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D. Fachvortrige /| Conférences spécialisées

1. Logik / Logique

M. Sanchez-Mazas (Genéve): Un modéle mathématique de la logique peut-il
se fonder sur I'intension?

Le but de cette communication est d’étudier le probléme de la construction
de modéles mathématiques — et, plus spécifiquement, arithmétiques — de
certaines théories ou systémes logiques, d’abord au niveau des classes et de
la syllogistique, ensuite au niveau propositionnel, lorsque, dans une stricte
optique leibnizienne, on donne priorité a I’aspect intensionnel, plutdt qu’a
I’extensionnel.

Il serait, & mon avis, utile, dans ce cadre, de discuter de la viabilité et de
Iéventuel intérét théorique et pratique d’un type trés simple de modéle
arithmétique qui pourrait étre utilisé non seulement dans le domaine logique
pur, mais également dans I’application de la logique a ’analyse des classifica-
tions et des théories scientifiques ou méme des systémes normatifs, congus
comme des classifications déontiques (1), ainsi qu’au traitement informati-
que des unes et des autres. Les réflexions suivantes sont fondées sur les pre-
miers résultats d’une recherche personnelle dans ce sens, malheureusement
trop isolée et qui se veut bien modeste.

Cette recherche a été stimulée et orientée par la curiosité ressentie
depuis toujours (2 de savoir si, en suivant de fagon conséquente la voie mar-
quée par Leibniz . 1us ses calculs logiques de base intensionnelle (3), mais en
y introduisant quelques corrections importantes et en utilisant le formalisme
et le symbolisme de la logique mathématique d’aujourd’hui, il n’était pas
possible d’arriver a obtenir un modéle arithmétique simple, cohérent et
approprié d’un systéme logique tout entier, comme le calcul des classes, la
syllogistique ou le calcul propositionnel, ainsi qu’un systéme non tautolo-
gique de classes (classification), de propositions scientifiques (théorie extra-
logique) ou de propositions normatives (systéme normatif) (4).

Les intuitions géniales de Leibniz sur les profondes analogies formelles
entre la structure du nombre et celle du concept, et par la sur le pouvoir
d’expression des nombres dans tous les domaines de notre raisonnement (5),
ont été, pendant des siécles, une source inépuisable d’inspiration et une ten-
tation permanente de I’esprit humain. Cet intérét pour une pensée créatrice
qui se trouve a I’origine méme de toute la logique mathématique actuelle ne
s’est pas éteint aujourd’hui, loin de 14, et cela tout en ayant pleine cons-
cience du caractére utopique et irréalisable de la mathesis universalis et du
programme algorithmique leibnizien et tout en acceptant, comme un fait
scientifique irréversible, I’existence des nouvelles frontiéres de la raison
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logico-mathématique révélées par les théorémes de Godel, Church, Kleene,
Lowenheim-Skolem et d’autres, et magistralement décrites par le philosophe
et logicien belge Jean Ladriére dans son livre “Les limitations internes des
formalismes” (6), paru il y a vingt ans.

I1 est bien connu, d’autre part, que le philosophe et mathematlclen fran-
cais Louis Couturat, qui fut, par ses recherches parmi les manuscrits de la
Bibliothéque Royale de Hanovre (7), le véritable découvreur de la plus
importante partie de ’ceuvre logique de Leibniz, ainsi que le premier grand
expositeur et critique de cet ceuvre, avec Bertrand Russell (8), condamnait
sans appel dans son livre “La logique de Leibniz”, paru en 1901 (9), la pré-
férence accordée par le philosophe allemand au point de vue de ’intension
ou compréhension, qu’il tint pour responsable de 1’échec du grand pro-
gramme logico-mathématique leibnizien. Leibniz... — disait, en effet, Cou-
turat — “‘a été constamment tiraillé entre deux tendances contraires: ’'une,
provenant de la tradition, qui le portait a considérer surtout les rapports
de la compréhension; ’autre, plus conforme a son esprit mathématique, qui
I’amenait parfois a préférer la considération de I’extension. Or — juge Cou-
turat — celle-ci est la seule qui permette de soumettre la logique au traite-
ment mathématique, parce que, comme on I’a déja vu — et Couturat se
fonde, pour cette derniére affirmation, sur une représentation incorrecte du
syllogisme Celarent, selon la perspective intensionnelle (10) —, c’est la seule
qui satisfasse aux conditions de I’intuition et de I’imagination” (11).

Et le philosophe francais tire de son erreur une autre conclusion géné-
rale, également fausse (mais qui n’aura pas manqué d’influencer le dévelop-
pement ultérieur de la logique mathématique, o I'orientation extension-
nelle s’est imposée de fagon dominante), allant jusqu’d nier I’isomorphisme
entre une structure fondée sur ’extension et la structure correspondante,
fondée sur I’intension ou compréhension. Il affirme, en effet: “‘Les rapports
de compréhension ne sont pas susceptibles de figuration géométrique
comme les rapports d’extension... Et il ne suffit pas de renverser ou d’inter-
vertir ceux-ci pour en tirer ceux-la. Leibniz s’était donc trompé en croyant
que les uns étaient purement et simplement inverses des autres; nous verrons
que cette erreur a entaché ses essais de Calcul logique et a contribué a les
faire avorter” (12).

Or, il est clair que tout le monde ne pouvait pas étre du méme avis sur
ce point. Ainsi, par exemple, en 1954, le grand logicien américain Nicholas
Rescher, professeur a ’Université de Pittsburgh, écrivait dans un important
article consacré aux calculs logiques de Leibniz et a la critique de ces calculs
par Couturat: “L’on pourra difficilement surestimer la dette que tous les
chercheurs contemporains intéressés par la logique de Leibniz ont envers
Couturat. Cette gratitude doit, toutefois, étre accompagnée de la constata-
tion des graves carences de la conception logique du propre Couturat. En
effet, le logicien frangais était persuadé que la perspective extensionnelle est
la seule qui soit correcte en logique... Or, ce préjugé de Couturat a défiguré
son exposition de Leibniz et ’a amené a lutter contre des moulins a vent.
Couturat a vu, en effet, dans la logique de Leibniz, de nombreuses insuffi-
sances dont I’origine €tait, 4 son avis, justement la perspective intensionnelle
adoptée par le philosophe allemand” (13).

Il faut ajouter aussi, toutefois, que ces justes critiques de la position de
Couturat affirmant que les rapports intensionnels sont par nature refractai-
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res au traitement mathématique, n’ont pas été suivies jusqu’ici de résultats
constructifs assez importants pour invalider définitivement dans la pratique
les théses du philosophe parisien. Et le logicien italien Giarretta se deman-
dait trés justement il y a cinq ans dans la revue Pensiero: “Pourquoi ont
échoué de si nombreuses tentatives de réfuter les théses de Couturat sur
I'impossibilité d’un calcul logique intensionnel?” (14).

Or, je dois dire a ce sujet que c’est justement en adoptant la perspective
intensionnelle et les suggestions de Leibniz contenues surtout dans ses essais
d’avril 1679 (15), bien qu’en introduisant des modifications essentielles en
ce qui concerne la traduction arithmétique de certaines opérations logiques
comme la combinaison et I’alternative de caractéres ainsi que la négation,
que je suis arrivé a construire un type de modéle arithmétique qui me parait
utilisable dans différents domaines de la logique pure et appliquée, et dont
Pemploi est simple et facile, méme dans la perspective informatique (16).

La méthode d’arithmétisation des composants, des opérations et des
relations logiques, dont je vais essayer de donner ici quelques exemples,
pourrait étre utilisée, & mon avis, dans deux domaines fort différents que
nous pourrions appeler, respectivement, ‘“le domaine tautologique” et “le
domaine non tautologique”. Dans le premier, elle peut constituer un instru-
ment de simplification de la déduction ou de la vérification de la validité
d’une formule logique; dans le deuxiéme, la méthode pourrait permettre la
traduction arithmétique de certaines classifications d’une part, et de certains
systémes scientifiques ou méme juridiques formalisés au niveau proposition-
nel d’autre part, simplifiant ’analyse logique et la recherche des conséquen-
ces logiques des uns et des autres, ainsi que leur traitement automatique ou
informatique.

On sait que la construction d’un modéle pour un systéme formel cons-
titue, en soi-méme, une preuve suffisante de la consistance ou, si on veut, du
caractére non contradictoire de ce systéme. A son tour, d’aprés le théoréme
bien connu de Lowenheim-Skolem-Godel, tout systéme formel consistant
admet un modéle ou une interprétation vraie dans le domaine des nombres
naturels, ou, si on veut, a tout axiome du systéme mentionné on peut asso-
cier une proposition vraie concernant les nombres naturels, c’est-d-dire un
théoréme arithmétique (17).

D’autre part, dés que nous disposons d’un modéle arithmétique d’un
calcul logique permettant d’associer a chaque formule de ce calcul une autre
formule, dont la vérité ou la fausseté peut étre vérifiée sans sortir de I’arith-
métique, le probléme de décider si une formule logique de n variables est
valide ou non devient beaucoup plus simple et plus rapide que lorsque I’on
utilise, selon la méthode habituelle dans le calcul propositionnel, les tables
de vérité pour évaluer une telle formule, puisque dans ce dernier cas il faut
procéder a 20 substitutions de valeurs ou, si on veut, a 21 tests ou essais
différents.

Le type de modéle arithmétique de base intensionnelle que nous propo-
sons peut étre utilisé au moins a deux niveaux logiques différents, a savoir,
le niveau des classes et de la syllogistique et le niveau des propositions inana-
lysées. Considérons successivement ces deux niveaux.

Au niveau des classes, rappelons tout d’abord les notions de base — res-
pectivement composants, opérations ou fonctions et relations — qui, dans la
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perspective intensionnelle, correspondent aux notions homologues de la
perspective extensionnelle (Tab. 1):

Tab. 1 Interprétation extensionnelle et intensionnelle d’un calcul des classes.

Notions Perspective extensionnelle Perspective intensionnelle

Classes Ensemble des éléments Propriété ou caractére
possédant un certain possédé par un certain

a,b,c, .. caractére ou propriété ensemble d’éléments
(Exemple: les hommes) (Exemple: homme)

anb Intersection des Combinaison des
ensembles a et b caractéresaetb
(Exemple: les animaux (Exemple: animal
raisonnables) raisonnable)

aub Réunion des Alternative des
ensembles a et b caractéresaetb
(Exemple: les animaux (Exemple: animal
et les végétaux) ou végétal)

A" Classe totale Caractére universel
(inclut toutes les (est contenu dans tous
classes) les caractéres)

A Classe vide Caractére irréel (ou faux)
(est incluse dans (contient tous les
toutes les classes, caractéres, méme
mémes disjointes) opposés)

a Classe complémentaire de a Caractére opposé a a
telle que: {auﬁ =V (totale) tel que: {au’é =V (universel)

ana = A (vide) ana = A (irréel)
(Exemple: I’ensemble des (Exemple: le caractére
non hommes) non homme)

ach a est incluse dans b a contient b

aestégalab
(a inclut b et b inclut a)

aestégalab
(a contient b et b contient a)

A la considération extensionnelle de la classe, ou I’accent est mis sur

I’ensemble des éléments qui lui appartiennent et qui peuvent étre désignés
de n’importe quelle maniére, méme simplement ostensive, comme dans le
cas de la classe formée par ce stylo et ces lunettes, correspond une considé-
ration intensionnelle, ou la classe est identifiée essentiellement au caractére
qui la définit, par exemple “triangle rectangle”, sans qu’aucune référence
directe et explicite aux objets ou individus auxquels ce caractére s’applique
ou pourrait s’appliquer ne soit nécessaire.

Aux opérations extensionnelles d’intersection, de réunion et de complé-
mentarité de classes, correspondent, respectivement, dans la perspective
intensionnelle, les opérations de combinaison, alternative et opposition de
caractéres; a la constante logique extensionnelle dénommée “‘classe totale™,
et qui contient toutes les classes, correspond la constante intensionnelle que
nous appelons “caractére universel”, et qui est contenu dans tous les carac-
téres; a l'autre constante logique extensionnelle, dénommée ‘‘classe vide”,
et contenue dans toutes les classes, correspond la constante intensionnelle
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que nous appelons ‘“‘caractére irréel’”” — il correspond au “terminus falsus”
(terme faux) ou “non-ens” (non-étre) de Leibniz (18) — et qui contient
tous les caractéres, mémes opposés, comme “rectangle” et “non-rectangle”;
finalement, 4 la relation la classe a est incluse (extensionnellement) dans la
classe b, par exemple “la classe des hommes est incluse dans la classe des
mammiféres”, correspond la relation le caractére a contient (intensionnelle-
ment) le caractére b, par exemple “le caractére homme contient le caractére
mammifére”.

Nous construisons, sur cette base intensionnelle, un modéle arithméti-

que (19) du systéme logique L, constitué par la logique des classes et la syllo-
gistique, en établissant entre ce systéme logique L et une structure mathé-
matique M une correspondance biunivoque C, en vertu de laquelle:
1) aux constantes et variables de caractére de L (lettres minuscules) on
associe dans M respectivement des nombres entiers — qui seront premiers ou
composés selon que les caractéres auxquels ils sont associés sont simples ou
complexes — et des variables prenant leurs valeurs dans I’ensemble des nom-
bres entiers (lettres majuscules correspondantes); plus spécialement, on asso-
ciera:

a) au caractére universel de L, qui est contenu dans tous les caractéres de
L, le nombre 1 (unité ou nombre vide), qui est diviseur de tous les nom-
bres de M et, plus précisément, leur plus grand commun diviseur;

b) au caractére irréel de L, qui contient tous les caractéres de L, le nombre
plein @ de M, qui est multiple de tous les nombres de M et, plus préci-
sément, leur plus petit commun multiple.

2) aux opérations ou fonctions logiques de L, dont les arguments sont des

caractéres, on associe dans M des opérations ou fonctions arithmétiques,

dont les arguments sont des nombres entiers; plus spécialement, on asso-
ciera:

a) ala combinaison de deux caractéres a, b, le plus petit commun multiple
de leurs nombres caractéristiques respectifs A, B (au lieu de leur pro-
duit, comme proposait Leibniz);

b) a P'alternative de deux caractéres a, b, le plus grand commun diviseur de
leurs nombres caractéristiques respectifs A, B; _

c) au caractére a (non-a), opposé a un caractére a, le nombre A (non-A),
qui est le quotient /A de la division du nombre plein Q) par le nombre
A.

3) aux propositions de L, exprimant des relations logiques entre des carac-

téres et/ou des fonctions de caractére, on associe dans M des équations ou

inéquations exprimant des relations arithmétiques entre des nombres et/ou
des fonctions arithmétiques; plus spécialement, on associera:

a) a la relation le caractére a contient le caractére b, la relation le nombre
A est multiple du nombre B ou, si on veut, B divise A, exprimée par une
des deux équations suivantes:

[A,B] ; A (plus petit commun multiple de A et B égal 4 A)

(A,B) = B (plus grand commun diviseur de A et B égal i B);

b) a la relation le caractére a est égal au caractére b, la relation le nombre
A est égal au nombre B, exprimée par I’équation A = B.

La correspondance entre le systéme logique intensionnel L et son
modele arithmétique M peut étre schématisée de la fagcon suivante: voir tab. 2.

Dans ces conditions, la structure M est un modéle arithmétique:
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Tab.?2 Correspondance entre le systéeme logique L et son modéle arithmétique M.

Systéme logique intensionnel L

Caractéres simples:

a,,d,,...,apy

Caractéres quelconques:
a,b,c, ...

Combinaison de a et b:
anb

Alternative de a et b:
aub

Caractére universel: V

V est contenu dans tous les
caractéres de L, en étant
contenu dans tous les
caracteéres simples de L
V =a,Va,U...Uay

Caractére irréel: A

A contient tous les caractéres
de L, en contenant tous les
caractéres simples de L
A =a,Na,N..Nay

Caractére opposé a a: a
ana=A
{ avua=V
a=a
Le caractére a contient le
caractere b:
achb
{a Nb=a
aub=b

Le caractere a est égal au
caractére b:

a=b
(a=b) =4 (aCb).(bCa) (20)

Structure arithmétique M qui sert de modéle au
systéme logique intensionnel

Nombres premiers:

ALA,, ..., Ay

Nombres entiers:
A,B,C, ..

Plus petit commun multiple de A et B:
[A, B]

Plus grand commun diviseur de A et B:
(A, B)

Nombre vide (unité): 1
1 est facteur de tous les nombres de M, en étant
facteur de tous les nombres premiers de M

1=(A,, A, ..., Ap)

Nombre plein: @
@ est multiple de tous les nombres de M, en
étant multiple de tous les nombres premiers
de M
O=[A,,A,, .., Apl
Nombre opposé 3 A: A. A= 3rP/A
(A, A]= 0
{ A,A)=1
A=A
Le nombre A est multiple du

nombre B:
{B I A (B divise A)

[A,B]=A

(A,B)=8B
Le nombre A est égal au
nombre B:

A=B
(A=B) =45 (B 1 A).(A |B)

a) de la logique des classes, dans la mesure ou a chaque théoréme de cette
logique reste associée dans M, en vertu de la correspondance C, une équation
arithmétiquement vraie, quelles que soient les valeurs numériques attribuées
aux variables, et réciproquement;

b) de la syllogistique, dans la mesure ol 4 chaque antécédent syllogistique,
constitué par une proposition unique (dans le cas des inférences immédiates)
ou par un couple de prémisses (dans le cas des modes syllogistiques propre-
ment dits) et admettant comme conséquence une nouvelle proposition, logi-
quement déductible de la (des deux) premiére(s) — ou de celle(s)-ci et d’une
condition d’existence pour les inférences immédiates et les modes syllogisti-
ques conditionnellement valides (21) —, reste associé dans M, en vertu de la

366



correspondance C, respectivement une équation ou un systéme d’équations
et/ou inéquations, admettant, comme conséquence arithmétique, une nou-
velle équation ou inéquation, associée par C 4 la conclusion ou conséquence
logique de la (des) prémisse(s) précitée(s). :

Une construction entiérement analogue est prévue pour fournir un
modéle arithmétique de base intensionnelle (22) au calcul propositionnel.

Regardons maintenant les choses de plus prés, & commencer par
Iexpression arithmétique des propositions, ou si on veut, les équations et
inéquations associées a chaque type de proposition formulable dans la logi-
que des classes.

Signalons, pour commencer, que les quatre espéces de propositions
catégoriques d’Aristote, énoncées traditionnellement sous des formes
comme les suivantes:

“tout triangle équilatéral est équiangle’ (universelle affirmative);

“aucun homme n’est pierre” (universelle négative);

“quelque tueur est salarié” (particuliére affirmative); et

“quelque politicien n’est pas menteur” (particuliére négative)

sont formalisées dans la perspective intensionnelle respectivement de la
facon suivante:

“le caractére triangle équilatéral contient le caractére équiangle’’;

““le caractére homme contient le caractére non-pierre’’;

“le caractére fueur ne contient pas le caractére non-salarié”’; et

“le caractére politicien ne contient pas le caractére menteur”.

On peut comprendre déja qu’a coté des propositions ayant comme
image, dans le modéle arithmétique, des équations (ce sont les propositions
universelles, exprimant que le caractére-prédicat ou son opposé est contenu
dans le caractére-sujet), il y a aussi d’autres propositions ayant comme
image, dans le modéle arithmétique, des inéquations. Ce sont les proposi-
tions particuliéres exprimant que le caractére-prédicat ou son opposé n’est
pas contenu dans le caractére-sujet.

Dans le tableau 3 on constatera qu’a chaque proposition catégorique
d’Aristote restent associées dans le modéle arithmétique 6 équations ou iné-
quations, de présentation différente, mais arithmétiquement équivalentes;
réciproquement, la méme équation ou inéquation peut rester associée a des
propositions catégoriques de présentation différente, mais exprimant la
méme relation logique. En reprenant ’exemple de Church (23), qui se référe
a Aristote: la proposition affirmant que le caractére homme contient le
caractére animal est logiquement équivalente a la proposition affirmant que
le caractére non-animal contient le caractére non-homme: Asp < Aps.

On constatera aussi que 3 des 6 équations ou inéquations associées a
chaque espéce de proposition catégorique contiennent le plus grand com-
mun diviseur des deux nombres caractéristiques associ€s respectivement au

Tab.3 Equations et inéquations associées aux différentes propositions catégoriques

Proposition  Valeur de Valeur de Valeur de Valeur de Proposition
NO-Formule (S,P) et (S,P) et (S,P) et (S,P) et Formule-NO
de [S,P] de [S,P] de [S,P] de [S,P]
| JAsp (S,P)=P S,p)=1 S,P)=S Esp 1
Aps [S,P]=S [S.P1=0 [S,P)=P Eps
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5 | Esp (S,P)=P S.p=s S,P)=1 Asp 5
Eps [S,P]=0 [S,P]=S (S,P]=P Aps
5 |1sp SH<P GSp<S Sp>1 Osp 3
Ips [S,PI<9  [S,P]>S (S,P1>P Ops
4 Josp S,P)<P SPH>1  GH<S {Isﬁ .
Ops [S,p1>s  (S,P1<0 [S,p1 >P Ips
Définition de chaque Perspective Perspective
proposition catégorique: extensionnelle: intensionnelle:
Asp=4dfscCp Tout s est p Le caractére s contient
le caractére p
Esp=g3fscp Aucun s n’est p Le caractére s contient
le caractére p (non-p)
Isp=df (sC P) Quelque s est p Le caractére s ne contient
pas le caractére p (non-p)
Osp=df(sCp) Quelque s n’est Le caractére s ne contient

pas p pas le caractére p

sujet et au prédicat de la proposition, tandis que les 3 autres contiennent le
plus petit commun multiple des deux nombres en question.

Passons maintenant a la syllogistique et commengons par les 36 lois de
I'inférence immédiate. Toutes ces lois ont la forme d’une implication dont
I’antécédant et le conséquent sont des propositions catégoriques d’Aristote.
Parmi ces lois, 24 sont universellement valides et ne dépendent pas d’une
condition d’existence, a savoir: les 8 lois de la contradiction, les 8 lois de
I’obversion, les 4 lois de la conversion simple, et les 4 lois de la conversion
" par contraposition.

A D’antécédent et au conséquent de chacune des 24 formules exprimant
ces 24 lois sont associées dans le modéle arithmétique respectivement une
équation . inéquation qui figure comme antécédent et une équation ou
inéquation qui figure comme conséquent d’une implication arithmétique
vraie, quelles que soient les valeurs attribuées aux variables. En vertu du
modeéle, il est donc possible de démontrer la validité de ces 24 lois en
s’appuyant sur les lois de I’arithmétique.

Les 12 autres lois de l'inférence immédiate, dont la validité dépend
d’une condition d’existence, sont les suivantes: les 4 lois de la subalterna-
tion, les 2 lois de la contrariété, les 2 lois de la sous-contrariété, les 4 lois de
la conversion partielle.

La condition d’existence, qui prend la forme d’une proposition parti-
culiére dont le sujet et le prédicat sont 'un et I’autre le terme dont I’exis-
tence est une condition de la validité de la loi, figure, a c6té de I’antécédent,
comme une deuxiéme prémisse. Arithmétiquement, la déduction prend la
forme d’un systéme de deux équations ou/et inéquations qui admet, comme
conséquence arithmétique, une troisiéme équation ou inéquation, associée
dans le modele arithmétique a la conclusion logique des deux prémisses.
(Voir tab. 4).
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Tab.4 Démonstration arithmétique des 36 lois des inférences immédiates de la logique classique
A. Lois universellement valides (dont la validité ne dépend pas d’une condition d’existence)

NO  Formule logique Démonstration arithmétique

I. Lois de la contradiction

1. Aap OSP} Asp < O%p SP) =P~ (P < P} SP)=P o ([SP<P
2. Osp— Asp SPp<P->(Sp=P

3. Bp~Ip | g7 §F) = P > (P < ‘_’} SPH=P o (SPH<P
4. Tsp - Esp| SP)<P - (SP)= P

5. Isp = ESP} Isp  Esp SP <P~ (P = ‘_’} SP<P o SP-P
6. Esp— Isp Sp)=P >ESPHP

7. (3-SB—> Asp} Osp < Asp (SPH)<P - (SP) = } SP <P o (_——_S,P) -
8. Asp— Osp (SP)=P > (SP <P

- I1. Lois de 'obversion
9. ASP—) ESP} Asp © Esp (,Sf?_) = 1= (§’P) =1 } SP=1« (§,l=’) =1
10. Esp - Asp SP)=1->(EpP)=1
11. Aspl Esp ¢ Asp (§’l=)) - § ” (§’P) B §} SP=S « (§,=) = §
12. Asp—+ Esp SP)=S - (Sp)=S
13. Isp > 0P| 40 o Osp (SP) <5 > (SP) < §} GP<§ o @GP<S
14. Osp— Isp SP<S ->ESp<S
15. Osp— Isp } Osp < Isp (8.P) > 1 > (SP) > 1} GP>1 GH>1
16. Isp - Osp SPH>1->8P)>1
I11. Lois de la conversion simple

17. Esp~> Eps| g pps SP=1~®5= 1} GPH=1+ @9=1
18. Eps > Espj PS)=1~>(5pP)=1

19. Isp — Ips Isp < Ips (§,l_>) >1 - (I_’,§) > 1} GPH>1 o EH>1
20. Ips - Isp PS)>1~->(5p)>1
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NO  Formule logique Démonstration arithmétique

IV. Lois de la conversion par contraposition

e U o e
. ps > Asp S) = - =

23. Os_p—> Ops Osp < OF (SP) <P > (S < s} SR <P o (5<S

24. Ops~> Osp (PS)< S > (SP)<P

B. Lois conditionnellement valides (dont la validité dépend d’une condition d’existence)
NO  Formule logique Démonstration arithmétique

V. Lois de la subalternation

25. Asp+ Iss - Isp SPH=S-8S>1->EP>1

26. Esp+ Iss = Osp SP)=S+8S> 1->EP>1

27. Isp + Iss »> Asp SPH>1+8S> 1->@6P)=S

28. Osp- Iss - Esp SP>1+8S>1->E8P=S75
VI. Lois de la contrariété

29. Asp+ Iss - Esp SPHhH=S+S> 1->EP=1

30. Esp+ Iss = Asp SPHh=1+85>1->08P=S5
VII. Lois de la sous-contrariété

31. Osp+ Iss — Isp SP)<S +S>1->E6P>1

32. Isp + Iss = Osp SPH>1+-8> 1->6P<S
VIII. Lois de la conversion partielle

33. Asp- Iss - Ips SpH=S -S> 1~->PS>1

34, Esp - Ipp - Ops SPH=P: P> 1->Fs)>1

35. Ips « Iss = Asp PS)>1+-8> 1->08p=S

36. Ops+ Iss = Esp ®PS>1+ P> 1->(SP="P



Passons maintenant a la démonstration arithmétique des différents
modes syllogistiques. Dans notre premier exemple (Tab. 5), nous avons, a
gauche, le schéma logique du mode syllogistique CESARE, de la deux1eme
figure, que nous pourrlons lire de la fagon suivante:

Aucun p n’est m
Tout s est m

donc Aucun s n’est p

A droite du tableau, en haut, nous avons les deux équations associées
dans le modéle arithmétique aux deux prémisses du syllogisme. Ces deux
équations forment un systéme qui admet comme conséquence, I’équation
correspondante a la conclusion du syllogisme.

Dans la chaine des égalités, sous la ligne horizontale, chaque passage
d’un membre au membre suivant est effectué soit en vertu d’'une des équa-
tions associées aux prémisses (premier, troisiéme et dernier passages), soit
par ’application de la propriété associative de I’opération plus grand com-
mun diviseur. L’égalité entre le premier membre de la chaine — a savoir, plus
grand commun diviseur du complément de S et de P — et le dernier — a
savoir, le complément du nombre S — constitue ’équation associée a la con-
clusion du syllogisme.

Pour tous les modes syllogistiques, on opére d’une maniére analogue, en
appliquant, le cas échéant, en plus de la propriété associative du plus grand
commun diviseur, d’autres propriétés arithmétiques simples.

Dans notre deuxiéme exemple (Tab. 6), nous montrons comment
s’effectue la déduction arithmétique du mode syllogistique FERISON, de la
troisiéme figure. Dans notre troisiéme exemple (Tab. 7), nous passons a la
déduction arithmétique d’un syllogisme indirect, a savoir BAMALIP, de la
quatriéme figure, dont la validité dépend d’une condition d’existence, en
I’occurrence Ipp, que nous pouvons lire ‘“‘quelque p est p”’, c’est-a-dire, en

Tab. 5 Démonstration arithmétique d’un syllogisme direct de la deuxiéme figure:
mode CESARE.

Prémisses et conclusion Equations et/ou inéquations associées
F Epm P,M) =M Systéme d’équations
L B associé au systéme
F  Asm (S, M) =S de prémisses
- Esp S.P) 5 (5,M),P) = S, (P, M) 3
T (S, M) 3 S
Explication des symboles d’égalité:
= signifie: égal d’aprés I’équation

associée a la majeure (premiére prémisse);

signifie:  égal d’aprés I’équation
associée a la mineure (deuxiéme prémisse);
signifie: égal d’aprés les lois ou théorémes

arithmétiques du plus grand commun diviseur (propriété
associative, commutative, etc.).
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termes extensionnels, “il y a au moins un objet p” et, en termes intension-
nels, “le caractére p n’est pas irréel”. _ _

Il est facile de constater que 1’équation (S, P) = S, obtenue comme
conséquence arithmétique nécessaire du systéme d’équations associée aux
prémisses, est associée dans le modéle a la proposition Esp, conclusion 1€gi-
time des prémisses, d’aprés le mode CESARE.

Tab. 6 Démonstration arithmétique d’un syllogisme direct de la troisiéme figure:
mode FERISON

Prémisses et conclusion Equations et/ou inéquations associées
F  Emp M,P) = M Systéme d’équations/
_ inéquations associé au
F Ims M,S) >1 systeme de prémisses
~
b Osp (S,P) = (S,M,P)(S,M,P) =
a

S, M, P) (M, P), -

(S,M,P) (M, S) > 1

Tab. 7 Démonstration arithmétique d’un syllogisme indirect de la quatriéme figure:
mode BAMALIP :

Prémisses et conclusion Equations et/ou inéquations associées

F  Apm (P,M) = P Systéme d’équations
associé au systéme

F  Ams M,S) =M de prémisses
- Ipp (P,P) =P>1 Inéquation associée
a la condition d’existence
ou non irréalité de p
(troisiéme prémisse)
ko Isp 6P 5 S, M) = @,M,9) 5
=P>1
1 e

Explication du nouveau symbole d’inégalité introduit dans cet exemple:

> 1 signifie: plus grand que 1 d’aprés I'inéquation associée a la condition d’exis-
e
tence.

Cette arithmétisation de la syllogistique est, & notre connaissance, la
premiére du genre, permettant, comme nous le résumons dans Tab. 8, la
démonstration arithmétique des 15 modes directs et des 9 modes indirects,
c’est-a-dire des 24 modes traditionnels qui sont tous traduits en systémes
d’équations et/ou inéquations. On peut ajouter que les modes non tradition-
nels, comme Garderont, Heleni, Liberd et Noveri, du logicien allemand
Albert Menne (24), etc., peuvent également étre démontrés par voie arith-
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métique sans difficulté. Finalement, cette arithmétisation permet de résou-
dre le probléme de la décidabilité de la syllogistique, c’est-a-dire le probléme-
de décider, pour chaque forme syllogistique arbitrairement donnée, si elle
est valide ou concluante, ou si elle ne I’est pas. Ce probléme, qui préoccupa
a tel point le grand logicien polonais, Jan Lukasiewicz, probablement le
meilleur connaisseur de la syllogistique aprés Aristote, qu’il décida de lui
consacrer le plus intéressant des chapitres de son ouvrage capital “La syllo-
gistique d’Aristote dans la perspective de la logique formelle moderne” (25),
reste réduit pour nous a un simple probléme de vérification arithmétique.
Ainsi par exemple, notre méthode permet de prouver que ’expression que
Lukasiewicz signale dans le livre cité comme indécidable, que nous pour-

rions lire “si quelque a est b, alors, si non tout a est b, alors tout b est a’ est
fausse, comme Lukasiewicz affirme, mais en se déclarant incapable de prou-
ver cette affirmation (26). (Voir tab. 8 et 9).

Dans les tableaux qui suivent, nous montrons qu’il est possible de cons-
truire pour le calcul propositionnel un modéle arithmétique entiérement
analogue a celui que nous avons construit pour le calcul des classes et la
syllogistique. -

Pour ce faire, nous associerons aux variables propositionnelles des varia-
bles numériques (prenant leurs valeurs dans un ensemble de nombres entiers),
aux constantes élémentaires des nombres premiers, a la proposition nécessai-
rement vraie (tautologie) le nombre vide 1 (I'unité), a la proposition néces-
sairement fausse (contradiction) le nombre plein @, défini comme le plus
petit commun multiple de tous les nombres du réseau ou, si on veut, comme
le produit de tous les nombres premiers du réseau, a la conjonction p.q de
p et q le plus petit commun multiple [P, Q] des nombres caractéristiques res-
pectifs P et Q, a la disjonction pvq de p et q le plus grand commun diviseur
(P, Q) de ces nombres. Finalement, aux relations logiques p—~>q (p implique
q) et peq (p est équivalente a q) seront associées dans le modéle, respective-
ment, la relation arithmétique Q | P (Q divise P ou P est divisible par Q) et
P=Q (P est égal a Q) (Tab. 10).

Dans le Tab. 11, on montre les relations arithmétiques associées dans le
modeéle a toutes les relations logiques binaires dérivées des fondamentales.

Dans le Tab. 12, on applique le modéle a la démonstration arithméti-
que de quelques célébres groupes d’axiomes pour le calcul propositionel,
a savoir, ceux de Church (1951),Hilbert-Ackermann(1928) et Lukasiewicz
(1924), ainsi que les postulats de Kleene.

Nous dirons pour terminer que, étant donné lisomorphisme, déja
signalé, entre le type de modéle arithmétique que nous venons d’exposer et
les modéles constitués par des réseaux binaires de nombres caractéristiques,
tous les programmes informatiques que nous avons construits sur la base de
ces derniers pour effectuer dans 'ordinateur la déduction automatique des
conséquences logiques de n’importe quel systéme scientifique ou normatif
formalisé d’aprés les perspectives indiquées — par exemple, les programmes
“CALCULUS RATIOCINATOR” et “CALCULUS CONSEQUENTIA-
RUM”’, qui vont étre publiés trés prochainement — pourront étre utilisés
dans ce contexte (27).
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II.
II.
II.
II.

III.

III.

TII.

III.

Iv.

v

Iv.

. 1. Barbara
. 2, Celarent
. 3. Darii

. 4. Ferio

5. Cesare

6. Camestres
7. Festino
8. Baroco

9. Datisi
10. Ferison
11. Disamis
12. Bocardé

13. Calemes

.14, Fresison

15. Dimatis

1
| Epm. Asm
]
EApm.Esm
t
EEpm.Ism
1

1
iApm.Qsm

1Amp. Ims

1

Emp. Ims

! Imp., Ams
Omp. Ams
Apm.Ems
Epm.Ims
Ipm,.Ams

-

-

-

Osp
Osp
Isp
Osp
Isp
Osp
Esp
Osp
Isp

Bt G

s

MLP=H . (BW=5 = (5,P)5((5,1,P)=(5,(,P))5(5,1)5
a 1 2
M,P)=M . (5,0)=8 = (5,P)5((5,M),P)=(5,(M,P))3(5,M)355
a 1 2
(MP)=H . (5,021 2 (5,P)5(5,M,P)(5,M,P)=(5,M,P) (5, (M, P))5(5,M,P)(5,M) 1
M,P)=M . (S,M)P1 > (5,P)z(g,M,P)(g,ﬁ,P):(g,M,P)(S—,(lq,P))T(g,M,P)(g,ﬁ)?l
(B . (5,)=5 = (5,B)5((5,1),P)=(5,(2,))5(5,M58 '
) a 1 2
(P,M)=M . (5,M)=8 = (8,B)=((S,M),P)=(S,(P,M))=(5,M)=S
2 a 1 2
(B,M)=M . (S,M)21 = (5,D)5(5,M,P)(S,M,P)=(5,M,P) (5,(B,M))7(S,M,P)(5,M) > 1
(P,M)=M . (5,M)Pl - (5,?)§(§,M,P)(5,}?,9)‘;(5,(P,,M))CE,E,P)T(E,M;)(E,}—{,P_);1
(M,P)=M . (M,5)P1 ->(5,5)3(5,»«,5)(5,‘,5);@,»4,5)(@,5),E)T(E,M,E)&,E)?l
M,P)=M . (L9 P21 - (5,P)5(5,M,P)(5,M,P)=(5,M,P) ((M,P),§)3(5,M,P) (0,5) 21

P21 . (M,8)=M = (5,P)5(5,M,P)(5,M,P)=(5,M,P) ((M,5),P)5(5,M,P) (M, )P 1

M,P)21 . (LS = (5,P)5(5.M,P)(5,M,2)=2(5,1,P) ((M,5),P)5(5,M,P) (M, P)> 1

(P,M)=M . (M,5)=5 - <§,P)§((M,§>,g>;((1>,m>,§>T(M,§>§§

(P,M=M . M,H21 "~

(8,P)=(3,M,P)(5,M,P)=(5,M,P) ((P,M),5)5(M,5) »1
a 1 2

FOPL . (,5)=M - (5, P)3(5.0,) (5,1, D) 25,1, B) (B, (H,5) 5 (P, 1

B. Syllogismes conditionnellement valides (dont la validité dépend d'une condition d'existence)

B.1l. Syllogismes 3 conclusion attenuée

(M,P)=M . (5,M)=5 . Sl - (E,F);((E,ﬁ),F);(E,(E,E))T<§,ﬁ);§g\1

1

e e s e S e e, s et Y e S P v . . o e e S
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1.17. Celaront iEmp.Asm. Iss = Osp ()—4,P)=l—d‘ . (g,f{_)=§ . SPlo (E,P)E((g,ﬁ),P);(g,(ﬁ,P))T(g,ﬁ)EEzl

11.18. Cesarop Epm.Asm. Iss - Osp (P,M)=M . (5,M)=5 . S»1 - (§,P>;((§,ﬁ),P);(§,<P,ﬁ>)i(§,§)§§31

I1.19. Camestrop ! Apm.Esm.Iss - Osp (B,M)=M . (5,M)=5 . 51~ (§,P)§((§,M),P):(E,(P,M))T(E,M)§§E71

1V.20. Calemop Apm.Ems. Iss - Osp (P,M)=M . (M,5)=5 . S»1 - (§,P)'§'((M,§),P):((P,M),E)T(M,E)Eggl

III.21. Darapti mp. Ams. Imm > Isp (M,P)=M . (M,S)=M . M1 -’(§,§)3—(§,M,F)(S,M,P);(g,M,F)((b_'l,-E;),g)i(g,M,F)(§,—S_)§(§,M,E)ﬁe71

A
1I11.22. Felapton !Emp.Ams.Imm - Osp (M,P)=M. . (M,S)=M . Mpl = <§,P>3(§,M,P>(E,ﬁ,m;(E,M,P)((ﬁ,P),§>;(&MJ)(E,E);YS,M,P)Eg1

=2

1V.24. Fesapo

pm.Ams. Imm - Osp

1
1

1

1

1

!

I

1

]

1

1

]

]

]

1

'

lI

B.2. Syllogismes A conclusion pleine utilisant la conversion partielle H
)

1

)

)

1

)

1

1

]

]

)

)

[}

1

]

- — - S — - = — - - = - - — i
(P,M)=M . (M,S)=M . MP1 = (s,P)z(s,M,P)(s,M,P);(s,M,P)((P,M),S)T(S,M,P)(M,S);(S,M,P)MglE
)

)

1
1
1
1
1
E
pm.Ams. Ipp - Isp | (P,M)=P . (M,S)=M . PP1- (§,§)7<§,<§,§>);<§,<ﬁ,§));(5,12)3531
!
1
:

e e o O e o

i
]
I
]
]
1
1
I
1
]
1V.23, Bamalip 1
]
1
1
]
1
]
1
3

X nombre complémentaire du nombre X, défini de la fagon suivante: X = df @/x

Or, comme @ est défini 2 son tour comme le plus petit commun multiple de tous les nombres du réseau considéré ou, ce qui

revient au méme, comme le produit de tous les nombres premicrs Pl’ . PS du réseau (9@ =df P x...xPS), X est égal au

produit de tous les nombres premiers du réseau qui ne sont pas des facteurs de X,

1

(X,Y) plus grand commun diviseur des nombres X et Y

&
G F est égal & G d'aprés l'expression arithmétique de la 1 re prémisse

1
> ! , . . . ére .
F 1 1 F est plus grand que 1 d'aprés l'expression arithmétique de la 1 prémisse
&
G F est égal a4 G d'aprés 1l'expression arithmétique de la 2 me prémisse

2
::' ' ' e . § dme
F 2 1 F est plus grand que 1 d'aprés 1l'expression arithmétique de la 2 prémisse

F %Pl F est plus grand que 1 d'aprés l'expression arithmétique de la condition d'existence (adoptée comme 3éme prémisse)
F 3 G F est égal A G en vertu de la loi de décomposition du plus grand commun diviseur: (X,Y)=(X,Y,Z)(X,Y,Z)

F : G F est égal 2 G en vertu de la propriété associative et/ou commutative du plus grand commun diviseur

F ; G F est égal 2 G en vertu de la définition du plus grand commun diviseur

(o) X, Y et Z sont des nombres quelconques et F at G des expressions arithmétiques quelconques)



Tab.9 Le modele arithmétique fondé sur la caractéristique numérique de Leibniz
comme méthode de décision pour la syllogistique.

‘Réfutation par voie arithmétique d’une formule syllogistique que Lukasiewicz pose
comme exemple d’expression invalide mais indécidable dans son systéme axiomatique.

1. Expression syllo-
gistique indécida-
ble dans le systéme
axiomatique de

Lukasiewicz:
1.1. en notation
polonaise: ClrsCNArsAst
1.2. en notation L .
ordinaire: Irs — (Ars — Asr) ou Irs- Ars— Asr
2. Schémas syllo- L Irs » L Irs
gistiques qui - Arsou |k Ors
correspondent aux o i —_—
expressions 1.: F Asr L Asr
3. Conditions arithmétiques qui seraient [R,S]1< O Sy.st’éme
nécessaires et suffisantes pour prou- [R,S]>R d.’mequa-
ver, d’aprés notre modéle arithmétique —————- tions corres-
de la syllogistique, la validité des [S,R]=S pondar}t .
schémas 2. et des expressions 1.: aux préemis-

S€s

Equation correspondant a
la conclusion, qui devrait
étre, dans I’hypothése de la
validité de 2., une consé-
quence du systéme d’iné-
quations précédent, pour
n’importe quelles valeurs

de R et S.
4. Conditions arithmétiques qui seraient
nécessaires et suffisantes pour prouver,
d’apres notre modéle arithmétique de la [ [R,S] < @ Systéme d’inéquations qui
syllogistique, I'invalidité des [R,S] >R devrait admettre au moins
schémas 2. et des expressions 1.: [R,S]>S une solution dans I’hypo-

thése de Vinvalidité de 2.

Or, pour que le systéme 4. ait au moins une solution, il suffit que le nombre plein Q
ait au moins trois facteurs premiers A, , A, et A;:

O=A, xA, xA; x..

et d’attribuer alors a R et S les valeurs R = A, et S = A, pour que le systeme 4. soit
satisfait.
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Tab. 10 Un nouveau modéle arithmétique du calcul propositionnel, fondé sur la caractéristique numérique de Leibniz. Aux variables, cons-
tantes, opérations, relations et expressions logiques du calcul propositionnel sont associées dans le modele arithmétique des variables cons-
tantes, opérations, relations et expressions arithmétiques de la fagon suivante:

Calcul propositionnel Modéle arithmétique
Variables: p.q,r1,... P, Q, R,. .. (variables numériques, prenant leurs valeurs dans un ensemble
de nombres entiers)
Constantes €lémentaires: P1sPyy Pss-- o Py {12’, ,3Pg, Py,..., Py (nombres premiers)
Constantes limites: t (tautologie) 1 (unité)
f (contradiction) @, nombre plein, défini de la facon suivante:

O=P,.P,..... Py (produit de tous les
nombres premiers du réseau)

Opérations: P (négation de p) P, définie de la facon suivante: P = )/ P
p v q (disjonction de p et q) (P, Q) (plus grand commun diviseur de P et Q)
p-q (conjonction de p et q) [P, Q] (plus petit commun multiple de P et Q)
p D q (conditionnelle) (P, Q)

Relations: p = q (implication) (P,Q) = 1 ou Q IP (P est divisible par Q)

(ou Q divise P)

1}

p < q (équivalence) P=Q
P=1

Fp ou pet

Cette correspondance entre le calcul propositionnel et son mode¢le arithmétique fournit une méthode de décision pour les formules du calcul
propositionnel fondée sur le principe suivant: La condition nécessaire et suffisante pour que une formule p du calcul propositionnel soit une
thése de ce calcul (tautologie) est que la formule arithmétique P associée ¢ p dans le modéle prenne la valeur 1 (unité) pour n’importe quelle
valeur de ses variables.



Tab. 11 Expression arithmétique des relations logiques binaires entre propositions
Relation  Sous forme Relation arithmétique = Conditions arithmétiques
logique d’implication  correspondante €quivalentes

ou d’équiva-

lence
Fpvg p—gq ®P,Q=1 QIP e PIQ
F gDdp P—q P,Q=1 QIP et P1Q
F pDdga p—gq ®,Q=1 QIP et P1Q
t p/q p—>q P,Q=1_ QP e PIQ
F p (PsQ)(EsQ)=1 P=1 et [l:@
Fq P, QP Q=1 Q=1 et Q=90
F p=q peq P,QCE,QY=1 P=Q et Q=P
F pwqg peg P,QF, Q=1 P=Q et Q=P
Fq P,QFE =1 Q=1 et Q=0
Fp ®P,QE® Q=1 P=1 et P=0
F pq P,QFP QP YD=1 P=1 et Q=1
F p.q P, QRO PEPY=1 P=1 et Q=0
F pg P,YERQE, QD=1 P=@Q et Q=1
F P P,QCE, QP Q=1 P=0Q et Q=0

1X = qf Y divise X
=4fQ/X  _
= P,Q® QP QFQ

X

Y
X
?
o

Y) = 4f plus grand commun diviseur de X et Y

est le nombre caractéristique de la proposition nécessairement fausse f

Tab. 12 Démonstration arithmétique de quelques systémes d’axiomes célébres du

calcul propositionnel

Démonstration arithmétique des quatre axiomes de Hilbert-Ackermann (1928) pour le

calcul propositionnel

Premier axiome de Hilbert-Ackermann:
Démonstration:

Deuxiéme axiome de Hilbert-Ackermann:

Démonstration:

Troisiéme axiome de Hilbert-Ackermann:

Démonstration.:

Quatriéme axiome de Hilbert-Ackermann:

Démonstration:
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pvp—p

((P,P),P)=(P,P)=1 q.ed.

P—qQvp

®,(Q,P))=(P,Q,P)=1 gqed.

bvq —> qvp
(?,Q),(@Q,P)=(F,Q,P,Q)=1 ged.
(p—q — (rvp—1vq)

(P, Q), ((R,P), (R.Q))) =((R,P, Q)
(R,P,Q), (R,P,Q) (R,P,Q),
(R,P,Q (R,P,Q)=1 qed.




Démonstration arithmétique des trois axiomes de Lukasiewicz (1924) pour le calcul

propositionnel

Premier axiome de Lukasiewicz:

Démonstration:

Deuxiéeme axiome de Lukasiewicz:

Démonstration:

Troisieme axiome de Lukasiewicz:

(p**q)*((q-*r)*(p*r))

(P, Q), ((Q,R) ,(P,R)))=(P,Q,R)(P,Q, R),
((Q.R)(Q,R)(Q,R),(P,Q,R)(P,Q,R))) = _
((P,Q,R)(P,Q,R), ((P,Q,R)(P,Q,R) (P,Q,R)
P, Q,R)(P,Q,R)(P,Q,R),((P,QR)(P,Q,R)))=
((P,Q,R)(P,Q, R) (P,Q,R))=1 q.ed
p—(p—q)

®,(®,Q)=P,P,Q=FP Q=1 qed.
(5_—* p)—0p
((P,P),P)=((P,P),P)=(P,P)=1 q.ed.

Démonstration arithmétique des trois axiomes de Church (1951) pour le calcul propo-

sitionnel

Premier axiome de Church:
Démonstration:
Deuxiéme axiome de Church:

Démonstration:

Troisiéeme axiome de Church:

Démonstration:

(p=H-=H-p

p—(q—p)

®,(@Q,P)=(P,QP)=1 gqed.
(p~>(Qq->m))—>((p~q) —~(p—>m))
((P,(Q, M), ((P,Q), (®,M) =((,Q, M),
((P,Q) (P, Q) (P,Q), P, M)) = ((P,Q, M),

((P,Q,M) (P, Q,M) (?,Q,M) (P, Q, M) (P, Q, M)

P
(P, Q, M), (P, Q,M) (P, Q, M)) = ((P, Q, M),
P,Q,M)=1 qed.

(P, 0),0),P)=((P,®),P)=((P,0),P) =
P,P)=1 q.ed.

Démonstration arithmétique des postulats de Kleene pour le calcul propositionnel

Postulat 1a. de Kleene:
Démonstration:
Postulat 1b. de Kleene:
Démonstration:

Postulat 3 de Kleene:

Démonstration:

Postulat 4a. de Kleene:

p—>(q—p)

(P, (Q,P)=(P,Q,P)= 1 gqed.

-9~ ((p~(@—->n)~>(p~D)

(P, Q) ((;&MMJ_Q,_RZ___
(PQ,R) (P, Q,R)(P,Q,R)(P,QR) (P
(P,Q,R)(P,Q,R)), P_R) )=((P, ,R)
P,Q,R),((P,Q,R),(P,Q,R) (P,Q,R))) =
(P,Q,R)(P,Q,R),(P,Q,R))=1 q.ed.
p—>(q—p.q

®,(Q,(?,Q (®,Q (P, Q)= (F,Q(*,Q,
((P,Q (P,Q),(?,Q) (P,Q ?, Q) =(,Q
(P,Q),(P,Q)=1 gqed.

p.Q—p

((P,Q (P,Q) (P,Q),P)=((P,Q),P)=(P,Q,P) =
1 q.ed.
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Postulat 4b. de Kleene: pa9—q

Démonstration: (P, Q) (P,Q (?,Q),Q=((P,Q,Q=
(P,Q,Q =1 gq.ed.

Postulat 5a. de Kleene: p = pvg-

Démonstration: P, P,0)=P,P,Q=1 gqe.d.

Postulat 5b. de Kleene: q — pvq

Démonstration: (Q,(P,Q)=(Q,P,Q =1 gqed.

Postulat 6 de Kleene: (p—1)—>((q—>r1)—~(pvg—>1))

Démonstration: ((P.R), ((Q,R), ((P,Q), R)) =

Notes

1)

2)

3)

4)
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Voir, a ce sujet, notre article “Modéles arithmétiques pour l'informatique juridi-

que”, contribution a un volume collectif d’imminente parution — on trouvera la

référence dans la bibliographie sous SANCHEZ-MAZAS, 1978 —. Dans cet article,

nous appliquons un modéle arithmétique isomorphe a celui que nous présentons

ici au traitement automatique des systémes normatifs, définis précisément comme

des classifications déontiques de conjonctions de conditions et faits/actions.

Notre premier essai d’arithmétisation des relations logiques congues dans la pers-

pective intensionnelle de Leibniz date de plus d’un quart de siécle (voir SAN-

CHEZ-MAZAS, 1952). Dans cet essai, nous proposions déja d’associer a la combi-

naison de deux concepts (nous disions: ‘“la premiére espéce commune a deux

genres”) le plus petit commun multiple de leurs nombres caractéristiques et a

I’alternative de deux concepts (nous disions: ““le dernier genre commun a deux

espéces”) le plus grand commun diviseur de ces nombres.

Il s’agit essentiellement des calculs logiques proposés ou développés par Leibniz

(toujours partiellement) dans les essais suivants, publiés dans le livre “Opuscules et

fragments inédits de Leibniz, extraits des manuscrits de la Bibliothéque royale de

Hanovre” par Louis Couturat, Paris, Félix Alcan, 1903:

— Elementa Characteristicae universalis (p. 42—49);

— Elementa Calculi (p. 49-57);

— Calculi universalis Elementa (p. 57-66);

— Calculi universalis investigationes (p. 66—70);

— Modus examinandi consequentias per numeros (p. 70—77);

— Regulae ex quibus de bonitate consequentiarum formisque et modis syllogis-
morum categoricorum judicari potest, per numeros (p. 77—84);

— Calculus consequentiarum (p. 84—89);

— Regulae quibus observatis de bonitate consequentiarum per numeros judicari
potest (p. 89-92);

— Sur les nombres caractéristiques (p. 245-247);

— Notes de Calcul logique (p. 324—-326).

Pour des essais précédents dans cette direction voir, en plus de larticle déja cité

dans la note 2, notre brochure de 1955 et notre livre de 1963; quant aux modéles

proposés dans notre thése de 1973 et nos travaux de 1972, ils représentent des

variantes trés éloignées de I’actuelle; finalement, nos communications de 1977 a



5)

6)
7

8)
9)
10)

Paris et a Hannover se trouvent dans la méme ligne que la présente communica-
tion, mais présentent des aspects et des résultats différents et complémentaires de
ceux qui figurent ici.
L’affirmation la plus significative dans ce contexte nous parait la suivante: “Si
I'on pouvait trouver des caractéres ou signes propres d exprimer toutes nos pen-
sées, aussi nettement et exactement que l’arithmétique exprime les nombres . . .
on pourrait faire en toutes les matiéres autant qu’elles sont sujettes au raisonne-
ment (c’est Leibniz qui souligne) tout ce qu’on peut faire en Arithmétique ... Car
toutes les recherches qui dépendent du raisonnement se feraient par la transposi-
tion de ces caractéres et par une espece de calcul” (Préface a la Science Générale,
dans LEIBNIZ, Opuscules, p. 153—-157).
LADRIERE, Jean, 1957.
Le résultat de ces recherches est ’ceuvre LEIBNIZ, Opuscules, que Couturat
publia en 1903, c’est-a-dire, deux ans apres la parution de son livre “La Logique
de Leibniz” dans lequel il exploite ses importantes découvertes.
RUSSELL, Bertrand, 1900 et 1908 pour la traduction francaise.
COUTURAT, Louis, 1901.
Il n’est pas difficile de constater I’erreur de Couturat lorsqu’il essaye de représen-
ter le syllogisme Celarent, selon la perspective intensionnelle, pour montrer que
cette perspective n’est pas susceptible de figuration géométrique. En effet:
Soient trois termes, par exemple animal, homme et pierre, symbolisés respective-
ment par les lettres ‘a’, ‘h’ et ‘p’ et interprétables soit en extension, comme des
classes d’individus, soit en intension, comme des concepts composés de caracté-
res.
Si nous désignons par ‘Eap’ 'universelle négative (aucun animal n’est pierre) et par
‘Aha’ I'universelle affirmative (tout homme est animal) figurant comme prémis-
ses d’un syllogisme du mode Celarent, ainsi que par ‘Ehp’ universelle négative
(aucun homme n’est pierre) figurant comme conclusion de ce syllogisme, alors la
formule suivante:

Eap.Aha—~Ehp
sera ’expression symbolique de ce syllogisme.
Prenons maintenant, d’abord le point de vue extensionnel, puis I'intensionnel.

1. Dans la perspective extensionnelle, le syllogisme précité peut &tre interprété de

la fagon suivante:

Eap a C p la classe des animaux est incluse dans la classe des non-pierres (exclue
de la classe des pierres)

Aha h C a 1la classe des hommes est incluse dans la classe des animaux

donc:

Ehp h C'p la classe des hommes est incluse dans la classe des non-pierres (exclue
de la classe des pierres)

Représentation géométrique correcte, qui correspond a celle de Couturat a la page

28 de sa “‘Logique de Leibniz”:

]

pierres ____E___*_.__._.r_.___l_____. non-pierres
: :4____._3_1___._.__._’ animaux
|
I
l

]
e — I _ | hommes
!
1
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2. Dans la perspective intensionnelle, le méme syllogisme peut étre interprété de la
fagon suivante:

Eap P C a le caractére non-pierre est inclus dans le caractére animal

Aha a C h le caractére animal est inclus dans le caractére homme

donc: v

Ehp P C h le caractére non-pierre est inclus dans le caractere homme
Représentation géométrique correcte, qui ne correspond pas a celle de Couturat a
la page 31 de sa “Logique de Leibniz™:

= I | |

non-pierre 4...."__.14._____1[___&_._.!____.; pierre
I I
animal | — — — & — - — ! l
I I
homme 4.____|___._r.‘__=.______;|
| ! |

Représentation géométrique incorrecte, qui correspond a celle de Couturat a la
page 31 de sa “Logique de Leibniz”:

| I
¢~ — — _pi_ —_—— _J pierre
animal [¢— —— — & — — — | ;l |

I
homme |[¢ — — — — — —'— — I___._§
!

On constatera, en effet, en ouvrant cette page 31 et en observant la fameuse figure
dans laquelle Couturat (probablement sans suivre Leibniz, puisqu’il n’y a aucune
référence a ce sujet) construit le schéma par lequel il croit, par erreur, représenter
les prémisses de Celarent, en intension, que I’'universelle négative nul C n’est D est
représentée exactement comme en extension, c’est-a-dire en imposant aux termes
C et D la condition d’étre disjoints. Or, s’il est vrai qu’en extension linterpréta-
tion de l'universelle négative nul C n’est D (aucun animal n’est pierre) est la sui-
vante: “aucun individu n’appartient a la fois a la classe des C (animaux) et a la
classe des D (pierres)”, ou, si on veut, “les classes C et D (animaux et pierres) sont
disjointes™, il n’est pas moins vrai qu’en intension, I'interprétation de la méme
universelle négative est la suivante: “‘le caractére C (animal) contient le caractere
non-D (non-pierre)’’; mais cela ne signifie nullement que C (animal) en tant que
composé de caractéres, soit nécessairement disjoint de D (pierre); ainsi, dans notre
exemple, les caractéres “animal” et “‘pierre”, tout en satisfaisant a la condition de
I’universelle négative (aucun animal n’est pierre), ne sont pas, pourtant, intension-
nellement disjoints, puisqu’ils ont des caractéres communs (sont des corps, ont un
poids, ont une couleur, etc.); a la disjonction extensionnelle ne correspond donc
pas nécessairement la disjonction intensionnelle, comme le croit Couturat, a en juger
par sa représentation géométrique de I’universelle négative, selon la perspective
intensionnelle, dans la figure mentionnée. Or, il est, 4 notre avis, assez étonnant,
étant donnée I'importance des conséquences que le philosophe francais tire de son
erreur, que celle-ci n’ait pas été signalée, dans toute sa gravité, par les logiciens qui
Pont suivi, et cela pendant trois quarts de siécle! '
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11)
12)
13)
14)

15)

16)

17)
18)

19)

“La Logique de Leibniz”, p. 32

Ibid.

Nicholas Rescher, “‘Leibniz’s interpretation of his logical calculi’’, The Journal of
Symbolic Logic, Vol. 19 (1954), p. 1—13. Le texte en question se trouve a la p. 1.
Pierdaniele Giarretta, ‘‘L’intensionalismo logico leibniziano”, Pensiero, Vol. 1
(1973), p. 89-103. Voir p. 92.

Il s’agit des opuscules énumérés dans la note 3. C’est en me basant précisément sur
la méthode des deux nombres caractéristiques associées a chaque concept, expo-
sée dans ces opuscules, que j’ai construit mes premiers modéles arithmétiques des
calculs intensionnels d’inspiration leibnizienne, dans ma brochure de 1955 et mon
livre de 1963. La méthode des deux nombres caractéristiques a été d’ailleurs étu-
diée et perfectionnée par le logicien allemand Christian Thiel dans sa communica-
tion au II1® Congrés Leibniz (Hannover 12—17 novembre 1977) “Leibnizens Defi-
nition der logischen Allgemeingiiltigkeit und des arithmetischen Kalkiil”. Or,
lorsque dans la discussion qui suivit son exposé, j’ai dit a Thiel qu’a mon avis un
seul nombre caractéristique pour chaque concept était largement suffisant pour
construire un modeéle arithmétique satisfaisant dans la perspective de Leibniz —
chose que j’ai démontré a Hannover dans ma communication du lendemain — il ne
voulait pas me croire!

Voir, a ce sujet, dans mon travail SANCHEZ-MAZAS 1978, les deux programmes
“CALCULUS RATIOCINATOR” et “CALCULUS CONSEQUENTIARUM” que
j’ai construits en me basant sur un modéle arithmétique strictement isomorphe a
celui que je présente dans ces pages.

Voir, a ce sujet, WANG, Hao, 1951.

“Cui inest A non-A est non Ens seu terminus falsus” (Voir “Fundamenta Calculi
Logici”, dans “Opuscules et fragments inédits de Leibniz, extraits des manuscrits
de la Bibliothéque royale de Hanovre” par Louis Couturat, Paris, Félix Alcan,
1903, p. 421). Leibniz entend par 1a que si un concept contient en méme temps
deux caractéres opposés ou contradictoires comme animal et non-animal, alors ce
concept est faux, dans le sens qu’il correspond au non-Etre.

Le modéle arithmétique que nous construisons ici, et qui est fondé sur les nom-
bres premiers — suivant une tradition qui va de Leibniz a Kurt Godel — sera
appelé “réseau primaire de nombres caractéristiques”, pour le distinguer de I’autre
type de modéle que nous avons également construit sur la base des puissances de
2, et que nous appelons “‘réseau binaire de nombres caractéristiques” (ce dernier
est utilis¢ dans notre article SANCHEZ-MAZAS 1978 pour I'informatique juridi-
que).

Tout réseau binaire Rp (a D dimensions) de nombres caractéristiques est isomor-
phe a un réseau primaire de nombres caractéristiques du méme nombre de dimen-
sions, défini comme I’ensemble des 2D diviseurs d’un nombre @ (@ = P, xP, x...
xPp, ou P,, P,, etc. sont des nombres premiers distincts deux a deux; le nombre
@ n’est donc multiple d’aucun carré, cube, etc. d’un nombre premier). () peut
étre défini dans ce contexte comme le plus petit commun multiple des 2P nom-
bres du réseau (dont 1 et (). L’isomorphisme entre les deux types de réseau est
défini par la correspondance suivante:

Réseau binaire Réseau primaire
B,,B,, ..., Bp_, P,,P,, .., PD-!
20,21, .., 2D— © 2,3, ..,

{nombres binaires (nombres premiers)

élémentaires ou
puissances de 2)

composition binaire - divisibilité
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20)

21)

384

plus grand composant R plus grand commun diviseur
binaire commun

plus petit composé - plus petit commun multiple
binaire commun

complémentaire absolu complémentaire absolu
d’un nombre Q: d’un nombre Q:

Q=2-Q < Q=0/Q

nombre vide: 0 (zéro) © nombre vide: 1 (unité)
nombre hypersaturé ou nombre hypersaturé ou
plein Z: plein @:

Z=B, +..+BD-t =2D—1 <  @=P,xP, ..xPD-!

Du fait de cet isomorphisme, chaque loi d’un réseau binaire de nombres caractéris-
tiques correspond a une loi analogue d’un réseau primaire de nombres caractéristi-
ques. Le lecteur pourra donc se familiariser avec les lois d’un réseau du premier
type en évoquant les lois analogues des réseaux du deuxiéme type, qui sont les lois
ordinaires de la divisibilité des nombres entiers, bien qu’élargies et compliquées
par l'introduction de la notion de nombre complémentaire Q d’un nombre carac-
téristique Q.

Afin de faciliter la tiche de I'imprimeur (sans étre obligés, pour autant, d’utiliser
la notation polonaise, qui n’est pas assez connue de tout le monde et parait a cer-
tains moins intuitive), nous avons choisi les symboles les plus simples et générale-
ment disponibles pour désigner les différents opérateurs du calcul propositionnel.
Ainsi:

I’expression correspond a I’expres- matrice de la
sion suivante en nota- fonction
tion polonaise

p.q Kpq (1,0,0,0)

pvq Apq (1,1,1,0)

p2q Cpq (1,0,1,D
p=q Epq (1,0,0,1)
pwq Jpq 0,1,1,0)

r/q Dpq 0,1,1,1)

Les relations ‘p implique q’ et ‘p est équivalente a q’ seront désignées respective-
ment par les expressions: p—~q et p<q

La condition d’existence, qui est indispensable pour assurer la validité de 12 lois
des inférences immédiates — a savoir, les 4 de la subalternation, les 2 de la contra-
riété, les 2 de la sous-contrariété et les 4 de la conversion partielle —, ainsi que de
9 modes syllogistiques — Darapti, Felapton, Bamalip, Fesapo, Barbari, Celaront,
Cesarop, Camestrop et Calemop — est considérée par de nombreux logiciens
actuels comme une prémisse supplémentaire. Voir, a ce sujet, D. Hilbert et W.
Ackermann, “Grundziige der theoretischen Logik”, dritte, verbesserte Auflage,
Berlin: Springer, 1949, p. 44—48, ainsi que W.V.0. Quine, “Méthodes de logique”
(traduction de l’original anglais “Methods of Logic”’, Holt, Rinehart and Winston,
1950, 1959 et 1972), Paris, Armand Colin, 1973: “les quinze formes de syllogis-
mes recensées plus haut sont les seules qui soient valides. Outre celles-ci, neuf for-
mes méritent cependant une mention honorable. Il s’agit de formes qui, a P’instar
de I'exemple des Spartiates, ont besoin d’un léger renforcement de leurs prémis-
ses” (p. 102). Voir aussi Joseph Dopp, ‘“Notions de logique formelle”, Louvair}/



22)

23)

24)
25)
26)
27)

Paris: Nauwelaerts, 1965: “Si on ne présupposait pas que les concepts sont véri-
fiés par un objet au moins, 9 modes cesseraient d’étre valables, a savoir: Barbari,
Celaront, Cesarop, Camestrop, Darapti, Felapton, Bamalip, Fesapo et Calemop
(p. 137). Nous partageons ici le point de vue des logiciens précités.

La base intensionnelle de cette méthode d’arithmétisation peut étre constatée en
observant que le degré de composition ou richesse de facteurs du nombre carac-
téristique d’un caractére ou propriété, ainsi que d’une proposition augmente ou
diminue en fonction de la richesse intensionnelle du caractére ou de la proposi-
tion. En effet, la richesse intensionnelle d’un caractére est exprimée par le nombre
des caractéres qu’il contient. Pour sa part, la richesse intensionnelle d’une proposi-
tion est exprimée par le nombre de ses conséquences logiques.

D’aprés cette doctrine, le sujet d’un énoncé est plus riche que le prédicat de ce
dernier. Ainsi, lorsque Leibniz répetait que le prédicat est toujours contenu dans
le sujet, il ne faisait qu’exprimer le point de vue intensionnel. Pour sa part, I’anté-
cédent d’une implication est plus riche que son conséquent. Lorsque nous disons
“Si quelque roi de France est chauve, alors quelque roi est chauve™, antécédent
de cette implication a plus d’intension et moins d’extension que son conséquent.
Mais dans cette méthode d’arithmétisation le nombre caractéristique du sujet est
toujours multiple du nombre caractéristique du prédicat et le nombre caractéristi-
que de I'antécédent est toujours multiple du n.c. du conséquent. La priorité de la
perspective intensionnelle est donc vérifiée.

“In one passage Aristotle characterizes a negative name such as ‘non-man’ as being .
not a name but an dvopua AadotoToy - (an infinite name...). In spite of this
restriction or qualification, examples of contraposition do -occur: ‘If man is an
animal, what is not animal is not man’... Bochenski points out that these proposi-
tions are not quantified — at least not explicitly. Yet the only reasonable under-
standing of them is as universal affirmative; and the contraposition them seems to
be of the sort which changes a universal affirmative into a universal negative. Pro-
bably from this source, contraposition appears in Petrus Hispanus as being presu-
mably Aristotelian. But for Petrus Hispanus, contraposition changes a universal
affirmative into universal affirmative and a particular negative into a particular
negative, And I shall thereafter use the term ‘contraposition’ in this sense”
(Alonzo Church, “The history of the question of existential import of categorical
propositions’’, Proceedings of the 1964 International Congress for Logic, Metho-
dology and Philosophy of Science, Jerusalem, August 26-September 2, 1964,
published by North-Holland Publishing Company, Amsterdam, 1964, p. 417—
424, Pour le texte précité, voir p. 418—419).

Voir Menne, Albert, 1962

Voir Lukasiewicz, Jan, 1954 et 1972 pour la traduction francgaise

Lukasiewicz, Jan, 1972, p. 114 et suivantes

Voir Sanchez-Mazas, 1978.

385



Bibliographie

Blanche, Robert, 1966: Structures intellectuelles. — Paris: Vrin, 1966.

Blanche, Robert, 1972: Sur la trivalence, Logique et Analyse, 15€ année, n® 5960,
septembre-décembre 1972, p. 568—-582.

Bochenski, I.M., 1948: On the Categorical Syllogism, Dominican Studies (Oxford),
vol. 1 (1948), p. 35—37. (réédition dans Logico-Philosophical Studies, A. Menne
éd., 1962).

Castaneda, Héctor Neri, 1976: Leibniz’s Syllogistico-Propositional Calculus, Notre
Dame Journal of Formal Logic, vol. 17, (1976), p. 481-500.

Church, Alonzo, 1964: The history of question of existential import of categorical
propositions, Proceedings of the 1964 International Congress for Logic, Metho-
logy and Philosophy of Science, Jerusalem, August 26-September 2, 1964, North-
Holland Publishing Company, Amsterdam, 1964, p. 417-424.

Couturat, Louis, 1901: La Logique de Leibniz, d’aprés des documents inédits. — Paris:
F. Alcan, 1901.

Dopp, Joseph, 1965: Notions de logique formelle. — Louvain/Paris: Nauwelaerts, 1965.

Gericke, H., 1952: Algebraische Betrachtungen zu den Aristotelischen Syllogismen,
Archiv der Mathematik, vol 3 (1952), p. 421-433.

Giarretta, Pierdaniele, 1973: L’intensionalismo logico leibniziano, Pensiero, vol 1
(1973), p. 89-103.

Hilbert, D. und Ackermann, W., 1949: Grundzuge der theoretischen Logik. — 3. Aufl.
— Berlin: Springer-Verlag, 1949. — (Die Grundlehren der mathematischen Wissen-
schaften; Bd. 27).

Kalinowski, Georges, 1967: Axiomatisation et formalisation de la théorie héxagonale
de lopposition de M. R. Blanché (Systéme B), Les études philosophiques, vol. 22
(1967),n° 2, p. 203-209.

Kauppi, Raili, 1960: Ueber die Leibnizsche Logik; mit besonderer Beriicksichtigung
des Problems der Intension und der Extension. — Helsinki: Societas Philosophica,
1960. — (Acta Philosophica Fennica, Fasc. 12, 1960).

Ladriére, Jean, 1957: Les limitations internes des formalismes: étude sur la significa-
tion du théoréme de Godel et des théorémes apparentés dans la théorie des fon-
dements des mathématiques. — Paris: Gauthier-Villars, 1957.

Leibniz, G.W. Opuscules: Opuscules et fragments inédits de Leibniz, extraits des
manuscrits de la Bibliothéque royale de Hanovre par Louis Couturat. — Paris:
Felix Alcan, 1903.

Lukasiewicz, Jan, 1954: Aristotle’s syllogistic from the standpoint of modern formal
logic. — Oxford: Clarendon press, 1954.

Lukasiewicz, Jan, 1972: La syllogistique d’Aristote dans la perspective de la logique
formelle moderne. — Paris: A.Colin, 1972 (traduction de la précédente).

Maretti, Enrico, 1976: Modelli algoritmici di strutture sillogistiche, Informatica e
Diritto, Anno II, janvier-mars 1976, p. 51-112.

Menne, Albert, 1962: Some results of investigation on the syllogism and their philo-
sophical consequences, Logico-Philosophical Studies, edited by Albert Menne. —
Dordrecht: D. Reidel Publ. Company, 1962, p. 55—63.

Patzig, Giinter, 1969: Leibniz, Frege und die sogenannte ‘“lingua characteristica uni-
versalis”, Akten des Internationalen Leibniz-Kongress, Hannover 14—19 nov.
1966, Bd III, Erkenntnislehre-Logik-Sprachphilosophie-Editionsberichte. — Wies-
baden: Steiner, 1969, p. 103—-112.

Piaget, Jean, 1972: Essai de logique opératoire. — 2€ éd. du Traité de logique; essai de
logistique opératoire (1949); établie par Jean-Blaise Grize; Paris: Dunod, 1972.

386



Quine, W.V.0., 1950,1959,1972: Méthodes de logique (traduction de ’original anglais
Methods of Logic, Holt, Rinehart and Winston, 1950, 1959 et 1972). — Paris:
A.Colin, 1973.

Rescher, Nicholas, 1954: Leibniz’s interpretation of his logical calculi, The Journal of
Symbolic Logic, vol. 19, (1954), p. 1-13.

Russell, Bertrand, 1900: A critical exposition of the philosophy of Leibniz. London,
1900.

Russell, Bertrand, 1908: La philosophie de Leibniz, (trad. J. Ray), Paris: 1908.

Sanchez-Mazas, Miguel, 1952: Notas preliminares para la fundamentacién de una
Légica Matematica comprehensiva, Theoria (Madrid), vol. 1, n® 1 (1952), p. 25—
26.

Sanchez-Mazas, Miguel, 1955: Formalizacidn de la Logica segin la perspectiva de la
comprehension. — Madrid: Departamento de Filosofia e Historia de la Ciencia del
Consejo Superior de Investigaciones Cientificas, 1955. — (Cuadernos de Ldgica,
Epistemologia e Historia de la Ciencia; 4)

Sanchez-Mazas, Miguel, 1963: Fundamentos matemadticos de la Logica Formal (Prix
“Menendez Pelayo” 1955 du Consejo Superior de Investigaciones Cientificas). —
Caracas: Universidad Central de Venezuela, 1963.

Sanchez-Mazas, Miguel, 1972: Calcul arithmétique des propositions, International
Logic Review, n© 6 (décembre 1972), p. 222-245.

Sanchez-Mazas, Miguel, 1973: Calculo de las Normas. — Thése présentée a la Faculté
des Lettres de I’Université de Neuchitel pour obtenir le grade de Docteur €s Let-
tres. — Traduction de Mme Nello Sancho. — Barcelone: Ariel, 1973.

Sanchez-Mazas, Miguel, 1977a: Réfutation d’un jugement capital de Couturat sur la
logique de Leibniz et 1a logique mathématique en général, Communication présen-
tée au Colloque “Louis Couturat”, Paris: Ecole Normale Supérieure, 8—9 juin
1977.

Sanchez-Mazas, Miguel, 1977b: La Caractéristique numérique de Leibniz comme
méthode de décision, communication présentée au I1I® Congrés Leibniz, Hanno-
ver 12—17 novembre 1977 (a paraitre dans les Actes du Congrés).

Sanchez-Mazas, Miguel, 1978: Modéles arithmétiques pour l'informatique juridique,
dans Informatica, Logica e Diritto, numéro monographique de la revue Informa-
tica e Diritto, Istituto per la Documentazione Giuridica del Consiglio Nazionale
delle Ricerche, Florence (Italie), 1978 (sous presse).

Sanchez-Mazas, Miguel, En préparation: L’arithmétique du raisonnement. Réseau de
nombres caractéristiques pour la classification, ’analyse des théories et le calcul
logique et juridique.

Serres, Michel, 1968: Le systéeme de Leibniz et ses modéles mathématiques, 2 vols. —
Paris: Presses universitaires de France.

Serres, Michel, 1969: Un tricentenaire: Problémes du De Arte Combinatoria, 1966,
Akten des Internationalen Leibniz-Kongress, Hannover, 14—19 November 1966,
Bd III, Erkenntnislehre-Logik-Sprachphilosophie-Editionsberichte. Wiesbaden:
Steiner, 1969, p. 113-125.

Thomas, Ivo, 1949: CS(n): An extension of CS, Dominican Studies (Oxford), vol 2
(1949), n% 2, p. 145-160.

Wang, Hao, 1951: Arithmetic models for formal systems, Methodos, vol. 3 (1951),
p-217-237.

Yost, RM., 1954: Leibniz and philosophical analysis. — Berkeley: University of
California press, 1954.

387



2. Geophysik /| Géophysique

K. Lenggenhager (Bern): Zur Erkldrung irisierender Wasserwolken.

In der klassischen Literatur werden diese irisierenden, perlmutterartigen
Erscheinungen durch Beugung des Lichtes an Eiskristdllchen in grossen
Hohen erklirt, so z.B. durch Pernter (1), im “Fachlexikon ABC Physik” (2),
wo Wolken in 23—26 km Hohen hierfiir verantwortlich gemacht werden;im
Lexikon der Physik (3); im physikalischen Worterbuch (4). In der neueren
Lit. lassen Dietze (5) und auch Vassy (6) sowohl Eiskristdllchen als auch
Wassertropfchen als Ursache irisierender Wolken gelten, ohne jedoch eine
genauere Erklirung hierfiir zu geben. Becvar und Simak (7) machen jedoch
in einer kurzen Bemerkung unter einem Farbbild ihres Wolkenatlas Inter-
ferenzen in Wassertropfchen und die Winkelabstinde von der Sonne hierfiir
verantwortlich (auf Tafel VI). Gleicher Ansicht fiir Interferenz-bedingte
Farben irisierender Wolklein in Wassertrépfchen ist auch Pedgley (8), (ohne
genauere Erklarung).

In Anlehnung hierzu stehen zahlreiche Eigenbeobachtungen von scho-
nen Farben in diinnen, tieferen Wasserwolklein, selbst bei erheblich grosse-
ren Abstinden von der Sonne als die in hoheren Nebeln von fast einheit-
lichen Tropfchengrossen zu sehenden farbigen Krdnze, deren Radien des
ersten Rotringes nur ungefihr 2,5—4° betragen.

Als Beweis fiir eine Tropfchengenese gilt fiir mich das gleichzeitige Feh-
len von Haloerscheinungen und auch von Nebensonnen in solchen oft recht
verbreiteten Wasserwolklein. In Abbildung 1a und 1b sind 2 meiner vielen
farbigen Aufnahmen solcher Krinze in reinen Tropfchennebeln als Schwarz-
kopie dargestellt, bei gleichzeitigem Vorliegen des weissen Nebelbogens um
den oberen Kranzteil (auf dem Bild nicht mehr zu sehen).

Abb. la  Mehrfache farbige Glorie in gipfelnahen Nebeln, durch Wassertropfchen
bedingt (mit gleichzeitigem weissen ““Nebelregenbogen”, auf dem Bildausschnitt nicht
sichtbar)

388



Abb. 1b  Im gleichen, jeweils bald iiber den Gipfel getragenen Nebelgewdlk erschei-
nender, mehrfacher Farbkranz, diesmal mit Teleobjektiv aufgenommen.

Wohl werden in der Lit. Krinze um Sonne und Mond durch Eiszirren
erklirt, doch sind deren Radien nach eigenen Farbaufnahmen mit immer
der gleichen Kamera in unseren Gegenden kleiner als die durch Tropfchen
bedingten, eine Folge der meist grosseren Eiskristallchen.

Nun haben eigene Beobachtungen die an sich bekannte Tatsache besta-
tigt, wonach gewisse diinne, grossere und auch kleinere Wolklein vornehm-
lich rote und grine Randpartien aufweisen kdnnen, gelegentlich selbst dann
noch, wenn ihre Entfernung von der Sonne bis gegen 50° betragen kann.
Gelegentlich zeigten sich nun sogar schmale Rot-Griinséume, wenn recht
schmale, lange und geradflichige, ja sogar konvex gegen die Sonne gebo-
gene, dinne Wolkenstreifen vorlagen, was durch Farbdias belegt wurde. Dies
spricht gegen Beugungsgenese solcher Wolken. (Das Vorherrschen von Rot
und Griin in irisierenden Wolklein wird auch durch Pedgley (8) erwdhnt).

Dies spricht auch gegen Pernter’s und auch Dietze’s Vermutung, wonach
diese Farben Beugungsringe 4. oder 5. Ordnung darstellen konnten. Da bei
diesen Beobachtungen Nebensonnen und Haloerscheinungen fehlten, trotz
grossflichiger Belegung des Himmels durch solche dinne Wolklein waren
Nebeltropfchen dieser Wolklein erwiesen.

Anderseits wurden Dias gezeigt, wo nicht nur die dinnen Sdume der
Wolklein rot und griin erschienen, sondern wo die gesamte, jedoch unein-
heitlich diinne und oft durchbrochene Wolkenschicht breite, rote Farb-
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inseln aufweist inmitten von kleinen, gelben, griinen und blauen Zonen.
Diese Farben waren zwischen 8—20° iiber einer morgendlichen, ca 10°
hohen Sonne in Bern am 7.2.1977 um 08.20 Uhr bei warmem SW-Wind zu
sehen, in rasch wandernden, niedrigeren und diinnen Wolklein, ohne dass
Halo- oder Nebensonnenerscheinungen trotz hierfiir geniigender Wolkenbil-
dung vorkamen.

Solche und die besprochenen Beobachtungen sprechen fiir Interferenz
und gegen Beugungserscheinung fiir irisierende Wasserwolken.

Eine nihere Begriindung fiir diese ganz verschiedenen, oft sogar bis 50°
von der Sonne entfernten Abstdnde solcher irisierender Wolken wird jedoch
in der Literatur nicht gegeben.

Das Vorherrschen von Rot und Griin erinnert an die roten und griinen
inneren Nebenregenbdgen, die ebenfalls durch Interferenz flach sich durch-
kreuzender Nachbarstrahlen bedingt sind. _

Auch in den Interferenzbindern diinner Detergenshdutchen in senk-
recht gehaltenen Ringen in ruhiger Luft, sowie auch perlmutterfarbigen
Muschelschalen liegen mehrheitlich rote und griine Farbzonen vor. Dies
selbst dann noch, wenn sie durch diffus weissen Himmelsausschnitt beleuch-
tet werden. Selbst beim leichten Kippen um ihre Ausgangslage erhalten sich
diese Farbzonen.

Ebenso kann fir dieses Irisieren stark seitlich der Sonne liegender
Nebeltropfchen angenommen werden, dass die verantwortliche neue Licht-
quelle in dem hellen Weiss der randstindigen, augenferneren Tropfchen
liegt, welche in augennidheren Tropfchen die zentralen Interferenzen
bedingt. Solche schmale Hellsaume gewisser Wolken wurden durch Dias
gezeigt. von der Sonne

/] )/

o [ Nebelschicht
©

Interferenz

Abb. 2 Die obersten Nebelschichten I und II bedingen durch Brechung, Reflexion
und Beugung das diffuse Weisslicht. Die untersten Tropfchen III sind verantwortlich fiir
die Interferenzfarben von direkt durchgehendem und doppeit reflektiertem Licht, in
III” vergrossert dargestellt.
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In der Abbildung 2 sind diese Verhiltnisse schematisch dargestellt. Der
direkt zentral durchgehende Lichtstrahl wird z.T. doppelt reflektiert wie die
Strahlen in einem flachen Detergenshidutchen. Durch den Gangunterschied
ergeben sich Interferenzfarben, je nach der Grosse der Nebeltropfchen. Sind
diese von einigermassen gleicher Grosse, so werden deren Interferenzfarben
gesehen, ansonst iiberlagern sie sich zu Weisslicht, was der Norm entspricht.
iiberlagern sie sich zu Weisslicht, was der Norm entspricht.

Aber auch Interferenz von gegenseitig zentrumsnahe eindringenden und
sich eng durchkreuzenden Strahlen ist moglich, wie ich das an diinnsten
Glasfidchen gezeigt habe (9). Dies und die Tropfchengrossen tragen zu den
verschiedenen Farbmoglichkeiten irisierender Wolken bei. So konnen gele-
gentlich auch diinne, zentrale Wolkenpartien weit von der Sonne entfernt
Lichtquellen fiir zentralere Interferenzfarben darstellen, wobei dann unter
Umstidnden alle Spektralfarben gesehen werden konnen, wie in den gezeig-
ten Dias.

Wiederum ergibt sich ein gewisses Analogon hierzu, wenn ein leeres
Trinkglas nach kurzem Anhauchen (Vorwirmen) seiner Luft umgekehrt
knapp in eine Detergenslosung getaucht und hernach aufrecht gestellt wird.
Jetzt bildet sich eine nach oben leicht konkave Membran, in welcher sich
schone, farbige, konzentrische Ringe mit dhnlichen Intervallen bilden.
Wiederum herrschen bald Rot und Griin vor, siehe Abbildung 3.

Abb. 3 Prichtige, farbige, konzentrische, vornehmlich rote und griine Interferenz-
farbringe an leicht konkaver Detergensschicht auf leerem Trinkglas, gegen diffuseres
Hellicht.
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Die beschriebenen Beobachtungen stiitzen die Interferenztheorie fir

irisierende Wasserwolken und geben eine Erkldrung hierfiir, wobei allerdings
der Winkelabstand von der Sonne nicht mehr von massgebender Bedeutung
fiir die Farben wire.

Zum Schluss sei den beiden Professoren W. Kuhn und M. de Quervain

auch an dieser Stelle fiir die freundliche Beschaffung der neuen Lit. bestens
gedankt.
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