Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft.

Wissenschaftlicher und administrativer Teil = Actes de la Société

Helvétique des Sciences Naturelles. Partie scientifique et administrative

= Atti della Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

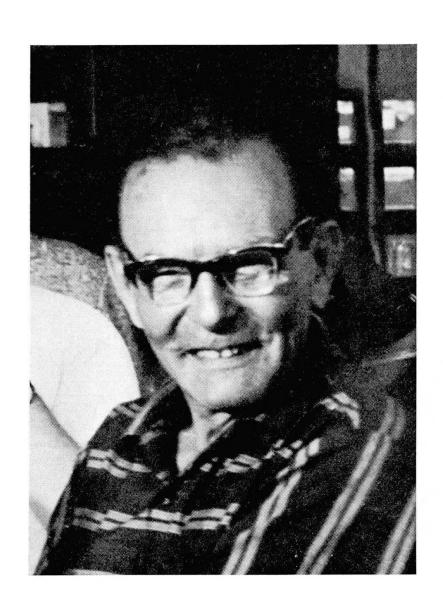
Band: 149 (1969)

Nachruf: Weigle, Jean

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

JEAN WEIGLE

1901-1968

Jean Weigle

1901-1968

Avec Jean Weigle, décédé le 28 décembre 1968 à Pasadena, Californie, un grand savant et ami de la nature a disparu. Sa carrière scientifique l'amena de l'exploration de l'ordre de la matière inerte strictement réglée par les lois physiques à la recherche des structures et des mécanismes de fonctionnement subtils présentés par les êtres vivants. Sa grande curiosité et son intuition remarquable l'ont guidé jusqu'à ses derniers jours dans ses recherches fondamentales et mondialement reconnues.

Jean Weigle est né le 9 septembre 1901 à Genève, d'où il était citoyen et où il fit toutes ses études, couronnées par une thèse de doctorat en physique en 1923. Lors d'un séjour prolongé aux Etats-Unis ses dons pour la recherche et pour l'enseignement s'affirmaient et nul autre n'aurait été mieux préparé à prendre la succession du professeur Charles-Eugène Guye à la chaire de physique de l'Université de Genève. C'est là que de 1931 à 1948, Jean Weigle se dévoua à diriger l'Institut de Physique, à le développer pour l'adapter au mieux aux exigences croissantes qui lui étaient posées et surtout à l'enseignement et à la recherche. Ces deux activités ne furent en effet jamais séparables pour Jean Weigle dont le meilleur enseignement se basait en fait toujours sur une activité incessante au laboratoire. Ses disciples nombreux se souviennent avec beaucoup de reconnaissance et d'admiration de ce patron avec lequel ils eurent la chance de passer parmi les moments les meilleurs de leur carrière à la recherche de la solution d'un problème posé, d'un mystère toujours jalousement gardé par la nature.

C'est à l'étude de la structure de la matière inerte que se dévoua le physicien Weigle par des méthodes telles que la diffraction des rayons X permettant de rendre visible la position de chaque atome d'une structure cristalline. Dans le cadre de ces travaux Jean Weigle devait également porter un intérêt particulier aux premiers microscopes électroniques, ces puissantes loupes devenues depuis des années si indispensables dans l'exploration de l'ultrastructure aussi bien de la matière inerte que vivante. C'est précisément dans le développement d'un microscope électronique, le premier de fabrication suisse, que le professeur Weigle mena dans les dernières années de son ordinariat en physique une fructueuse collaboration avec l'industrie.

En 1946 Jean Weigle fut soudainement freiné dans ses nombreuses

activités par une attaque cardiaque et la menace de cette maladie ne devait plus lui permettre de se consacrer sans restriction à toutes ses obligations et projets. Peu de temps après, il rencontrait, à l'Institut de Technologie de Californie, le jeune et dynamique physicien Max Delbrück qui depuis quelques années déjà s'était entièrement consacré à l'étude des virus bactériens, ouvrant par là la voie à une toute nouvelle école de recherche biologique quantitative, programmée un peu à l'image de la recherche en physique. Jean Weigle vit d'abord dans cette nouvelle école, qui devint un des points de départ de la biologie moléculaire, un champ d'application pour la technique de la microscopie électronique qui lui était devenue familière, mais très vite il saisissait l'immense plaisir que la recherche de la structure et du fonctionnement d'une particule virale pouvait lui offrir. Il choisit alors de se dévouer entièrement à cette nouvelle vocation et accepta en 1949 un poste d'associé en recherche à la division de biologie du Caltech à Pasadena.

A peine lancé dans ces nouveaux domaines, le biologiste Weigle se faisait un nom de pionnier avec ses recherches portant sur divers aspects du bactériophage lambda. Lambda est un virus parasitant des souches de bactéries Escherichia coli et qui se prête particulièrement bien à l'expérimentation quantitative. Jean Weigle réussit à élucider et à expliquer la physiologie de ce virus qui mène une sorte de double vie: après infection d'une bactérie sensible le virus peut se multiplier végétativement, ce qui amène la mort de la cellule hôte par la production et la libération de plusieurs centaines de nouvelles particules virales; ou le virus peut se fixer sur le chromosome bactérien, dont il devient alors partie intégrante, appelée prophage. Le prophage se propage avec le chromosome bactérien mais sans autrement affecter la physiologie de son hôte, sauf dans des situations extrêmes, comme après irradiation, où le prophage se réveille, commence à se propager végétativement et produit une progéniture de particules virales aux dépens de la bactérie qui en meurt. En poussant toujours plus loin sa curiosité, Jean Weigle sut amener un nombre croissant de jeunes disciples à s'intéresser à l'exploration de ces mécanismes curieux et visiblement si fondamentaux pour la compréhension d'un des êtres vivants les plus simples. Avec ses collaborateurs, Jean Weigle découvrit la restriction et la modification spécifique du DNA de lambda, phénomènes qui procurent aux souches hôtes une défense efficace contre l'infection par du matériel génétique étranger. Il apprit ensuite à comprendre comment ce phage lors de son passage de l'état de prophage à l'état végétatif peut donner lieu à la formation de génomes hybrides composés à la fois d'une partie de gènes phagiques et d'une partie de gènes bactériens. Puis son exploration du mécanisme moléculaire de la recombinaison génétique du phage lambda fournit une preuve de l'existence d'échange matériel dans l'événement de recombinaison. Ces dernières années, Jean Weigle fut passionné par la possibilité que lui offrait son phage lambda de reconstituer des virus actifs à partir de différentes fractions inactives mais complémentaires.

La moisson de résultats fondamentaux et excitants est énorme pour ces

20 années de recherche en biologie moléculaire, que Jean Weigle mena à Caltech pour la plus grande partie, mais aussi à Genève, où il avait gardé des contacts étroits avec un noyau de jeunes chercheurs groupés autour du microscope électronique soigneusement mis au point et qui avait commencé à servir aux recherches biologiques dès les années 1950. Sous l'impulsion dynamique d'Edouard Kellenberger se développait bientôt là l'un des noyaux les plus actifs en Europe de la génétique moléculaire et de la biophysique. Jean Weigle y apportait son impulsion lors de ses visites prolongées tous les étés et permettait ainsi au groupe de Genève un contact heureux, nécessaire et continu avec les centres de recherche biologique des Etats-Unis.

Ce court hommage serait incomplet s'il ne mentionnait pas aussi l'amour profond du défunt pour la nature, les montagnes tout particulièrement. Ne fut-il pas dès sa jeunesse un alpiniste renommé? Sa profonde passion pour la nature sauvage et son dévouement pour sa profession de chercheur et de professeur furent pour Jean Weigle une source constante de plaisir et de renouveau. Est-il donc étonnant que partout où il passa une partie de sa vie si fructueuse, Jean Weigle ait compté un si grand nombre d'amis attirés par sa personnalité exceptionelle? W. Arber

LISTE DE PUBLICATIONS SCIENTIFIQUES de Jean Weigle

(ne comprenant pas de nombreuses courtes communications)

Potentiel disruptif dans les gaz aux pressions élevées et champ moléculaire. Thèse Dr ès sc. physiques, Genève 1923.

Heat of evaporation of electrons. Phys.Rev. 187-192; 1925.

Über die Gitterenergie und die Ablösearbeit von Elektronen bei Calcium. Z.Phys. 40, 539-544; 1926.

Electric moment of alkali atoms. Phys.Rev. 31, 672-675; 1928.

Note on the magnetic susceptibility of solutions. Phys.Rev. 31, 676-679; 1928.

Influence du champ magnétique sur la constante diélectrique. Helv.Phys.Acta 1, 273-276; 1928.

J. WEIGLE et R. LUTHI: La dispersion anormale de l'alcool amylique dans les ondes courtes. Compte Rendu des séances de la Société de Physique et d'Histoire naturelle de Genève 49, 130-134; 1932.

L'effet Raman des molécules poly-atomiques. Arch. Sc. phys. nat. 14, 82-95; 1932.

Problèmes d'images électriques dans les diélectriques I. Helv. Phys. Acta 5, 262-275; 1932.

La structure des atomes et des molécules révélée par les rayons X. Arch. Sc. phys. nat. 14, 351-362; 1932.

L'orientation des molécules non polaires par les dipoles. Helv. Phys. Acta 6, 68-81; 1933. Un nouveau microphotomètre enregistreur. Arch. Sc. phys. nat. 15, 484-494; 1933.

J. Weigle et R. Luthi: Debye's dispersion of nitrobenzene. Nature 131, 327; 1933.
Mesures de précision des réseaux rhomboédriques: NaNO₃. Helv.Phys.Acta 7, 46–50; 1934.

Note sur la mesure de précision des réseaux hexagonaux: Zn. Helv. Phys. Acta 7, 51-56; 1934.

A new microphotometer. Rev. Sci. Instr. 4, 595-597; 1933.

- J. WEIGLE et H. SAINI: La dilatation thermique de la calcite. Helv. Phys. Acta 7, 257–266;
- Le champ moléculaire des liquides. Compte Rendu des séances de la Société de Physique et d'Histoire naturelle de Genève 52, 105–107; 1935.
- La largeur de la raie Ka du molybdène. Compt.Rend. 202, 564; 1936.
- J. WEIGLE et H. SAINI: La structure du bromure d'ammonium à basses températures. Helv.Phys.Acta 9, 515–519; 1936.
- J. WEIGLE et H. MÜHSAM: Réflexion simultanée de rayons X par deux plans dans un cristal. Helv.Phys.Acta 10, 139-156; 1937.
- Y. CAUCHOIS, H. HULUBEI et J. WEIGLE: Réflexions simultanées des rayons X dans le quartz. Helv.Phys.Acta 10, 218-224; 1937.
- M. Blanc et J. Weigle: Réflexions simultanées des rayons X et excitation indirecte. Helv. Phys. Acta 10, 495-506; 1937.
- Biréfringence d'un milieu atomiquement stratifié. Compte Rendu des Séances de la Société de Physique et d'Histoire naturelle de Genève 54, 137–140; 1937.
- Théorie de la propagation de la lumière dans un milieu atomiquement stratifié. Helv. Phys. Acta 11, 159–180; 1938.
- J. WEIGLE et J. PATRY: Théorie de la propagation de la lumière dans un milieu atomiquement stratifié. II. Helv. Phys. Acta 11, 181-188; 1938.
- Remarques sur le réseau réciproque et les surfaces de dispersion. Archives des Sciences physiques et naturelles 20, 164–202; 1938.
- J. WEIGLE et C.S. SMITH: Thermal scattering of X-rays in crystals. Phys.Rev. 61, 23–34; 1942.
- Diffusion des rayons X par les ondes thermiques des cristaux (diamant). Helv.Phys. Acta 14, 595-605; 1941.
- Influence des vibrations thermiques sur la diffraction des rayons X et réseau de Fourier. Helv.Phys.Acta 15, 162–174; 1942.
- J. WEIGLE et K. BLEULER: Théorie de l'influence des ondes ultrasonores sur la diffraction des rayons X par les cristaux. Helv.Phys.Acta 15, 445-454; 1942.
- R. Extermann et J. Weigle: Anomalie de la chaleur spécifique du chlorure d'ammonium. Helv.Phys.Acta 15, 455-461; 1942.
- K. Bleuler et J. Weigle: Théorie de l'influence des vibrations thermiques sur la réflexion des rayons X par les cristaux. Helv.Phys.Acta 15, 553-570; 1942.
- Souvenir de Charles-Eugène Guye. Arch.Sc.phys.nat. 25, 57-66; 1943.
- Quelques problèmes actuels de la physique des cristaux. Experientia 1, 99; 1945.
- J. FAVRE, E. KELLENBERGER et J. WEIGLE: Possibilité d'emploi du microscope électronique pour l'étude des spores de champignons. Bull.Acad.Suisse Sci.med. 4, 275–279; 1948.
- J. HOERNI et J. WEIGLE: Structure of graphite. Nature 164, 1088; 1949.
- M. Danon, E. Guyénot, E. Kellenberger et J. Weigle: Electron micrograph of a chromosome of Triton. Nature 165, 33; 1950.
- J. Weigle et M. Delbrück: Mutual exclusion between an infecting phage and a carried phage. J. Bacteriol. 62, 301–318; 1951.
- R. Dulbecco et J. Weigle: Inhibition of bacteriophage development in bacteria illuminated with visible light. Experientia 8, 386; 1952.
- Induction of mutations in a bacterial virus. Proc.Nat.Acad.Sci. 39, 628–636; 1953.
- J. Weigle et R. Dulbecco: Induction of mutations in bacteriophage T₃ by ultra-violet light. Experientia 9, 372; 1953.
- G. Bertani et J. Weigle: Host controlled variation in bacterial viruses. J.Bacteriol. 65, 113-121; 1953.
- J. WEIGLE et G.BERTANI: Variations des bactériophages conditionnées par les bactéries hôtes. Ann.Inst. Pasteur 84, 175-179; 1953.

- M. LIEB, J. WEIGLE et E. KELLENBERGER: A study of hybrids between two strains of Escherichia coli. J.Bacteriol. 69, 468–471; 1955.
- G. Streisinger et J. Weigle: Properties of bacteriophages T₂ and T₄ with unusual inheritance. Proc.Nat.Acad.Sci. 42, 504–510; 1956.
- J. WEIGLE et G. BERTANI: Multiplicity reactivation of bacteriophage inactivated by ionizing radiations. Virology 2, 344–355; 1956.
- Transduction by coliphage λ of the galactose marker. Virology 4, 14–25; 1957.
- W. Arber, G. Kellenberger et J. Weigle: La défectuosité du phage lambda transduc teur. Schweiz. Z. allgem. Pathol. Bakteriol. 20, 659-665; 1957.
- G. Kellenberger et J. Weigle: Etude au moyen des rayons ultraviolets de l'interaction entre bactériophage tempéré et bactérie hôte. Biochim.Biophys.Acta 30, 112–124; 1958.
- J. WEIGLE, M. MESELSON et K. PAIGEN: Modified density of transducing phage lambda. Brookhaven Symp. in Biology, Structure and function of genetic elements 12, 125–133; 1959.
- J. WEIGLE, M. MESELSON et K. PAIGEN: Density alteration associated with transducing ability in the bacteriophage lambda. J.Mol.Biol. 1, 379–386; 1959.
- G. Kellenberger, M.L. Zichichi et J. Weigle: Mutations affecting the density of bacteriophage λ. Nature 187, 161–162; 1960.
- G. Kellenberger, M. L. Zichichi & J. Weigle: Exchange of DNA in the recombination of bacteriophage λ. Proc.Nat. Acad.Sci. 47, 869–878; 1961.
- M. MESELSON et J. WEIGLE: Chromosome breakage accompanying genetic recombination in bacteriophage. Proc.Nat.Acad.Sci. 47, 857–868; 1961.
- G. Kellenberger, M. L. Zichichi et J. Weigle: A mutation affecting the DNA content of bacteriophage λ and its lysogenising properties. J.Mol.Biol. 3, 399–408; 1961.
- Density of transducing λ bacteriophages. J.Mol.Biol., 3, 393–398; 1961.
- J. VINOGRAD, R. BRUNER, R. KENT et J. WEIGLE: Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc.Nat.Acad.Sci. 49, 902–910; 1963.
- W. F. Dove et J. Weigle: Intracellular state of the chromosome of bacteriophage lambda I. The eclipse of infectivity of the bacteriophage DNA. J.Mol.Biol. 12, 620–629; 1965.
- Assembly of phage lambda in vitro. Proc.Nat.Acad.Sci. 55, 1462–1466; 1966. Studies on head-tail union in bacteriophage lambda. J.Mol.Biol. 33, 483–489; 1968.