisses, d'après le mode CESARE.

Tab. 6 Démonstration arithmétique d'un syllogisme direct de la troisième figure:
mode FERISON

Prémisses et conclusion

h Emp

I- Ims

Equations et/ou inéquations associées

(M, P) M | Système d'équations/

_ [ inéquations associé au
(M, S) > 1 J système de prémisses

1- Osp (S,P) (S, M, P) (S, M, P)
a a

(S, M*, P) ((M, P), S)
a 1

| (S, M, P) (M, S) > 1

Tab. 7 Démonstration arithmétique d'un syllogisme indirect de la quatrième figure:
mode BAMALIP

Prémisses et conclusion

h Apm

h Ams

h IPP

Equations et/ou inéquations associées

(P, M) P Système d'équations

_ associé au système
(M, S) M de prémisses

(P, P) P > 1 Inéquation associée
à la condition d'existence
ou non irréalité de p
(troisième prémisse)

h Isp (S, P) (S, (P, M)) (P, (M, S))
1 a 1

P>1
1 e

Explication du nouveau symbole d'inégalité introduit dans cet exemple:

> 1 signifie:
e

plus grand que 1 d'après l'inéquation associée à la condition d'existence.

Cette arithmétisation de la syllogistique est, à notre connaissance, la
première du genre, permettant, comme nous le résumons dans Tab. 8, la
démonstration arithmétique des 15 modes directs et des 9 modes indirects,
c'est-à-dire des 24 modes traditionnels qui sont tous traduits en systèmes
d'équations et/ou inéquations. On peut ajouter que les modes non traditionnels,

comme Garderont, Helenï, Libero et Noverï, du logicien allemand
Albert Menne (24), etc., peuvent également être démontrés par voie arith-
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métique sans difficulté. Finalement, cette arithmétisation permet de résoudre

le problème de la décidabilité de la syllogistique, c'est-à-dire le problème
de décider, pour chaque forme syllogistique arbitrairement donnée, si elle
est valide ou concluante, ou si elle ne l'est pas. Ce problème, qui préoccupa
à tel point le grand logicien polonais, Jan Lukasiewicz, probablement le
meilleur connaisseur de la syllogistique après Aristote, qu'il décida de lui
consacrer le plus intéressant des chapitres de son ouvrage capital "La
syllogistique d'Aristote dans la perspective de la logique formelle moderne" (25),
reste réduit pour nous à un simple problème de vérification arithmétique.
Ainsi par exemple, notre méthode permet de prouver que l'expression que
Lukasiewicz signale dans le livre cité comme indécidable, que nous pourrions

lire "si quelque a est b, alors, si non tout a est b, alors tout b est a" est
fausse, comme Lukasiewicz affirme, mais en se déclarant incapable de prouver

cette affirmation (26). (Voir tab. 8 et 9).

Dans les tableaux qui suivent, nous montrons qu'il est possible de
construire pour le calcul propositionnel un modèle arithmétique entièrement
analogue à celui que nous avons construit pour le calcul des classes et la
syllogistique.

Pour ce faire, nous associerons aux variables propositionnelles des variables

numériques (prenant leurs valeurs dans un ensemble de nombres entiers),
aux constantes élémentaires des nombres premiers, à la proposition nécessairement

vraie (tautologie) le nombre vide 1 (l'unité), à la proposition
nécessairement fausse (contradiction) le nombre plein 0, défini comme le plus
petit commun multiple de tous les nombres du réseau ou, si on veut, comme
le produit de tous les nombres premiers du réseau, à la conjonction p.q de

p et q le plus petit commun multiple [P, Q] des nombres caractéristiques
respectifs P et Q, à la disjonction pvq de p et q le plus grand commun diviseur
(P, Q) de ces nombres. Finalement, aux relations logiques p-*q (p implique
q) et p^q (p est équivalente à q) seront associées dans le modèle, respectivement,

la relation arithmétique Q I P (Q divise P ou P est divisible par Q) et
P Q (P est égal à Q) (Tab. 10).

Dans le Tab. 11, on montre les relations arithmétiques associées dans le
modèle à toutes les relations logiques binaires dérivées des fondamentales.

Dans le Tab. 12, on applique le modèle à la démonstration arithmétique
de quelques célèbres groupes d'axiomes pour le calcul propositionel,

à savoir, ceux de Church (1951),Hilbert-Ackermann(1928) et Lukasiewicz
(1924), ainsi que les postulats de Kleene.

Nous dirons pour terminer que, étant donné Visomorphisme, déjà
signalé, entre le type de modèle arithmétique que nous venons d'exposer et
les modèles constitués par des réseaux binaires de nombres caractéristiques,
tous les programmes informatiques que nous avons construits sur la base de
ces derniers pour effectuer dans l'ordinateur la déduction automatique des
conséquences logiques de n'importe quel système scientifique ou normatif
formalisé d'après les perspectives indiquées - par exemple, les programmes
"CALCULUS RATIOCINATOR" et "CALCULUS CONSEQUENTIA-
RUM", qui vont être publiés très prochainement — pourront être utilisés
dans ce contexte (27).
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Tab. 8 Démonstration arithmétique des 24 modes classiques du syllogisme catégorique

A. Syllogismes universellement valides (dont la validité ne dépend pas d'une condition d'existence)

Figure N° et Formule logique Expression arithmétique Expression arithmétique de la conclusion
nom du mode des prémis ses

I. 1. Barbara Amp.Asm -> Asp (M,P)=M (S,M)=S -> (S,P)s((S,M),P)=(S,(M,P))=(S,M)=S
z a I z

I. 2. Celarent Emp.Asm -> Esp (M,P)=M (S,M)=S -» (S,P)=((S,M),P)=(S,(M,P))=<S,M)=S
2 a 1 2

I. 3. Darii Amp. Ism -» Isp (M,P)=M (S,M)*1 -» (S,P) (S,M,P)(S,M,P) (S,M,P)(S,(M,P)) (S,M,P)(S,M)>1
d a 1 2

I. 4. Ferio Emp. Ism -» Osp (M,P)=M (S,M)>1 -* (S,P) (S,M,P)(SJM,P) (S,M,P)(SJ(M,P))=(S,M,P)(S,M)?1
d a 1 2

II. 5. Cesare Epm.Asm -» Esp (P,M)=M (S,M)=S -> (S,P)=((S,M),P)=(S,(P,M))=(S,M)=S
z a 1 z

II. 6. Camestres Apm.Esm -» Esp (P,M)=M (S,M)=S -> (S,P)=((S,M)}P)=(Ss(P,M))=(&,M)=S
2 a 1 2

II. 7. Festino Epm. Ism -* Osp (PjM)=M (S,M)^1 -» (S,P) (S,M,P)(S5M5P) (S,M,P)(S,(P,M)) (SsM,P)(S,M)>1
d a 1 2

II. 8. Baroco Apm.Osm -* Osp (P,M)=M (S,M)>1 -» (S,P)=(S,MiP)(S,M,P)=(S,(P,M))(S,M,P)=(S,M)(S)M5P)> 1
a a 1 z

III. 9. Datisi Amp. Ims Isp (M,P)=M (M,S)>1 (S,P)=(S,M,P)(S,M)P)=(S,M,P)((M,P) ,S)=(S,M,P)(M,S)?I
d a 1 2

III. 10. Ferison Emp. Ims -» Osp (M,P)=M <M,S)>I -> (S,P) (S,M,P)(S,M,P) (S,M,P)((M,P) ,S)f(S,M,P)(M,S)?ld a 1 2

III.11. Disamis Imp.Ams -» Isp (M,P)>1 (M, s")=M (S ,P) (S ,M,P) S",M,P) (S ,M,P) (M,S) ,P) S,M,P) (M,P)> 1
d a 2 1

III.12. Bocardo Omp.Ams -» Osp (M,P)>1 (M,S) =M -» (S,P) (S,MJP)(S,M,P) (S,MJP)((M,S) ,P)=(S,M,P)(M,P)> 1
d a 2

IV.13. Calemes Apm.Ems -» Esp P ,M) =M (M,S)=S ->
1

(S,P)=((M,S),P)=((P,M),S)=(M,S)=S2 • a 1 2

IV.14. Fresison Epm. Ims -» Osp (P,M)=M (M,S) 71 (S,P) (S,M,P)(S,M,P) (S,M,P)C(P,M) ,S) (M,S)>1d a 1.2
IV.15. Dimatis Ipm.Ams -> Isp (P,M)>1 (M,S)=M -» (S,P)=(S,M,P)(S,M,P) (S,MJP)(P,(M,S)) (P,M)>1d a 2 1

B. Syllogismes conditionnellement valides (dont la validité dépend d'une condition d'existence)

B.l. Syllogismes à conclusion atténuée

1.16. Barbari j Amp.Asm.Iss -» Isp (M,P)=M (S,M)=S S>1 -> (S,P) ((S,M),P)=(S,(M,P)) (S,M)=S>1
^ a î z e



1.17. Celaront

11.18. Cesarop

11.19. Camestrop

IV.20. Calemop

Emp.Asm. Iss -* Osp

Epm.Asm.Iss -» Osp

Apm.Esm.Iss -» Osp

Apm.Ems.Iss -* Osp

(M,P)=M (S,M)=S S>1-* (S,P) ((S,M),P) (S,(M,P)) (S,M)=S>1
z a l z e

(P,M)=M (S,M)=S S>1 -* (S,P)=((S,M) ,P) (S,(P,M)) (S,M)=S>1
Z a 1 Z e

(P,M)=M (S,M)=S S>1 (S,P)=((S,M),P) (S,(P,M))=(S,M)=S>1
1 a 1 L e

(P,M)=M (M,S)=S S>l-> (S,P) ((M,S),P) ((P,M),S) (M,S)=S>1
2 a 1 2 e

B.2. Syllogismes à conclusion pleine utilisant la conversion partielle

111.21. Darapti

111.22. Felapton

IV.23. Bamalip

IV.24. Fesapo

; Amp.Ams.Imm -» Isp

[Emp.Ams.Imm -» Osp

Apm.Ams.Ipp Isp

Epm.Ams. Imm -» Osp

(M,P)=M (M,S)=M M^l -> (S,P) (S,M,P)(S,M,P) (S,M,P)((M,P),S) (S,M,P)(M,S) (S,M,P)M71
d a Lie(M, P)=M. (M,S)=M M*1 -* (S,P)=(S,M,P)(S,M,P)=(S,M,P)((M,P) ,S) (S,M,P)(M,S)=TS,M,P)M> 1
d a 1 le(P,M)=P (M,S)=M P71-+ (S,P)f(S,(PJM)) (P,(M,S)) (P,M)=P>l
1 a 2 1e

(P,M)=M (M,S)=M M 71 (S,P)=(S,M,P)(S,H,P)=(S,M>P)((P,M),S) (S,M,P)(M,S);(S,M,P)M>1
d a i 2 e

Explication des symboles et expressions arithmétiques

X nombre complémentaire du nombre X, défini de la façon suivante: X 0/X

Or, comme 0 est défini à son tour comme le plus petit commun multiple de tous les nombres du réseau considéré ou, ce qui

revient au même, comme le produit de tous les nombres premiers P., P du réseau (0 P x...xP X est égal au
1 s df 1 s

produit de tous les nombres premiers du réseau qui ne sont pas des facteurs de X.

(X,Y) plus grand commun diviseur des nombres X et Y

F G F est égal à G d'après l'expression arithmétique de la l^re prémisse

F^l F est plus grand que 1 d'après l'expression arithmétique de la l^re prémisse
1

F est égal à G d'après l'expression arithmétique de la 2^me prémisse

F^l F est plus grand que 1 d'après l'expression arithmétique de la 2^me prémisse

F ^1 F est plus grand que 1 d'après l'expression arithmétique de la condition d'existence (adoptée comme 3 prémisse)

F G F est égal à G en vertu de la loi de décomposition du plus grand commun diviseur: (X,Y)=(X,Y,Z)(X,Y,Z)
d

UJ F G F est égal à G en vertu de la propriété associative et/ou commutative du plus grand commun diviseur
—] a

F G F est égal à G en vertu de la définition du plus grand commun diviseur
m

(où X, Y et Z sont des nombres quelconques et F et G des expressions arithmétiques quelconques)



Tab. 9 Le modèle arithmétique fondé sur la caractéristique numérique de Leibniz
comme méthode de décision pour la syllogistique.
»Réfutation par voie arithmétique d'une formule syllogistique que Lukasiewicz pose
Comme exemple d'expression invalide mais indécidable dans son système axiomatique.

1. Expression syllo¬
gistique indécidable

dans le système
axiomatique de
Lukasiewicz:

1.1. en notation
polonaise:

1.2. en notation
ordinaire:

CIrsCNArsAsr

1rs - (Ars - Asr) ou 1rs • Ars - Asr

2. Schémas syllo-
gistiques qui
correspondent aux
expressions 1.:

1- 1rs • I- 1rs
1- Ars ou I- Ors

1- Asr I- Asr

3. Conditions arithmétiques qui seraient
nécessaires et suffisantes pour prouver,

d'après notre modèle arithmétique
de la syllogistique, la validité des
schémas 2. et des expressions 1.:

[R,S] < 0 Système
[R,S] > R d'inéqua-

tions corres-
[S,R]= S pondant

aux prémisses

Equation correspondant à

la conclusion, qui devrait
être, dans l'hypothèse de la
validité de 2., une
conséquence du système
d'inéquations précédent, pour
n'importe quelles valeurs
de R et S.

4. Conditions arithmétiques qui seraient
nécessaires et suffisantes pour prouver,
d'après notre modèle arithmétique de la
syllogistique, Yinvalidité des
schémas 2. et des expressions 1.:

[R,S] < 0 Système d'inéquations qui
[R,S1 > R devrait admettre au moins
[R,S] > S une solution dans l'hypo¬

thèse de Yinvalidité de 2.

Or, pour que le système 4. ait au moins une solution, il suffit que le nombre plein 0
ait au moins trois facteurs premiers Ax, A2 et A3 :

0 Aj x A2 x A3 x

et d'attribuer alors à R et S les valeurs R At et S A2 pour que le système 4. soit
satisfait.
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l±W Un nouveau modèle arithmétique du calcul propositionnel, fondé sur la caractéristique numérique de Leibniz. Aux variables cons-s, operations, relations et expressions logiques du calcul propositionnel sont associées dans le modèle arithmétique des variablesconstantes, operations, relations et expressions arithmétiques de la façon suivante:
q variaoies cons

Variables:

Constantes élémentaires:

Constantes limites:

Opérations:

Relations:

Calcul propositionnel

P, q, r,.

Pl > P2 > P3 > • • •> Pn

t (tautologie)
f (contradiction)

p (négation de p)

p v q (disjonction de p et q)

p.q (conjonction de p et q)

p D q (conditionnelle)

p q (implication)

p q (équivalence)

P p ou p t

Modèle arithmétique

P, Q, R,. (variables numériques, prenant leurs valeurs dans un ensemble
de nombres entiers)

f P P ,P P
121 3 5'

' * n (nombres premiers)

1 (unité)
0, nombre plein, défini de la façon suivante:

0= ï\-P2 Pn (produit de tous les
nombres premiers du réseau)

P, définie de la façon suivante: P 0/ P

(P, Q) (plus grand commun diviseur de P et Q)

[P, Q] (plus petit commun multiple de P et Q)

(P, Q)

(P, Q) 1 ou Q IP (P est divisible par Q)
(ou Q divise P)

P:

P

Q

1

DroDo^inTnrfon^X î propositionnel et son modele arithmétique fournit une méthode de décision pour les formules du calcul

l COntm0n neCTaire"SUffîSan'e P°Ur qUe Une formUk P du calcul Proportionnel soit une
valeur de ses variables^

eSt que la formulearithmétiqueP associée à p dans le modèle prenne la valeur 1 (unité) pour n 'importe quelle

u>



Tab. 11 Expression arithmétique des relations logiques binaires entre propositions

Relation Sous forme Relation arithmétique Conditions arithmétiques
logique d'implication correspondante équivalentes

ou d'équivalence

pvq p q (P, Q) 1 Q IP et P IQ
qD p p-q (P, Q) 1 Q IP et P IQ
pD q p-*q (P, Q) 1 Q IP et P IQ
p/q p-*q (P, Q) 1 Q IP et P IQ
P (P, Q) (P, Q) 1 P= 1 et P 0
q (P, Q) (P, Q) 1 Q= 1 et Q 0
p q p~q (P, Q) (P, Q) 1 P=Q et Q P

pwq p~q (P, Q) (P, Q) 1 P Q et Q P

q (P, Q) (P, Q) 1 Q=1 et Q 0
p (P, Q) (P, Q) 1 P= 1 et P 0
p.q (P, Q) (P, Q) (P, Q) 1 P= 1 et Q= 1

p.q (P, Q) (P, Q) (P, Q) 1 P= 1 et Q 0
p.q (P,Q)(P,Q)(P,Q)=1 P 0 et Q=1
p.q (P, Q) (P, Q) (P, Q) 1 P 0 et Q 0

(X, Y) df plus grand commun diviseur de X et Y
Y IX df Y divise X
X df 0/X _ _
0 (P, Q) (P, Q) (P, Q) (P, Q)
0 est le nombre caractéristique de la proposition nécessairement fausse f

Tab. 12 Démonstration arithmétique de quelques systèmes d'axiomes célèbres du
calcul propositionnel
Démonstration arithmétique des quatre axiomes de Hilbert-Ackermann (1928) pour le
calcul propositionnel

Premier axiome de Hilbert-Ackermann:

Démonstration:

Deuxième axiome de Hilbert-Ackermann:

Démonstration:

Troisième axiome de Hilbert-Ackermann:

Démonstration:

Quatrième axiome de Hilbert-Ackermann:

Démonstration:

pvp-p
((P,P),P) (P, P)= 1 q.e.d.

p-*qvp
(P, (Q, P)) (P, Q, P) 1 q.e.d.

pvq - qvp

((P, Q), (Q, p» ((P, Q), (P, Q» 1 q.e.d.

(P Q) - (rvp rvq)

((P, Q), (CR, P), (R, Q))) «R, P, Q)

(R,F,Q),(R,P, Q) (R, P, Q),

(R,P,Q)(R,P,Q)) 1 q.e.d.
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Démonstration arithmétique des trois axiomes de Lukasiewicz (1924) pour le calcul
propositionnel

Premier axiome de Lukasiewicz: (p q) ((q - r) - (p -> r)

Démonstration: ((P, Q), ((QLR), (P^R))) ((P, Q, R9 (P, Q, R),
((Q,R) (Q,R) (Q,R), (P, Q, R) (P, Q, R»)
«P,Q,_R) (P,_Q, R),J(P, Q, RHP, Q, RH^Q, R)
(P^Q, R) (P,Q,R)(P, Q, R), (P, Q, R) (P, Q, R»)
((P, Q, R) (P, Q, R), (P, Q, R)) 1 q.e.d.

Deuxième axiome de Lukasiewicz: p (p ->• q)

Démonstration: (P, (P, Q)) (P, P, Q) (P, P, Q) 1 q.e.d.

Troisième axiome de Lukasiewicz: (p p) -»• p

((P, P), P) ((P,P), P) (P, P) 1 q.e.d.

Démonstration arithmétique des trois axiomes de Church (1951) pour le calcul
propositionnel

Premier axiome de Church: p (q p)

Démonstration: (P, (Q, P)) (P, Q, P) 1 q.e.d.

Deuxième axiome de Church: (p (q m)) - ((p - q) (p - m))

Démonstration: ((P, (Q, M),_((P, Q), (P, M)) ((PIM),
((P, Q) (P, Q) (P, Q), (P, M)) ((P^Q^M), _
((P,_Q,_M) (P, Q, M) (P, Q, M) (P, Q, M) (P, Q, M)
(P, Q, M), (P, Q, M) (P, Q, M)) ((P, Q, M),
(P, Q, M)) 1 q.e.d.

Troisième axiome de Church: ((p-*0~*f)""*P
Démonstration: (((P, 0), 0), P) ((P, 0), P) ((P, 0), P)

(P, P) 1 q.e.d.

Démonstration arithmétique des postulats de Kleene pour le calcul propositionnel

Postulat la. de Kleene: p (q -»• p)

Démonstration: (P, (Q, P)) (P, Q, P) 1 q.e.d.

Postulat lb. de Kleene: (p q) - ((p (q - r)) - (p - r))
Démonstration: (ff, Q), ((P, (Q, R)), (P. R))) ((P^Q, R)_

(P, Q, R),(((P, Q, R) (P, Q, R) (P^Q, R) (P, Q, R),
(P, Q, R) (P.JQ.JO), (P_, R))) * «P,Q, R)
(P2Q, R),((P,Q,R), (P, Q, R) (P, Q, R)))
((P, Q, R) (P, Q, R), (P, Q, R)) 1 q.e.d.

Postulat 3 de Kleene: p (q - p.q)

Démonstration: (P, (Q, (P, Q) (P, Q) (P, Q)J) ((P, Q) (P^Q),
((PjQ) (P, Q), (P, Q) (P, Q) (P, Q))) ((P, Q)
(P,Q),(P,Q))= 1 q.e.d.

Postulat 4a. de Kleene: p.q p

((P, Q) (P, Q) (P, Q), P) ((P, Q), P) (P, Q, P)
1 q.e.d.
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Postulat 4b. de Kleene.

Démonstration:
p.q-q
((P, Q) (P, Q) (P, Q), Q) (CP, Q), Q)
(P,Q,Q)=l q.e.d.

Postulat 5a. de Kleene:

Démonstration:

Postulat 5b. de Kleene.

Démonstration:

Postulat 6 de Kleene:

Démonstration:

p pvq-

(P,(P,Q)) (P,P,Q)= 1 q.e.d

q pvq

(Q,(P,Q)) (Q,P,Q)= i qe.d

(p r) -> ((q - r) -> (pvq r))

((P.R).((0,R),((P,Q),_R)))=
((P, Q, R) (P, Q, R), (P, Q, R) (P, Q, R), (P,_Q, R)
(P, Q, R), (P, Q, R) (P, Q, R) (P, Q, R) (P, Q, R))

1 q.e.d.

Notes

1) Voir, à ce sujet, notre article "Modèles arithmétiques pour l'informatique juridi¬
que", contribution à un volume collectif d'imminente parution - on trouvera la
référence dans la bibliographie sous SANCHEZ-MAZAS, 1978 -. Dans cet article,
nous appliquons un modèle arithmétique isomorphe à celui que nous présentons
ici au traitement automatique des systèmes normatifs, définis précisément comme
des classifications déontiques de conjonctions de conditions et faits/actions.

2) Notre premier essai d'arithmétisation des relations logiques conçues dans la pers¬
pective intensionnelle de Leibniz date de plus d'un quart de siècle (voir
SANCHEZ-MAZAS, 1952). Dans cet essai, nous proposions déjà d'associer à la combinaison

de deux concepts (nous disions: "la première espèce commune à deux
genres") le plus petit commun multiple de leurs nombres caractéristiques et à

l'alternative de deux concepts (nous disions: "le dernier genre commun à deux
espèces") le plus grand commun diviseur de ces nombres.

3) Il s'agit essentiellement des calculs logiques proposés ou développés par Leibniz
(toujours partiellement) dans les essais suivants, publiés dans le livre "Opuscules et
fragments inédits de Leibniz, extraits des manuscrits de la Bibliothèque royale de
Hanovre" par Louis Couturat, Paris, Lélix Alcan, 1903:
— Elementa Characteristicae universalis (p. 42-49);
— Elementa Calculi (p. 49-57);
— Calculi universalis Elementa (p. 57-66);
— Calculi universalis investigations (p. 66-70);
— Modus examinandi consequentias per numéros (p. 70—77);
— Regulae ex quibus de bonitate consequentiarum formisque et modis syllogis-

morum categoricorum judicari potest, per numéros (p. 77-84);
— Calculus consequentiarum (p. 84—89);
— Regulae quibus observatis de bonitate consequentiarum per numéros judicari

potest (p. 89-92);
— Sur les nombres caractéristiques (p. 245—247);
— Notes de Calcul logique (p. 324—326).

4) Pour des essais précédents dans cette direction voir, en plus de l'article déjà cité
dans la note 2, notre brochure de 1955 et notre livre de 1963; quant aux modèles
proposés dans notre thèse de 1973 et nos travaux de 1972, ils représentent des
variantes très éloignées de l'actuelle; finalement, nos communications de 1977 à
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5)

6)
7)

8)
9)
10)

Paris et à Hannover se trouvent dans la même ligne que la présente communication,
mais présentent des aspects et des résultats différents et complémentaires de

ceux qui figurent ici.
L'affirmation la plus significative dans ce contexte nous paraît la suivante: "Si
l'on pouvait trouver des caractères ou signes propres à exprimer toutes nos
pensées, aussi nettement et exactement que l'arithmétique exprime les nombres
on pourrait faire en toutes les matières autant qu'elles sont sujettes au raisonnement

(c'est Leibniz qui souligne) tout ce qu'on peut faire en Arithmétique Car
toutes les recherches qui dépendent du raisonnement se feraient par la transposition

de ces caractères et par une espèce de calcul" (Préface à la Science Générale,
dans LEIBNIZ, Opuscules, p. 153-157).
LADRIERE, Jean, 1957.
Le résultat de ces recherches est l'œuvre LEIBNIZ, Opuscules, que Couturat
publia en 1903, c'est-à-dire, deux ans après la parution de son livre "La Logique
de Leibniz" dans lequel il exploite ses importantes découvertes.
RUSSELL, Bertrand, 1900 et 1908 pour la traduction française.
COUTURAT, Louis, 1901.
Il n'est pas difficile de constater l'erreur de Couturat lorsqu'il essaye de représenter

le syllogisme Celarent, selon la perspective intensionnelle, pour montrer que
cette perspective n'est pas susceptible de figuration géométrique. En effet:
Soient trois termes, par exemple animal, homme et pierre, symbolisés respectivement

par les lettres 'a', 'h' et 'p' et interprétables soit en extension, comme des
classes d'individus, soit en intension, comme des concepts composés de caractères.

Si nous désignons par 'Eap' l'universelle négative (aucun animal n'est pierre) et par
'Aha' l'universelle affirmative (tout homme est animal) figurant comme prémisses

d'un syllogisme du mode Celarent, ainsi que par 'Ehp' l'universelle négative
(aucun homme n'est pierre) figurant comme conclusion de ce syllogisme, alors la
formule suivante:

Eap.Aha-»Ehp
sera l'expression symbolique de ce syllogisme.
Prenons maintenant, d'abord le point de vue extensionnel, puis l'intensionnel.

1. Dans la perspective extensionnelle, le syllogisme précité peut être interprété de
la façon suivante:
Eap aÇp la classe des animaux est incluse dans la classe des non-pierres (exclue

de la classe des pierres)
Aha h ç a la classe des hommes est incluse dans la classe des animaux

donc:
Ehp hep la classe des hommes est incluse dans la classe des non-pierres (exclue

de la classe des pierres)
Représentation géométrique correcte, qui correspond à celle de Couturat à la page
28 de sa "Logique de Leibniz":

pierres
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2. Dans la perspective intensionnelle, le même syllogisme peut être interprété de la

façon suivante:
Eap p ç a le caractère non-pierre est inclus dans le caractère animal
Aha a ç h le caractère animal est inclus dans le caractère homme

donc:
Ehp p £ h le caractère non-pierre est inclus dans le caractère homme
Représentation géométrique correcte, qui ne correspond pas à celle de Couturat à

la page 31 de sa "Logique de Leibniz":

non-pierre

animal

homme

pierre

Représentation géométrique incorrecte, qui correspond à celle de Couturat à la

page 31 de sa "Logique de Leibniz":

animal

homme

pierre.

On constatera, en effet, en ouvrant cette page 31 et en observant la fameuse figure
dans laquelle Couturat (probablement sans suivre Leibniz, puisqu'il n'y a aucune
référence à ce sujet) construit le schéma par lequel il croit, par erreur, représenter
les prémisses de Celarent, en intension, que l'universelle négative nul C n'est D est
représentée exactement comme en extension, c'est-à-dire en imposant aux termes
C et D la condition d'être disjoints. Or, s'il est vrai qu'en extension l'interprétation

de l'universelle négative nul C n'est D (aucun animal n'est pierre) est la
suivante: "aucun individu n'appartient à la fois à la classe des C (animaux) et à la
classe des D (pierres)", ou, si on veut, "les classes C et D (animaux et pierres) sont
disjointes", il n'est pas moins vrai qu'en intension, l'interprétation de la même
universelle négative est la suivante: "le caractère C (animal) contient le caractère
non-D (non-pierre)"; mais cela ne signifie nullement que C (animal) en tant que
composé de caractères, soit nécessairement disjoint de D (pierre); ainsi, dans notre
exemple, les caractères "animal" et "pierre", tout en satisfaisant à la condition de
l'universelle négative (aucun animal n'est pierre), ne sont pas, pourtant, intension-
nellement disjoints, puisqu'ils ont des caractères communs (sont des corps, ont un
poids, ont une couleur, etc.); à la disjonction extensionnelle ne correspond donc
pas nécessairement la disjonction intensionnelle, comme le croit Couturat, à en juger
par sa représentation géométrique de l'universelle négative, selon la perspective
intensionnelle, dans la figure mentionnée. Or, il est, à notre avis, assez étonnant,
étant donnée l'importance des conséquences que le philosophe français tire de son
erreur, que celle-ci n'ait pas été signalée, dans toute sa gravité, par les logiciens qui
l'ont suivi, et cela pendant trois quarts de siècle!
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11) "La Logique de Leibniz", p. 32
12) Ibid.
13) Nicholas Rescher, "Leibniz's interpretation of his logical calculi", The Journal of

Symbolic Logic, Vol. 19 (1954), p. 1-13. Le texte en question se trouve à la p. 1.

14) Pierdaniele Giarretta, "L'intensionalismo logico leibniziano", Pensiero, Vol. 1

(1973), p. 89-103. Voir p. 92.
15) Il s'agit des opuscules énumérés dans la note 3. C'est en me basant précisément sur

la méthode des deux nombres caractéristiques associées à chaque concept, exposée

dans ces opuscules, que j'ai construit mes premiers modèles arithmétiques des
calculs intensionnels d'inspiration leibnizienne, dans ma brochure de 1955 et mon
livre de 1963. La méthode des deux nombres caractéristiques a été d'ailleurs
étudiée et perfectionnée par le logicien allemand Christian Thiel dans sa communication

au IIIe Congrès Leibniz (Hannover 12-17 novembre 1977) "Leibnizens
Definition der logischen Allgemeingültigkeit und des arithmetischen Kalkül". Or,
lorsque dans la discussion qui suivit son exposé, j'ai dit à Thiel qu'à mon avis un
seul nombre caractéristique pour chaque concept était largement suffisant pour
construire un modèle arithmétique satisfaisant dans la perspective de Leibniz —

chose que j'ai démontré à Hannover dans ma communication du lendemain — il ne
voulait pas me croire!

16) Voir, à ce sujet, dans mon travail SANCHEZ-MAZAS 1978, les deux programmes
"CALCULUS RATIOCINATOR" et "CALCULUS CONSEQUENTIARUM" que
j'ai construits en me basant sur un modèle arithmétique strictement isomorphe à

celui que je présente dans ces pages.
17) Voir, à ce sujet, WANG, Hao, 1951.
18) "Cui inest A non-A est non Ens seu terminus falsus" (Voir "Fundamenta Calculi

Logici", dans "Opuscules et fragments inédits de Leibniz, extraits des manuscrits
de la Bibliothèque royale de Hanovre" par Louis Couturat, Paris, Félix Alcan,
1903, p. 421). Leibniz entend par là que si un concept contient en même temps
deux caractères opposés ou contradictoires comme animal et non-animal, alors ce
concept est faux, dans le sens qu'il correspond au non-être.

19) Le modèle arithmétique que nous construisons ici, et qui est fondé sur les nom¬
bres premiers — suivant une tradition qui va de Leibniz à Kurt Gödel - sera
appelé "réseau primaire de nombres caractéristiques", pour le distinguer de l'autre
type de modèle que nous avons également construit sur la base des puissances de
2, et que nous appelons "réseau binaire de nombres caractéristiques" (ce dernier
est utilisé dans notre article SANCHEZ-MAZAS 1978 pour l'informatique juridi-
que).
Tout réseau binaire Rp> (à D dimensions) de nombres caractéristiques est isomorphe

à un réseau primaire de nombres caractéristiques du même nombre de dimensions,

défini comme l'ensemble des 2^ diviseurs d'un nombre 0 (0 PjXP2x...
xPj), où Pj, P2, etc. sont des nombres premiers distincts deux à deux; le nombre
0 n'est donc multiple d'aucun carré, cube, etc. d'un nombre premier). 0 peut
être défini dans ce contexte comme le plus petit commun multiple des 2^ nombres

du réseau (dont 1 et 0). L'isomorphisme entre les deux types de réseau est
défini par la correspondance suivante:

Réseau binaire
B0,B,, Bd_!
2°, 2',2d~'
(nombres binaires
élémentaires ou
puissances de 2)

composition binaire

Réseau primaire
P0,P1,...,PD-1
2, 3,

(nombres premiers)

divisibilité
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20)

21)

plus grand composant
binaire commun

plus petit composé
binaire commun

complémentaire absolu
d'un nombre Q:

Q=Z-Q
nombre vide: 0 (zéro)

nombre hypersaturé ou
plein Z:

Z B0 + + B0-1 =2D-'

plus grand commun diviseur

plus petit commun multiple

complémentaire absolu
d'un nombre Q:

Q 0/Q
nombre vide: 1 (unité)

nombre hypersaturé ou
plein 0 :

0 PoxP1 ...xPD_1

Du fait de cet isomorphisme, chaque loi d'un réseau binaire de nombres caractéristiques

correspond à une loi analogue d'un réseau primaire de nombres caractéristiques.

Le lecteur pourra donc se familiariser avec les lois d'un réseau du premier
type en évoquant les lois analogues des réseaux du deuxième type, qui sont les lois
ordinaires de la divisibilité des nombres entiers, bien qu'élargies et compliquées
par l'introduction de la notion de nombre complémentaire Q d'un nombre
caractéristique Q.
Afin de faciliter la tâche de l'imprimeur (sans être obligés, pour autant, d'utiliser
la notation polonaise, qui n'est pas assez connue de tout le monde et parait à

certains moins intuitive), nous avons choisi les symboles les plus simples et généralement

disponibles pour désigner les différents opérateurs du calcul propositionnel.
Ainsi:

l'expression correspond à l'expres¬
sion suivante en notation

polonaise

matrice de la
fonction

p.q Kpq (1, 0, 0, 0)

pvq Apq (1,1.1,0)
pDq Cpq (1,0,1,1)
p^q Epq (1, 0, 0,1)
pwq Jpq (0, 1, 1,0)
p/q Dpq (0, 1,1, 1)

Les relations 4p implique q' et 4p est équivalente à q' seront désignées respectivement

par les expressions: p - q et p q
La condition d'existence, qui est indispensable pour assurer la validité de 12 lois
des inférences immédiates - à savoir, les 4 de la subalternation, les 2 de la contrariété,

les 2 de la sous-contrariété et les 4 de la conversion partielle —, ainsi que de
9 modes syllogistiques - Darapti, Felapton, Bamalip, Fesapo, Barbari, Celaront,
Cesarop, Camestrop et Calemop — est considérée par de nombreux logiciens
actuels comme une prémisse supplémentaire. Voir, à ce sujet, D. Hilbert et W.
Ackermann, "Grundzüge der theoretischen Logik", dritte, verbesserte Auflage,
Berlin: Springer, 1949, p. 44-48, ainsi que W.V.O. Quine, "Méthodes de logique"
(traduction de l'original anglais "Methods of Logic", Holt, Rinehart and Winston,
1950, 1959 et 1972), Paris, Armand Colin, 1973: "les quinze formes de syllogismes

recensées plus haut sont les seules qui soient valides. Outre celles-ci, neuf
formes méritent cependant une mention honorable. Il s'agit de formes qui, à l'instar
de l'exemple des Spartiates, ont besoin d'un léger renforcement de leurs prémisses"

(p. 102). Voir aussi Joseph Dopp, "Notions de logique formelle", Louvain/
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Paris: Nauwelaerts, 1965: "Si on ne présupposait pas que les concepts sont vérifiés

par un objet au moins, 9 modes cesseraient d'être valables, à savoir: Barbari,
Celaront, Cesarop, Camestrop, Darapti, Felapton, Bamalip, Fesapo et Calemop
(p. 137). Nous partageons ici le point de vue des logiciens précités.

22) La base intensionnelle de cette méthode d'arithmétisation peut être constatée en
observant que le degré de composition ou richesse de facteurs du nombre
caractéristique d'un caractère ou propriété, ainsi que d'une proposition augmente ou
diminue en fonction de la richesse intensionnelle du caractère ou de la proposition.

En effet, la richesse intensionnelle d'un caractère est exprimée par le nombre
des caractères qu'il contient. Pour sa part, la richesse intensionnelle d'une proposition

est exprimée par le nombre de ses conséquences logiques.
D'après cette doctrine, le sujet d'un énoncé est plus riche que le prédicat de ce
dernier. Ainsi, lorsque Leibniz répétait que le prédicat est toujours contenu dans
le sujet, il ne faisait qu'exprimer le point de vue intensionnel. Pour sa part,
l'antécédent d'une implication est plus riche que son conséquent. Lorsque nous disons
"Si quelque roi de France est chauve, alors quelque roi est chauve", l'antécédent
de cette implication a plus d'intension et moins d'extension que son conséquent.
Mais dans cette méthode d'arithmétisation le nombre caractéristique du sujet est
toujours multiple du nombre caractéristique du prédicat et le nombre caractéristique

de l'antécédent est toujours multiple du n.c. du conséquent. La priorité de la
perspective intensionnelle est donc vérifiée.

23) "In one passage Aristotle characterizes a negative name such as 'non-man' as being
not a name but an ovojua äogiarov (an infinite name...). In spite of this
restriction or qualification, examples of contraposition do occur: 'If man is an
animal, what is not animal is not man'... Bochenski points out that these propositions

are not quantified - at least not explicitly. Yet the only reasonable
understanding of them is as universal affirmative; and the contraposition them seems to
be of the sort which changes a universal affirmative into a universal negative.
Probably from this source, contraposition appears in Petrus Hispanus as being presumably

Aristotelian. But for Petrus Hispanus, contraposition changes a universal
affirmative into universal affirmative and a particular negative into a particular
negative. And I shall thereafter use the term 'contraposition' in this sense"
(Alonzo Church, "The history of the question of existential import of categorical
propositions", Proceedings of the 1964 International Congress for Logic, Methodology

and Philosophy of Science, Jerusalem, August 26-September 2, 1964,
published by North-Holland Publishing Company, Amsterdam, 1964, p. 417-
424. Pour le texte précité, voir p. 418-419).

24) Voir Menne, Albert, 1962
25) Voir Lukasiewicz, Jan, 1954 et 1972 pour la traduction française
26) Lukasiewicz, Jan, 1972, p. 114 et suivantes
27) Voir Sanchez-Mazas, 1978.
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2. Geophysik / Géophysique

K. Lenggenhager (Bern): Zur Erklärung irisierender Wasserwolken.

In der klassischen Literatur werden diese irisierenden, perlmutterartigen
Erscheinungen durch Beugung des Lichtes an Eiskriställchen in grossen
Höhen erklärt, so z.B. durch Pernter (1), im "Fachlexikon ABC Physik" (2),
wo Wolken in 23—26 km Höhen hierfür verantwortlich gemacht werden; im
Lexikon der Physik (3); im physikalischen Wörterbuch (4). In der neueren
Lit. lassen Dietze (5) und auch Vassy (6) sowohl Eiskriställchen als auch
Wassertröpfchen als Ursache irisierender Wolken gelten, ohne jedoch eine

genauere Erklärung hierfür zu geben. Becvar und Simak (7) machen jedoch
in einer kurzen Bemerkung unter einem Farbbild ihres Wolkenatlas
Interferenzen in Wassertröpfchen und die Winkelabstände von der Sonne hierfür
verantwortlich (auf Tafel VI). Gleicher Ansicht für Interferenz-bedingte
Farben irisierender Wölklein in Wassertröpfchen ist auch Pedgley (8), (ohne
genauere Erklärung).

In Anlehnung hierzu stehen zahlreiche Eigenbeobachtungen von schönen

Farben in dünnen, tieferen Wasserwölklein, selbst bei erheblich grösseren

Abständen von der Sonne als die in höheren Nebeln von fast einheitlichen

Tröpfchengrössen zu sehenden farbigen Kränze, deren Radien des

ersten Rotringes nur ungefähr 2,5^t° betragen.
Als Beweis für eine Tröpfchengenese gilt für mich das gleichzeitige Fehlen

von Haloerscheinungen und auch von Nebensonnen in solchen oft recht
verbreiteten Wasserwölklein. In Abbildung la und lb sind 2 meiner vielen
farbigen Aufnahmen solcher Kränze in reinen Tröpfchennebeln als Schwarzkopie

dargestellt, bei gleichzeitigem Vorliegen des weissen Nebelbogens um
den oberen Kranzteil (auf dem Bild nicht mehr zu sehen).

Abb. la Mehrfache farbige Glorie in gipfelnahen Nebeln, durch Wassertröpfchen
bedingt (mit gleichzeitigem weissen "Nebelregenbogen", auf dem Bildausschnitt nicht
sichtbar)
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Abb. lb Im gleichen, jeweils bald über den Gipfel getragenen Nebelgewölk erscheinender,

mehrfacher Farbkranz, diesmal mit Teleobjektiv aufgenommen.

Wohl werden in der Lit. Kränze um Sonne und Mond durch Eiszirren

erklärt, doch sind deren Radien nach eigenen Farbaufnahmen mit immer
der gleichen Kamera in unseren Gegenden kleiner als die durch Tröpfchen
bedingten, eine Folge der meist grösseren Eiskriställchen.

Nun haben eigene Beobachtungen die an sich bekannte Tatsache bestätigt,

wonach gewisse dünne, grössere und auch kleinere Wölklein vornehmlich

rote und grüne Randpartien aufweisen können, gelegentlich selbst dann

noch, wenn ihre Entfernung von der Sonne bis gegen 50° betragen kann.
Gelegentlich zeigten sich nun sogar schmale Rot-Grünsäume, wenn recht
schmale, lange und geradflächige, ja sogar konvex gegen die Sonne gebogene,

dünne Wolkenstreifen vorlagen, was durch Farbdias belegt wurde. Dies

spricht gegen Beugungsgenese solcher Wolken. (Das Vorherrschen von Rot
und Grün in irisierenden Wölklein wird auch durch Pedgley (8) erwähnt).

Dies spricht auch gegen Pernter's und auch Dietze's Vermutung, wonach
diese Farben Beugungsringe 4. oder 5. Ordnung darstellen könnten. Da bei
diesen Beobachtungen Nebensonnen und Haloerscheinungen fehlten, trotz
grossflächiger Belegung des Himmels durch solche dünne Wölklein waren

Nebeltröpfchen dieser Wölklein erwiesen.
Anderseits wurden Dias gezeigt, wo nicht nur die dünnen Säume der

Wölklein rot und grün erschienen, sondern wo die gesamte, jedoch
uneinheitlich dünne und oft durchbrochene Wolkenschicht breite, rote Farb-
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inseln aufweist inmitten von kleinen^ gelben, grünen und blauen Zonen.
Diese Farben waren zwischen 8—20 über einer morgendlichen, ca 10°
hohen Sonne in Bern am 7.2.1977 um 08.20 Uhr bei warmem SW-Wind zu
sehen, in rasch wandernden, niedrigeren und dünnen Wölklein, ohne dass
Halo- oder Nebensonnenerscheinungen trotz hierfür genügender Wolkenbildung

vorkamen.
Solche und die besprochenen Beobachtungen sprechen für Interferenz

und gegen Beugungserscheinung für irisierende Btaerwolken.
Eine nähere Begründung für diese ganz verschiedenen, oft sogar bis 50°

von der Sonne entfernten Abstände solcher irisierender Wolken wird jedoch
in der Literatur nicht gegeben.

Das Vorherrschen von Rot und Grün erinnert an die roten und grünen
inneren Nebenregenbögen, die ebenfalls durch Interferenz flach sich
durchkreuzender Nachbarstrahlen bedingt sind.

Auch in den Interferenzbändern dünner Detergenshäutchen in
senkrecht gehaltenen Ringen in ruhiger Luft, sowie auch perlmutterfarbigen
Muschelschalen liegen mehrheitlich rote und grüne Farbzonen vor. Dies
selbst dann noch, wenn sie durch diffus weissen Himmelsausschnitt beleuchtet

werden. Selbst beim leichten Kippen um ihre Ausgangslage erhalten sich
diese Farbzonen.

Ebenso kann für dieses Irisieren stark seitlich der Sonne liegender
Nebeltröpfchen angenommen werden, dass die verantwortliche neue Lichtquelle

in dem hellen Weiss der randständigen, augenferneren Tröpfchen
liegt, welche in augennäheren Tröpfchen die zentralen Interferenzen
bedingt. Solche schmale Hellsäume gewisser Wolken wurden durch Dias
gezeigt. von der Sonne

Abb. 2 Die obersten Nebelschichten I und II bedingen durch Brechung, Reflexion
und Beugung das diffuse Weisslicht. Die untersten Tröpfchen III sind verantwortlich für
die Interferenzfarben von direkt durchgehendem und doppelt reflektiertem Licht, in
III' vergrössert dargestellt.

^dünne
Nebelschicht

Interferenz
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In der Abbildung 2 sind diese Verhältnisse schematisch dargestellt. Der
direkt zentral durchgehende Lichtstrahl wird z.T. doppelt reflektiert wie die

Strahlen in einem flachen Detergenshäutchen. Durch den Gangunterschied
ergeben sich Interferenzfarben, je nach der Grösse der Nebeltröpfchen. Sind
diese von einigermassen gleicher Grösse, so werden deren Interferenzfarben
gesehen, ansonst überlagern sie sich zu Weisslicht, was der Norm entspricht,
überlagern sie sich zu Weisslicht, was der Norm entspricht.

Aber auch Interferenz von gegenseitig zentrumsnahe eindringenden und
sich eng durchkreuzenden Strahlen ist möglich, wie ich das an dünnsten
Glasfädchen gezeigt habe (9). Dies und die Tröpfchengrössen tragen zu den

verschiedenen Farbmöglichkeiten irisierender Wolken bei. So können
gelegentlich auch dünne, zentrale Wolkenpartien weit von der Sonne entfernt
Lichtquellen für zentralere Interferenzfarben darstellen, wobei dann unter
Umständen alle Spektralfarben gesehen werden können, wie in den gezeigten

Dias.
Wiederum ergibt sich ein gewisses Analogon hierzu, wenn ein leeres

Trinkglas nach kurzem Anhauchen (Vorwärmen) seiner Luft umgekehrt
knapp in eine Detergenslösung getaucht und hernach aufrecht gestellt wird.
Jetzt bildet sich eine nach oben leicht konkave Membran, in welcher sich

schöne, farbige, konzentrische Ringe mit ähnlichen Intervallen bilden.
Wiederum herrschen bald Rot und Grün vor, siehe Abbildung 3.

Abb. 3 Prächtige, farbige, konzentrische, vornehmlich rote und grüne Interferenzfarbringe

an leicht konkaver Detergensschicht auf leerem Trinkglas, gegen diffuseres
Hellicht.
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Die beschriebenen Beobachtungen stützen die Interferenztheorie für
irisierende Wasserwolken und geben eine Erklärung hierfür, wobei allerdings
der Winkelabstand von der Sonne nicht mehr von massgebender Bedeutung
für die Farben wäre.

Zum Schluss sei den beiden Professoren W. Kuhn und M. de Quervain
auch an dieser Stelle für die freundliche Beschaffung der neuen Lit. bestens
gedankt.
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