Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft.

Wissenschaftlicher und administrativer Teil = Actes de la Société

Helvétique des Sciences Naturelles. Partie scientifique et administrative

= Atti della Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 144 (1964)

Artikel: Théorie des groupes

Autor: Piccard, Sophie

DOI: https://doi.org/10.5169/seals-90552

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft Samstag, den 10. Oktober 1964

Präsident: Prof. Dr. J. DE SIEBENTHAL (Lausanne) Sekretär: Prof. Dr. W. NEF (Bern)

- 1. R. Coifman (Veyrier GE) Sur l'itération continue des fonctions réelles.
 - 2. Sophie Piccard (Neuchâtel) Théorie des groupes.

Soit G un groupe multiplicatif dont 1 est l'élément neutre, soit A un ensemble d'éléments de G et soit (1) $f(a_1,...,a_m)=a_{i_1}^{j_1}....a_{i_r}^{j_r}$ une composition finie de certains éléments $a_1,...,a_m$ de A ($r \ge 1, a_{i_l} \in \{a_1,...,a_m\}$, $j_l = \text{entier}, l = 1,...,r$). Si l'on réduit f en s'appuyant seulement sur les axiomes de groupe multiplicatif, on parvient soit à 1, auquel cas on dit que f est complètement réductible, soit à un produit de la forme (2) $a_{u_1}^{v_1}...a_{u_s}^{v_s}$ où s est un entier $\ge 1, a_{u_l} \in \{a_1,...,a_m\}, l = 1,...,s, a_{u_l} \ne a_{u_{l+1}}, l = 1,...,s-1$, et où j_l est un entier $\ne 0$, quel que soit l = 1,...,s. (2) est la forme réduite de (1).

Soit, à présent k un entier donné ≥ 2 . On dit qu'on opère la réduction de f modulo k si l'on réduit f en s'appuyant d'une part sur les axiomes de groupe et d'autre part si l'on remplace par 1 tout facteur de la forme a^h , où $a \in A$ et h est un entier $\equiv 0$ (modulo k). Le résultat final de la réduction modulo k de f est soit 1, auquel cas nous disons que f est complètement réductible modulo k, soit une expression de la forme (2) où s et a_{u_l} ont la même signification que ci-dessus et où j_l est un entier $\equiv 0$ (modulo k) quel que soit $l=1,\ldots,s$. La forme réduite (réduite modulo k) de toute composition finie d'éléments de A est unique, si l'on ne fait pas intervenir les relations non triviales qui relient éventuellement les éléments de A.

Toute égalité qui peut se mettre sous la forme (3) $f(a_1,...,a_m) = 1$, où $a_i \in A, i = 1,...,m$ et où $f(a_1,...,a_m)$ est une composition finie des éléments $a_1,...,a_m$ porte le nom de relation entre éléments de A. Tout ensemble d'éléments de G est lié par un certain nombre de relations qui découlent des axiomes de groupe. De telles relations sont appelées triviales. Le premier membre de toute relation triviale est complètement réductible. Il peut se mettre sous la forme d'un produit de puissances entières d'un nombre fini d'éléments de A, dont tous les exposants sont nuls. Tout

ensemble d'éléments de G qui ne sont liés que par des relations triviales est dit libre ou indépendant. Par contre un ensemble A d'éléments de G est dit dépendant ou lié s'il existe entre des éléments de cet ensemble au moins une relation non triviale. L'ensemble formé d'un seul élément a de G est libre ou lié suivant que a est d'ordre infini ou fini. Tout ensemble d'éléments de G qui comprend au moins un élément d'ordre fini est lié. Une relation (3) entre éléments de G est dite triviale modulo G où G est un entier donné G si son premier membre est complètement réductible modulo G . Les éléments de G sont dits libres ou indépendants modulo G s'ils ne sont liés que par des relations triviales modulo G. Par contre, on dira que les éléments de G sont liés ou dépendants modulo G s'il existe entre ces éléments au moins une relation qui n'est pas triviale modulo G.

La relation (3) est dite quasi triviale (quasi triviale modulo k) si son premier membre est de degré nul (de degré $\equiv 0 \pmod{k}$) par rapport à tout élément de A. Elle est dite pseudo-triviale (pseudo-triviale modulo k) si son premier membre est de degré nul (de degré $= 0 \pmod{k}$) par rapport à l'ensemble des éléments de A. Les éléments de A sont quasi indépendants (quasi indépendants modulo k) s'ils ne sont liés que par des relations quasi triviales (quasi triviales modulo k). Et les éléments de A sont dits pseudo-libres (pseudo-libres modulo k) si toute relation qui les lie est pseudo-libre (pseudo-libre modulo k). Une relation qui ne rentre dans aucune des catégories énumérées ci-dessus est appelée non triviale au sens strict. On peut répartir les groupes en catégories comme suit: Un groupe multiplicatif G est libre (libre modulo k) s'il possède au moins un ensemble de générateurs - appelés générateurs libres (libres modulo k) - qui ne sont liés que par des relations triviales (triviales modulo k). Il est quasi libre (quasi libre modulo k) s'il possède au moins un ensemble de générateurs – dits quasi libres (quasi libres modulo k) – qui ne sont liés que par des relations quasi triviales (quasi triviales modulo k). G est pseudo-libre (pseudo-libre modulo k) s'il possède au moins un ensemble de générateurs – dits pseudo-libres (pseudo-libres modulo k) - qui ne sont liés que par des relations pseudo-triviales (pseudo-triviales modulo k). Le groupe G est lié si tout ensemble de ses éléments générateurs est lié par au moins une relation non triviale. Il est dit lié au sens strict s'il n'est ni quasi libre, ni pseudo-libre ni libre, ni libre, quasi libre ou pseudo-libre modulo k. Un ensemble A de puissance ≥ 2 d'éléments d'un groupe multiplicatif G est dit réductible s'il existe au moins un sous-ensemble fini $A * = \{a_1, ..., a_m\} \operatorname{de} A \ (m \ge 2)$ et un sous-ensemble fini $B * \operatorname{de} G$, de puissance inférieure à celle de A^* et tel que l'ensemble $A - A^* \cup B^*$

engendre, par composition finie, tous les éléments de A. Il est dit irréductible dans le cas contraire. Tout groupe qui possède au moins un ensemble irréductible de générateurs est dit fondamental et tout ensemble irréductible de générateurs d'un groupe fondamental constitue une base de ce groupe. Les groupes libres (libres modulo k) quasi libres et quasi libres modulo k sont tous fondamentaux. Mais un groupe pseudo-libre n'est pas forcément fondamental. Tout groupe libre est libre modulo k, quasi libre, quasi libre modulo k, pseudo-libre et pseudo-libre modulo k quel que soit l'entier k. Tout groupe libre modulo k est quasi libre modulo k et tout groupe de ce dernier type est pseudo-libre modulo k. Tout groupe quasi libre est pseudo-libre, mais il existe une infinité de groupes libres modulo k qui ne sont pas libres et de groupe pseudo-libres qui ne sont pas quasi libres.

Soit, à présent G un groupe abélien et soit $A = \{a_1, ..., a_m\}$ un ensemble fini d'éléments de G. Les éléments de A sont comme on sait indépendants (indépendants modulo k) si une relation (5) $a_1^{j_1} ... a_m^{j_m} = 1$ entre des éléments $a_1, ..., a_m$ ne peut avoir lieu que si $j_l = 0$ ($j_l = 0$ [modulo k]) quel que soit l = 1, ..., m. Par contre les éléments de A sont liés (liés modulo k) s'il existe au moins un système d'entiers $j_1, ..., j_m$, dont l'un au moins est $\neq 0$ ($\equiv \equiv 0$ [modulo k]) et pour lesquels la relation (5) a lieu.

Si des éléments d'un groupe multiplicatif sont liés ils sont aussi liés modulo k pour une infinité de valeurs de l'entier $k \geq 2$.

Et si A est un ensemble infini d'éléments d'un groupe abélien G, les éléments de A sont indépendants si tout sous-ensemble fini de A est libre et les éléments de A sont liés s'il existe au moins un sous-ensemble fini de A formé d'éléments dépendants.

Tout groupe abélien d'ordre fini ou à un nombre fini de générateur est fondamental, mais un groupe abélien de puissance infinie, même dénombrable, peut ne pas être fondamental.

Si un groupe abélien G possède des systèmes finis de générateurs, on définit différentes bases de G. Une base tout court de G est un ensemble irréductible quelconque de générateurs de G. Les éléments d'une base peuvent être liés. Une base normale de G est un ensemble de générateurs $a_1, ..., a_m$, tel que tout élément G de G peut se mettre de façon unique sout la forme G in G de l'élément et réductible. On appelle base normale réduite de G une base normale de G qui est irréductible et dont les éléments peuvent être ordonnés en une suite G qui est irréductible que l'ordre de G est un diviseur de celui

de a_{l+1} i=1,..., m-1. Tout groupe abélien d'ordre fini possède comme on sait des bases normales réduites. Si le groupe G est d'ordre infini, il peut ne pas être fondamental et par suite il peut être dépourvu d'ensembles irréductibles de générateurs. Une base normale de G est un ensemble A de générateurs de G, tel que tout élément de G peut se mettre de façon unique sous la forme d'un produit de la forme $a_1^{j_1}...a_m^{j_m}$, où $a_1,...,a_m$ sont $m \ge 1$ éléments distincts de A et l'entier j_l est compris entre 0 et l'ordre n_l de $a_l, l=1,...,n$. Un groupe abélien d'ordre infini peut être dépourvu de bases normales même s'il est engendré par un nombre fini d'éléments et, même s'il possède des bases normales, celles-ci peuvent être réductibles.

A tout groupe G, quasi libre modulo k, on peut associer un groupe fondamental abélien $\Gamma(k)$ qui possède des bases normales et dont toute base normale est irréductible.

Tout groupe pseudo-libre G possède une infinité de sous-groupes invariants propres, il est d'ordre infini, chaque élément pseudo-libre d'un tel groupe est d'ordre infini et tout élément de G possède un degré fixe par rapport à l'ensemble des éléments de tout ensemble de générateurs pseudo-libres de G.

- 3. J. Hersch (Dietikon) Equation finies satisfaites par les solutions de certains problèmes aux limites.
- 4. R. CAIROLI (Lodrino TI) Remarque sur le théorème ergodique aléatoire.
 - 5. K. Voss (Zürich) Bemerkungen über Minimalflächen.
 - 6. A. Frei (Zürich) Freie Gruppen und freie Objekte.
- 7. C.Weber (Meyrin GE) Plongements de polyèdres dans le domaine métastable.