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1. Sektion fiir Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft
Samstag, den 1.Oktober 1966

Prdsident: Prof. Dr. H. HUBER (Basel)
Sekretdr: Prof. Dr. R. BADER (Neuchétel)

1. JeAN DE SIEBENTHAL (Lausanne) — Sur certaines graduations dans les
algébres de Lie semi-simples.

1. Graduation de Cartan

Soient g une algébre de Lie semi-simple (sur le corps C des nombres
complexes), et:

g=0bDCe, @ @ Ce,, (D

une décomposition de Cartan de g. Le sous-espace [) est une sous-algebre
commutative dont la dimension / est le rang de g. Les o; sont des indices;
on attribue 4 b I'indice 0. Ces r+1 indices sont en bijection avec un
systtme A de r+1 vecteurs d’un espace euclidien R': le systéme des
vecteurs-racines de g, désignés par la méme notation.

A est un groupe local, pourvu d’une loi de composition interne (a, f)
— o+ B associative, commutative, non partout définie. (1) peut s’écrire:

§=E,®E, ® ®F, | )
ou oy, =0 avec
(Vi, j) (3 k) : [Eai: Eaj] C Edk

On peut dire que (2) exprime la graduation de Cartan de g avec un groupe
local d’indices A. L’algébre g admet-elle d’autres graduations de ce type?

2. Graduation associée a un sous-systéme fermé de /A

Soit Ay un sous-systéme fermé de A, vérifiant par définition les re-
lations:
(Ao+A0) N ACAg; Ag = — 4,
et soit:
A=AguAd U U

la partition de A en Z-classes de 4 mod A4,. On obtient une graduation

_ 9=.90@Q1®"'(‘B9s 3)
Ol‘l gi=eZA Ea
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Dans R'lesclasses A; déterminent un groupe local A/A4, qui gradue g.
Les méthodes décrites dans [1 ] donnent tous les sous-systémes fermés A,
des algebres simples, d’ou par des calculs faciles les partitions mod A,
et les groupes locaux A/A4,.

De plus, les g; (i > 1) sont des g,-modules irréductibles, entre les-
quels la loi (x,y) — [x,y] de g induit une multiplication.

3. Classification

Les cas qui se présentent peuvent étre déduits des deux cas impor-
tants suivants: ‘

a) le sous-systéme fermé A, est saturé dans A, c’est-a-dire que le
support R" de A, vérifie: A n R" = A;
b) A, est de rang maximum /.

Dans le premier cas, tous les /A, sont obtenus par des inclusions du type:
{€01a¢2a (ph} - {<P1a902> coes Qpy "'9(Pl}

la suite du premier membre (second membre) étant une suite de racines
simple;s de A, (respectivement A); la classe de u = é‘. U; @; € A est
T h§1 u;j@;. La loi A/A, est entierement déterminée par les centres des
classes Ay, A4, ..., A,

Dans le second cas, les centres en question sont tous en 0. Particuliere-
ment intéressantes sont ici les graduations associées aux A, minimaux
(de rang maximum /), tous du type:

AS] ®AS2<-B e @Ast Oﬁ S1+S2+“'+st =l

Lorsque 4 est une structure exceptionnelle E¢, E,, Eg, F,, G,, le groupe
local A/A, est alors toujours un groupe, sauf dans le cas Eg/8 A4;.

4. Exemples

Si g est 'algebre des matrices M (/+ 1) de trace nulle, les graduations
envisagées sont toutes du type a. On retrouve le produit «par blocs ».

Si g est I’algebre simple exceptionnelle G,, on fixe dans le plan eucli-
dien R? un triangle équilatéral de sommets t,, 7,, 73, avec 7, +1,+75 = 0.
Alors:

A= {0, 1Ty, £T, T3, i(ﬁ—fz), + (t,—13), i('fs_'ﬁ)}
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Les diverses graduations sont décrites ci-apres:

1o Ao =4, = {0, T (1 —712), £ (12— 713), (T3_‘T1)}
{Tla T2, T3

Al' _Al =. {—Tla — 1y, _T3}

Al A, est cyclique d’ordre 3.

20 Ag=A4,+ A4, = {0, + (11— 12), i‘fs};
Ay = {%7q, 275, + (11— 73), £ (12— 73)}
AlA, est cyclique d’ordre 2.

30 AO = {0, -_ttl}
Al = {_Tl +7T2, Ty, — T3, 71—13} A2 = {'52_.1-3}
A1 = —Al AZ — —_‘Az

Posant 6 = (1, —13)/2, les centres sont: 0, +45/2, £4. On a un groupe
local a un générateur, d’ordre 5.

40 AO == {0, i (TZ—T3}
A, = {—13’ —‘C2} A; = {Tl} A3 = {71“13511""72}

Al _Al A2 - 2 3 = A3

Posant d = 1,, les centres sont: 0, +0/2, +3J, +35/2. On a un groupe
local d’ordre 7, a un générateur.

BIBLIOGRAPHIE

1. BOREL, A., et DE SIEBENTHAL, J.: Les sous-groupes fermés de rang maximum des
groupes de Lie clos. Comment.Math.Helv. 23, 200-221 (1949).

2. M.A.KnNus und U.STAMMBACH (Ziirich) — Uber die Homologiegrup-
pen der Liealgebren.

3. M.OJANGUREN (Ziirich) — Freie Prdsentierungen und Kommutatoren.

4. SopHIE PiccarD (Neuchitel) — Les groupes libres et quasi libres
modulo n.

Soit # un entier fixe > 2. Un groupe multiplicatif G est dit quasi libre
modulo 7 §’il posséde au moins un ensemble 4 = {a,}, A€ A, de géné-
rateurs appel€s quasi libres modulo n, tels que toute relation caracté-
ristique qui les lie est de la forme

S@5 s an) = 1 | (D

ou f est un produit d’'un nombre fini de puissances enti¢res des éléments
a;,, ..., ay de A, en nombre fini k > 1, de degré = 0(mod ) par rap-
port & chacun de ces éléments, le symbole 1 au second membre de (1)
désignant I’élément neutre du groupe G.
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Soit G un groupe quasi libre modulo n et soit 4 = {a,}, 1€ 4, un
ensemble de générateurs quasi libres mod » de G. Tout élément de G
qui fait partie d’un ensemble au moins de générateurs quasi libres mod »
de G est appelé un élément quasi libre modulo #» de G; un tel élément
et soit d’ordre infini, soit d’ordre = 0 (modn). Pour tout élément d
de G et pour tout élément a, de A4 il existe un nombre fixe u, de la suite
0,1,...,n—1, tel que toute composition finie d’éléments de A4 qui repré-
sente d est de degré = u, (mod ») par rapport a a;. L’entier u, est appelé
le degré modulo n de d par rapport 4 a,. L’ensemble M,™ des éléments
de G, de degré modulo n nul par rapport a tout élément de A forme
un sous-groupe invariant de G. Le groupe quotient I'™ = G/M ™ est
abélien et il jouit de cette propriété que quel que soit le sous-groupe 7y
de I'™, I’ensemble des éléments de G qui font partie des classes d’élé-
ments de G relatives au sous-groupe M,™ et qui constituent les éléments
de y est un sous-groupe invariant de G. Le groupe G, aussi bien que le
groupe abélien I'™ qui lui est associé, est fondamental. Tout ensemble
de générateurs quasi libres modulo # de G constitue une base (ensemble
irréductible de générateurs) de ce groupe, alors que ’ensemble des classes
d’éléments de G relatives au sous-groupe My™ qui contiennent des élé-
ments de 4 forment une base du groupe I'™. Les éléments du groupe I'™
ont un caractére intrinséque, indépendant de I’ensemble 4 de généra-
teurs quasi libres mod n de G qui a servi a les définir. Si ’ensemble de
générateurs quasi libres 4 du groupe G est fini, de puissance k, tout
ensemble de générateurs de G comprenant k éléments est formé de géné-
rateurs quasi libres modulo #» de G. Quelle que soit la puissance de A4,
aucun élément de M,™ n’est quasi libre modulo #. Si a est un élément
quasi libre modulo » de G et si I’entier m est tel que @™ engendre, par
itération a, alors a™ est aussi un élément quasi libré modulo n de G.
Quel que soit 1’élément a quasi libre modulo » de G et quel que soit
I’ensemble 4 de générateurs quasi libres modulo # de G dont fait partie a,
si I'on désigne par A une composition finie quelconque d’éléments de
A—{a}, de degré = 0 (mod n) par rapport a chacun d’eux, fa aussi bien
que af sont des éléments quasi libres modulo » de G. Tout groupe quasi
libre modulo » engendré par un ensemble infini de générateurs quasi
libres modulo 7 posseéde une infinité indénombrable d’ensembles de géné-
rateurs quasi libres modulo n. La classe des groupes quasi libres modulo »
est extrémement riche. Pour tout entier n > 2 et pour tout entier k >1,
il existe un groupe quasi libre modulo # d’ordre fini, engendré par k €lé-
ments quasi libres modulo ». Il existe une infinité indénombrable de
groupes de transformations de ’ensemble Z des entiers, dont chacun
est quasi libre modulo #, et cela pour toute valeur de ’entier n > 2.
Quel que soit I’entier » > 2 et quel que soit le nombre cardinal trans-
fini m, il existe un groupe non abélien G quasi libre modulo n dont tout
ensemble de générateurs quasi libres modulo » est de puissance m. Le
groupe commutateur de tout groupe quasi libre modulo » est un sous-
groupe du groupe M,™. Tout groupe quasi libre modulo 7 qui n’est pas
abélien n’est pas simple. Si #» est un nombre composé¢ >4, un groupe
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quasi libre modulo # n’est jamais simple. Pour tout nombre premier
p = 2, il existe un groupe G quasi libre modulo » non abélien dépourvu
de suites de composition mais qui posséde des suites normales de sous-
groupes Gy, Gy, ..., telles que G; est un sous-groupe invariant maximal
de G;_;,i=1,2,..., et G, = G. 1l existe aussi, pour tout entier n > 2
et pour tout k > 1, des groupes quasi libres modulo n possédant des
suites de composition de longueur k.

Soit G un groupe multiplicatif engendré par un ensemble 4 = {a,},
Ae A, de générateurs indépendants, soit f une composition finie (pro-
duit de puissances entiéres) d’éléments de 4 que nous supposons réduite
compte tenu des seuls axiomes de groupe multiplicatif, soit enfin » un
entier fixe > 2. On réduit f modulo # en effectuant successivement un
nombre fini aussi élevé que possible d’opérations €lémentaires dont cha-
cune consiste a réduire modulo #, dans £, tous les exposants des éléments
de A4 qui y figurent, puis de réduire le produit résultant compte tenu des
seuls axiomes de groupe multiplicatif. Si, aprés un nombre fini d’opéra-
tions de ce genre, il ne reste plus aucun facteur on dit que f'est totalement
réductible modulo n et on pose le reste r de la réduction modulo » de f
égal 4 1. Le reste r de la réduction modulo » de toute composition finie
d’éléments de A est défini de fagon unique. Une relation delaformef = 1
ou f est une composition finie d’éléments de A, totalement réductible
modulo n, est dite triviale modulo #n. Le groupe G est dit libre modulo »
s’il posséde au moins un ensemble 4 de générateurs li€s par des relations
caractéristiques dont chacune est triviale modulo n. Tout groupe libre
modulo 7 est aussi quasi libre modulo 7 et jouit par conséquent de toutes
les propriétés d’une groupe quasi libre modulo ». Mais la réciproque
n’est pas vraie. La classe des groupes libres modulo #» comprend, comme
cas tres particulier, la classe des groupes libres. Soit G un groupe libre
modulo » et soit A un ensemble de générateurs de G - dits libres mo-
dulo n — qui ne sont liés que par des relations triviales modulo n. Tout
¢lément de G peut s’exprimer par une composition finie d’éléments de 4
et toutes les compositions finies d’éléments de 4 qui représentent un -
méme élément d de G possédent le méme reste r de leur réduction mo-
dulo #. r est appelé le reste modulo n de d. On peut répartir les éléments
de G en classes d’équivalence C,, en prenant dans une méme classe deux
éléments de G si et seulement s’ils ont le méme reste modulo ». La
classe C, formée de tous les éléments de G de reste 1 modulo » est un
sous-groupe invariant de G et le groupe quotient G, = G/C, n’est en
général pas abélien. Un couple x,x’ d’éléments de G est dit symétrique
modulo # si xx" € C,. Quel que soit I’élément x de G, tout élément symé-
trique modulo 7 de x est de la forme x~'c, ce C,. Un sous-groupe g
de G est dit symétrique modulo # s’il contient, avec tout élément x de
G, tous ses symétriques modulo n. Quel que soit le sous-groupe g du
groupe G, ’ensemble des éléments de G qui appartiennent a ceux de g
est un sous-groupe symétrique modulo » de G. Un sous-groupe g* de G
est dit invariant modulo n si xg*x’ = g* quel que soit le couple x,x’
d’éléments symétriques modulo » de G. C; est un sous-groupe invariant
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modulo n de G. L’ensemble des sous-groupes symétriques (invariants)
modulo n de G, partiellement ordonné par la relation d’inclusion cons-
titue un treillis, avec les lois usuelles de treillis de sous-groupes: inter-
section et union. Quel que soit le couple ordonné x,y d’éléments de G,
un commutateur modulo n de ce couple est un produit de la forme
xyx'y’ ou x'(y’) est un symétrique modulo » quelconque de x(y). L’en-
semble des commutateurs modulo n de couples ordonnés d’éléments de
G engendre un sous-groupe de G - dit sous-groupe commutateur mo-
dulo n, dont le groupe commutateur G’ de G est un sous-groupe invariant.
Toutes les notions classiques de-la théorie des groupes peuvent étre géné-
ralisées dans 1’étude des groupes libres modulo n [1].
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5. SorHIE PiccarRD (Neuchatel) — Les P-produits et les P-groupes.

Tout groupe multiplicatif G peut, comme on sait, é&tre défini par un
ensemble A4 de générateurs et une famille § de relations caractéristiques
qui les lient. On donne le nom de P-propriété a toute propriété qui peut
étre commune 2 toutes les relations reliant les éléments d’un ensemble
de générateurs d’un groupe multiplicatif. Une relation entre éléments
de A est une égalité de la forme f = h (1), ou f et h sont deux compo-
sitions finies d’éléments de 4. On connait a ce jour une vingtaine de P-
propriétés. Citons-en quelques-unes. P, : trivialité. Toute relation triviale
entre éléments de 4 peut se mettre sous la forme f = f ou f est une com-
position finie quelconque d’éléments de A, réduite compte tenu desseuls
axiomes de groupe multiplicatif. P,: quasi trivialité. La relation (1) est
quasi triviale si f'a le méme degré que / par rapport a tout €lément de A.
P;: pseudo-trivialité. La relation (1) est pseudo-triviale si f a le méme
degré que A par rapport a I’ensemble des éléments de 4. P,: quasi-
trivialité modulo n. La relation (1) est quasi triviale modulo », ou n est
un entier > 2 donné, si, quel que soit I’élément a de A4, le degré de f par
rapport 4 a est congru modulo # 2 celui de 4 par rapport & a. Ps: trivia-
lité modulo n. La relation (1) est triviale modulo # si f et A ont le méme
reste modulo n. Pg: pseudo-trivialité modulo ». La relation (1) est pseudo-
~ triviale modulo # si le degré de f est congru modulo » a celui de 4 par
rapport a I’ensemble des éléments de 4. P,. Suppons que A est fini,
formé de k > 1 éléments a4, ..., a,. La relation (1) entre éléments de A4
jouit de la propriété P, si m;(n;) désignant le degré de f(h) par rapport
da,l=1,...,k,onam;—n;= ... = m—m. Pg: soit encore A fini,
composé des k éléments a,, ..., a, dont chacun est d’ordre infini, et soit
m;(n;) le degré de f(h) par rapport & a;,i=1, ..., k. La relation (1) jouit
de la propriété Pg si les nombres m; —n;, i=1, ..., k, constituent une
solution d’un systéme indéterminé S d’équations linéaires a coefficients
réels entiers, a k indéterminées. Py: quasi trivialité selon un ensemble
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N ={n;}, A€ A, de modules. Soit 4 = {a,}, A€ 4, un ensemble de puis-
sance quelconque de générateurs d’un groupe multiplicatif G. A tout
indice 4 € A faisons correspondre un entier n, > 2, un méme entier pou-
vant correspondre a divers indices de I’ensemble A. La relation (1) est
quasi triviale suivant les modules de I'’ensemble N = {n;},Ae A si le
degré de f par rapport a a, est congru modulo #; a celui-de /4 par rapport
a a, quel que soit I'indice A€ A. P,; trivialité selon un ensemble N =
{n;}, A€ A, de modules. Soit encore #; un entier > 2 associé a a;, ¥ A€ 4,
et soit N = {n,;}, A€ A. Quelle que soit la composition finie f d’éléments
de 4 = {a;}, Ae A, réduite compte tenu des seuls axiomes de groupe
multiplicatif, on réduit f selon les modules de ’ensemble N en effectuant
successivement et autant de fois que possible des opérations élémentaires
dont chacun consiste a réduire modulo #n, I’exposant de toute puissance
entiere de a, figurant dans le produit considéré puis de réduire le produit
résultant compte tenu des seuls axiomes de groupe multiplicatif. Un
groupe multiplicatif G est appelé un P-groupe s’il posséde au moins un
ensemble A de générateurs liés par des relations dont chacune posséde
une P-propriété. A est appelé un ensemble de P-générateurs de G et on
donne le nom de P-éléments de G' a tout élément de G qui fait partie
d’un ensemble (au moins) de P-générateurs de G.

On dit qu’un groupe multiplicatif G est un P-produit de ses sous-
groupes G;, Ae A si quel que soit I’ensemble A4, de générateurs du
groupe G, et quel que soit ’ensemble F, de relations caractéristiques qui
les lie, I’ensemble 4 = ;¢4 A, est un ensemble de générateurs de G pour
lequel il existe une famille F, de relations dont aucune ne relie entre eux
les éléments d’un méme ensemble A;, mais dont chacune jouit de la
P-propri€té donnée, 'ensemble Fp U,V F; constituant un ensemble de
relations caractéristiques de A.

Soit, d’autre part, {G,}, 1€ A, un ensemble donné de puissance quel-
conque de groupes multiplicatifs, doit 4, un ensemble de générateurs du
groupe G, et soit F, une famille de relations caractéristiques qui les lie.
Posons 4 = ;Y , A, et soit Fune famille de relations entre éléments de A4,
telle que le sous-ensemble de F formé des relations qui relient entre eux
les éléments de A4, se confond avec F, et que toute relation de F qui ne
fait partie d’aucun F, jouit d’'une P-propriété donnée. Soit II* G, = G*
le produit libre des groupes G;,. On obtient un P-produit des groupes G,
en identifiant dans G* tous les éléments égaux en vertu des relations de
la famille F. On désigne un tel produit par le symbole 717 G,.

Si la P-propriété est la trivialité, la quasi trivialité, la pseudo-trivialité
ou encore la trivialité modulo », la quasi trivialité modulo » ou la pseudo-
trivialité modulo #n, au lieu de parler de P-produit on parle de produit
libre, de produit quasi libre, de produit pseudo-libre ou encore de pro-
duit libre, quasi libre ou pseudo-libre modulo .

Tout P-produit de groupes G,, A€ A, est isomorphe a un groupe-
quotient du produit libre de ces groupes.

Tout P-produit peut &tre prolongé dans ce sens quesiG = II7G, et
si G, = I[I"G,,, pe M, on a aussi G = II"G,,, pe M, Ae A.
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D’autre part, si dans un groupe G qui est un P-produit de groupes
G,, A€ A, on répartit de fagon quelconque les groupes G, en ensembles
disjoints deux a deux {G,}, AeA,, ueM, ] A, = A, et si on appelle
®, le sous-groupe de G engendré par I'ensemble des sous-groupes G,
i€A,, G est un P-produit de ses sous-groupes ®,, u € M. On exprime
ce fait en disant que tout P-produit peut étre réduit. ‘

Tout P-produit de P-groupes est un P-groupe.

Quel que soit le P-élément d d’un P-groupe G, le groupe cyclique
engendré par d est un P-groupe.

Quelle que soit la P-propriété qui peut €tre commune a toutes les
relations reliant les générateurs d’un groupe multiplicatif, tout groupe
libre G est un P-groupe.

6. W.HENGARTNER (Ziirich) — Lineare Differentialgleichungssysteme mit
ganzen Funktionen als Koeffizienten.

7. J.STEINIG (Ziirich) — Uber die Vorzeichenwechsel gewisser zahlentheo-
retischer Funktionen.

8. A.ROBERT (Neuchitel) — Espaces localement convexes quasi-complets.

9. U.Suter (Zurich) — Schnittflichen komplexer Stiefelmannigfaltigkei-
ten.
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