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8. WiLLY ScHERRER (Bern) — Differentialgeometrie und Feldphysik.

§ 1. Geschichtliches

Das erste Beispiel einer erfolgreichen Theorie, in welcher Feldphysik
und Differentialgeometrie zusammenwirken, bildet die Elektrodynamik
des Vakuums im Rahmen der speziellen Relativitéitstheorie. Das Feld
wird représentiert durch die lineare Differentialform der Potentiale

d®=0P,dy (1)

und die Geometrie durch eine quadratische Differentialform, nimlich die
metrische Grundform

ds?® =e, dy*>dy® (2)

des pseudoeuklidischen Zeitraums.
Als das wichtigste Ergebnis dieser Theorie bezeichnete Einstein das
Prinzip der Aquivalenz von Masse und Energie geméss der Formel

E=mc. (3)

Verbindet man nun dieses Prinzip mit der empirisch weitgehend besti.-
tigten Aquivalenz von triger und schwercr Masse, so ergibt sich als not-
wendige Folgerung die Kriitmmung von Lichtstrahlen unter dem Einfluss
der Gravitation.

Da nun die Grundform (2) nur eine geradlinige Lichtausbreitung dar-
zustellen gestattet, wird durch diese Folgerung der Rahmen der speziellen
Relativititstheorie gesprengt.

In einer bewundernswerten Synthese ist es hierauf Einstein gelungen,
eine in wesentlichen Ziigen erfolgreiche Theorie der Gravitation dadurch
zu schaffen, dass er die Grundform (2) durch die Grundform

ds? = G, dae dao 4)

einer indefiniten Riemann-Metrik ersetzte. Durch die 10 von den Koordi-
naten z0 2!, 2%, 2® abhingigen Gravitationspotentiale G,, werden nun
Feld und Metrik buchstiblich miteinander verschmolzen. Diese Theorie,
die ich inskiinftig als quadratische Feldtheorie bezeichnen werde, ist also
das zweite Beispiel fiir das Zusammenwirken von Differentialgeometrie
und Feldphysik.

Beide Theorien, die sich iibrigens zwanglos in einem Rahmen vereini-
gen lassen, beruhen wesentlich auf makroskopischen Begriffen. Die Frage,
ob von derartigen Theorien iiberhaupt etwas fiir die Atomistik zu erwar-
ten sei, ist daher nie zur Ruhe gekommen. Einen sehr wichtigen positiven
Beitrag zu dieser Frage lieferte Dirac durch seine Linearisierung der
Grundform (2) geméss

ds =y, dy*, (5)

wobei die y, konstante komplexe Matrizen bedeuten.
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Die Idee einer reinen Feldphysik wurde 1912 von Gustav Mie gefasst
und schon 1915 von David Hilbert aufgrund einer tiefgehenden mathema-
tischen Analyse mit Einsteins Ansétzen zur quadratischen Feldtheorie in
Verbindung gebracht. Die damit gegebenen Anregungen zu einer ein-
heitlichen Feldtheorie wurden ab 1919 von Einstetn durch die Forderung
vertieft, vermittels einer geometrischen Bereicherung des Zeitraumes die
phianomenologischen Tensoren (Energie, Strom) durch reine Feldgrdssen
zu ersetzen.

In keiner der genannten Theorien jedoch ist es gelungen, eine befrie-
digende Darstellung der Feldenergie zu gewinnen. Im folgenden will ich
daher unter dem Titel Lineare Feldtheorie einen Vorschlag erliutern, der
diese Schwierigkeit methodisch zu bearbeiten gestattet.

§ 2. Lineare Feldtheorie

Die Betrachtung der Differentialformen (1) und (5) lasst es als durchaus
natiirlich erscheinen, den Diracschen Ansatz gleichsam umzukehren : Man
legt also primir invariante lineare Differentialformen

gh =g, dt ©®)

zugrunde und kann dann aus diesen durch Quadrieren sekundér eine qua-
dratische Differentialform (4) gewinnen. Da der Zeitraum 4 Dimensionen
hat, muss natiirlich das System (6) aus 4 linear unabhéngigen Formen
bestehen.

Weiter empfiehlt es sich, zu setzen

g = Det. || g%, || (7a)
sowie

g 1=t g%, 1), (7b)

d.h. also neben der Basismatrix nicht die Inverse, sondern deren Trans-
ponierte zu verwenden.

Da weiter jede lineare Kombination aus (6) mit konstanten (invarian-
ten) Koeffizienten

L = 0,1 g» (8)

wiederum eine invariante lineare Differentialform darstellt, darf man
nicht bei den individuellen Formen (6) stehenbleiben, sondern muss eine
aus der Basis (6) aufgebaute lineare Schar zulassen, die von einer linearen
Gruppe beherrscht wird.

Wir haben es also mit zwei Gruppen zu tun, der Gruppe aller Trans-
formationen der Koordinaten 2* (Koordinatengruppe) und der linearen
Gruppe der Transformationen der Formen ¢g* (Formengruppe). Physika-
lisch bedeutsam konnen daher nur totalinvariante Relationen sein, d. h.
also Aussagen, die simultan in bezug auf beide Gruppen invariant sind.
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Die physikalische Erfahrung legt es uns natiirlich nahe, die Lorentz-
Gruppe als Formengruppe zu wihlen, und als erste Totalinvariante ergibt
sich

Q= ¢, g g 9)
Fithrt man in ihr die Formen (6) explizite ein, so verwandelt sie sich in
Q=G , dr*da* (10a)

mit
G s = 0 (10b)

Durch die Basis (6) ist also eindeutig eine Riemann-Einstein-Metrik be-
stimmt, wahrend umgekehrt nach Vorgabe einer solchen Metrik noch
6 Freiheitsgrade verfiighar bleiben.

Tensoren konnen jetzt doppelt gemischt sein nach dem Muster
T#:%, (11)

wobei rechts vom Komma die Koordinatenzeiger g, ¢ und links vom
Komma die Formenzeiger 1, 4 stehen. Neben die aus der quadratischen
Theorie bekannten vertikalen Zeigerverschiebungen treten jetzt horizon-
tale Zeigerverschiebungen, bei denen jeweils ein Koordinatenzeiger in
einen Formenzeiger iibergeht oder umgekehrt.

Die Grundlage der Tensoranalysis liefern die 40 Dreizeigersymbole

1 7 3g% a g%
P = (e + 5 (12)

und die 24 Feldstirken

1 a A’U a ).:
500 "§'( 7 - gg) (13)

i
-

dx* d x°
Aus (13) erhialt man die Formentensoren

S =929 P (14a)
und

fi = (14b)

und aus diesen schliesslich die drei Totalinvarianten

H=fap, [0
H=fjqs, fret (15)
H= faft
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Als al.lgeméinste totalinvariante Wirkungsdichte ergibt sich daher

11 2 2 3

W=MWg
We=Ad+AdH+AH+AH, } (16)
0 3

worin die A Konstanten bedeuten.

Setzt man jetzt

tof = —a aaﬂfl:” und ¥ = —aag—?;, (17a,b)
(%)
8o erhélt man aus
o  Wdw =0 (18)
die Feldgleichungen
S ] (19

Da die Tensordichte (17a) in den Zeigern u, » antisymmetrisch ist, folgen
aus (19) unmittelbar die differentiellen Erhaltungssitze

9L
oz

=0. (20)

Aus (20) ergibt sich daher bei geniigendem Abklingen im Unendlichen
der konstante Energieimpulsvektor

0, = n-1 f f f T 0 dat dat das, (21)

2% = konst.

§ 3. Folgerungen

Als entscheidend fiir die Gewinnung konvergenter Energieintegrale er-
weist sich die Einfithrung derjenigen Matrizen, welche durch das Ver-
schwinden der Feldstdrken (13) gekennzeichnet sind. Da dieselben den
Lorentz-Raum charakterisieren, nenne ich sie Trdgheitsmatrizen und be-
zeichne sie mit

#45 l
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Jede Basismatrix ldsst sich gemiss
Thu =Rt =M1, - e

auf zwei Arten aus einer vorgegebencn Trigheitsmatrix kombinieren.
Jedes konkrete Problem reduziert sich damit auf die Bestimmung der
«ungemischten» Hilfsmatrix

|| #:4 | resp. || 22 ||

Nun zu den Anwendungen.

1. Dre Grawitationsgleichungen

Spezialisiert man (16) zu
%aH:%H+H—2H, (23)
1 2 3

so erhdlt man aus (19) genau die Einsteinschen Vakuumsgleichungen der
Gravitation.

2. Die Gravitationsenergie einer ruhenden kugelsymmetrischen Masse

Man legt gemiss (22) die dieser Symmetrie entsprechende Trigheits-
matrix zugrunde und wihlt die Hilfsmatrix || ;2 || so, dass das resul-
tierende Linienelement dem Schwarzschildschen Ansatz entspricht. Als
Totalenergie des von der Masse m erzeugten Gravitationsfeldes ergibt
sich

E=8ax"a. (24)

Da a den Gravitationsradius darstellt, ergibt sich die Gleichung (3).

3. Einordnung der Elektromagnetik

Man erweitert die Wirkungsfunktion (23) auf
W=H +x»F, (25)

wobei F die Wirkungsfunktion des elektromagnetischen Feldes darstellt.
Als Totalenergie des von einer ruhenden, kugelsymmetrischen und gela-
denen Masse erzeugten Gesamtfeldes ergibt sich

B = 8nx1 Vazj:-%—xez. (26)
Dabei gilt das obere oder das untere Vorzeichen, je nachdem man der
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Gravitationsenergie das gleiche oder das entgegengesetzte Vorzeichen der
elektromagnetischen Energie erteilt.

4. Kosmologie

Gesucht ist der Weltradius L als Funktion der Zeit. Nach der iiblichen
Zerspaltung baut man die rdumliche Basis aus 3 Vektorfeldern auf, die
in der 3-Sphare iiberall stetig sind. Zu jeder Wirkungsfunktion ergibt sich
genau eine Losung. Mit der Abkiirzung

Q=244+A4A+34 e
1 2 3

kann dieselbe als Energiegleichung

Plemes-4) 4

Ty0 == —~ + _;- =0 (28)

43 L2

geschrieben werden. Wie man leicht sieht, ergeben sich je nach der Wahl
der Konstanten auf einfachste Weise aperiodische, statische, periodische
und monotone Welten. Speziell im klassischen Falle (23) ergibt sich aus
W - A + H die De-Sitter-Welt.

0
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