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8. Willy Scherrer (Bern) - Differentialgeometrie, und Feldphysik.

§ 1. Geschichtliches

Das erste Beispiel einer erfolgreichen Theorie, in welcher Feldphysik
und Differentialgeometrie zusammenwirken, bildet die Elektrodynamik
des Vakuums im Rahmen der speziellen Relativitätstheorie. Das Feld
wird repräsentiert durch die lineare Differentialform der Potentiale

d' 0 0xdyx (1)

und die Geometrie durch eine quadratische Differentialform, nämlich die
metrische Grundform

ds2 eadya dy« (2)

des pseudoeuklidischen Zeitraums.
Als das wichtigste Ergebnis dieser Theorie bezeichnete Einstein das

Prinzip der Äquivalenz von Masse und Energie gemäss der Formel

E m c2. (3)

Verbindet man nun dieses Prinzip mit der empirisch weitgehend
bestätigten Äquivalenz von träger und schwerer Masse, so ergibt sich als
notwendige Folgerung die Krümmung von Lichtstrahlen unter dem Einfluss
der Gravitation.

Da nun die Grundform (2) nur eine geradlinige Lichtausbreitung
darzustellen gestattet, wird durch diese Folgerung der Rahmen der speziellen
Relativitätstheorie gesprengt.

In einer bewundernswerten Synthese ist es hierauf Einstein gelungen,
eine in wesentlichen Zügen erfolgreiche Theorie der Gravitation dadurch
zu schaffen, dass er die Grundform (2) durch die Grundform

ds2 GeadxX dx° (4)

einer indefiniten Riemann-Metrik ersetzte. Durch die 10 von den Koordinaten

x°, x1, x2, x3 abhängigen Gravitationspotentiale werden nun
Feld und Metrik buchstäblich miteinander verschmolzen. Diese Theorie,
die ich inskünftig als quadratische Feldtheorie bezeichnen werde, ist also
das zweite Beispiel für das Zusammenwirken von Differentialgeometrie
und Feldphysik.

Beide Theorien, die sich übrigens zwanglos in einem Rahmen vereinigen

lassen, beruhen wesentlich auf makroskopischen Begriffen. Die Frage,
ob von derartigen Theorien überhaupt etwas für die Atomistik zu erwarten

sei, ist daher nie zur Ruhe gekommen. Einen sehr wichtigen positiven
Beitrag zu dieser Frage lieferte Dirac durch seine Linearisierung der
Grundform (2) gemäss

ds yady*, (5)

wobei die ya konstante komplexe Matrizen bedeuten.
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Die Idee einer reinen Feldphysik wurde 1912 von Gustav Mie gefasst
und schon 1915 von David Hilbert aufgrund einer tiefgehenden mathematischen

Analyse mit Einsteins Ansätzen zur quadratischen Feldtheorie in
Verbindung gebracht. Die damit gegebenen Anregungen zu einer
einheitlichen Feldtheorie wurden ab 1919 von Einstein durch die Forderung
vertieft, vermittels einer geometrischen Bereicherung des Zeitraumes die
phänomenologischen Tensoren (Energie, Strom) durch reine Feldgrössen
zu ersetzen.

In keiner der genannten Theorien jedoch ist es gelungen, eine
befriedigende Darstellung der Feldenergie zu gewinnen. Im folgenden will ich
daher unter dem Titel Lineare Feldtheorie einen Vorschlag erläutern, der
diese Schwierigkeit methodisch zu bearbeiten gestattet.

§ 2. Lineare Feldtheorie

Die Betrachtung der Differentialformen (1) und (5) lässt es als durchaus
natürlich erscheinen, den Diracschen Ansatz gleichsam umzukehren : Man
legt also primär invariante lineare Differentialformen

gx' gx\ndx" (6)

zugrunde und kann dann aus diesen durch Quadrieren sekundär eine
quadratische Differentialform (4) gewinnen. Da der Zeitraum 4 Dimensionen
hat, muss natürlich das System (6) aus 4 linear unabhängigen Formen
bestehen.

Weiter empfiehlt es sich, zu setzen

g ~ Det.||</*g| (7 a)

sowie

(7b)

d.h. also neben der Basismatrix nicht die Inverse, sondern deren
Transponierte zu verwenden.

Da weiter jede lineare Kombination aus (6) mit konstanten (invarianten)

Koeffizienten

L Cx g*' (8)

wiederum eine invariante lineare Differentialform darstellt, darf man
nicht bei den individuellen Formen (6) stehenbleiben, sondern muss eine

aus der Basis (6) aufgebaute lineare Schar zulassen, die von einer linearen
Gruppe beherrscht wird.

Wir haben es also mit zwei Gruppen zu tun, der Gruppe aller
Transformationen der Koordinaten xx (Koordinatengruppe) und der linearen
Gruppe der Transformationen der Formen gh (Formengruppe). Physikalisch

bedeutsam können daher nur totalinvariante Relationen sein, d. h.
also Aussagen, die simultan in bezug auf beide Gruppen invariant sind.
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Die physikalische Erfahrung legt es uns natürlich nahe, die Lorentz-
Oruppe als Formengruppe zu wählen, und als erste Totalinvariante ergibt
sich

Q ea, 9"" F' (9)

Führt man in ihr die Formen (6) explizite ein, so verwandelt sie sich in

Q sm G ,xu d x/ d x>* (10a)

mit
G,w - ' W,x 9",,, (10b)

Durch die Basis (6) ist also eindeutig eine Riemann-Einstein-Metrik
bestimmt, während umgekehrt nach Vorgabe einer solchen Metrik noch
6 Freiheitsgrade verfügbar bleiben.

Tensoren können jetzt doppelt gemischt sein nach dem Muster

TW:., (ii)
wobei rechts vom Komma die Koordinatenzeiger q, a und links vom
Komma die Formenzeiger a, [i stehen. Neben die aus der quadratischen
Theorie bekannten vertikalen Zeigerverschiebungen treten jetzt horizontale

Zeigerverschiebungen, bei denen jeweils ein Koordinatenzeiger in
einen Formenzeiger übergeht oder umgekehrt.

Die Grundlage der Tensoranalysis liefern die 40 Dreizeigersymbole

1 (dg*io dgx:0\
T(v~0^~ + "TvH }

und die 24 Feldstärken

fm Œ J_ /ÏÉk. _ (13)J >ea I [ d # d x" J

Aus (13) erhält man die Formentensoren

(14a)

und
(14b)

und aus diesen schliesslich die drei Totalinvarianten

(15)

H= faf*
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Als allgemeinste totalinvariante Wirkungsdichte ergibt sich daher

m^-Wg 1

W A -r AH -j - /I H A II, > (16)
0 1 1 2 2 3 3 I

•worin die A Konstanten bedeuten.

Setzt man jetzt

a

uv asö IT-,, djm* .,_" ~[WiÄ '• 1 ' '

l 3«' 1

so erhält man aus

die Feldgleichungen

ô J 2B dz 0 (18)

dj£
d x*

(19)

Da die Tensordichte (17 a) in den Zeigern /j,, v antisymmetrisch ist, folgen
aus (19) unmittelbar die differentiellen Erhaltungssätze

d%
0 (20)

9 x1

Aus (20) ergibt sich daher bei genügendem Abklingen im Unendlichen
der konstante Energieimpulsvektor

Cx ar1 j f f dx1 dx2 doA. (21)

xn konst.

§ 3. Folgerungen

Als entscheidend für die Gewinnung konvergenter Energieintegrale
erweist sich die Einführung derjenigen Matrizen, welche durch das
Verschwinden der Feldstärken (13) gekennzeichnet sind. Da dieselben den
Lorentz-Raum charakterisieren, nenne ich sie Trägheitsmatrizen und
bezeichne sie mit

II II
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Jede Basismatrix lässt sich gemäss

^ (22)

auf zwei Arten aus einer vorgegebenen Trägheitsmatrix kombinieren.
Jedes konkrete Problem reduziert sich damit auf die Bestimmung der
«ungemischten» Hilfsmatrix

II hi II resP- II Hi II

Nun zu den Anwendungen.

1. Die Gravitationsgleichungen

Spezialisiert man (16) zu

— (23)
Z 12 3

so erhält man aus (19) genau die Einsteinschen Vakuumsgleichungen der
Gravitation.

2. Die Gravitationsenergie einer ruhenden kugelsymmetrischen Masse

Man legt gemäss (22) die dieser Symmetrie entsprechende Trägheitsmatrix

zugrunde und wählt die Hilfsmatrix !] h]f; |j so, dass das
resultierende Linienelement dem Schwarzschildschen Ansatz entspricht. Als
Totalenergie des von der Masse m erzeugten Gravitationsfeldes ergibt
sich

E 8 n k'1 a. (24)

Da a den Gravitationsradius darstellt, ergibt sich die Gleichung (3).

3. Einordnung der Elektromagnetik

Man erweitert die Wirkungsfunktion (23) auf

%&=H + xF, (25)

wobei F die Wirkungsfunktion des elektromagnetischen Feldes darstellt.
Als Totalenergie des von einer ruhenden, kugelsymmetrischen und
geladenen Masse erzeugten Gesamtfeldes ergibt sich

E 8 a x'1 l/ a2 ± -g-^e2 • (26)

Dabei gilt das obere oder das untere Vorzeichen, je nachdem man der
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Gravitationsenergie das gleiche oder das entgegengesetzte Vorzeichen der
elektromagnetischen Energie erteilt.

4. Kosmologie

Gesucht ist der Weltradius L als Funktion der Zeit. Nach der üblichen
Zerspaltung baut man die räumliche Basis aus 3 Vektorfeldern auf, die
in der 3-Sphäre überall stetig sind. Zu jeder Wirkungsfunktion ergibt sich

genau eine Lösung. Mit der Abkürzung

Q 2A-\-A+ZA (27)12 S

kann dieselbe als Energiegleichung

3 fA ~A\] A
T<« s 1 — i-i- + — 0 (28)

4 « L* *

geschrieben werden. Wie man leicht sieht, ergeben sich je nach der Wahl
der Konstanten auf einfachste Weise aperiodische, statische, periodische
und monotone Welten. Speziell im klassischen Falle (23) ergibt sich aus
SB A ; // die De-Sitter-Welt.
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