Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft.

Wissenschaftlicher und administrativer Teil = Actes de la Société

Helvétique des Sciences Naturelles. Partie scientifique et administrative

= Atti della Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 144 (1964)

Artikel: Beitrag zur Kenntnis der flavonoiden Inhaltsstoffe von Arnica montana

L.

Autor: Saner, A. / Leupin, K.

DOI: https://doi.org/10.5169/seals-90629

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

früchte von Juniperus oxycedrus L. und Juniperus polycarpa Koch offeriert. Von diesen gehört letztere in die Sektion Sabina, wo das giftige Sabinol vorkommt, darf daher nicht ohne Bedenken verwendet werden. Ihre Früchte sind grösser – bis 12 mm – als bei Juniperus communis, haben eine meistens unebene, höckerige Oberfläche, welche von den Zipfeln und Nähten der zusammengewachsenen 6–8 Fruchtblätter herrührt, und haben 6–8 Samen. In Pulverform sind für die Droge die sehr zahlreichen, bis 300 μ langen, stark verzweigten Sklereiden des Fruchtfleisches und die fast lumenlosen, die Oxalatkristalle in ihrer Zellwand führenden Sklereiden der Samenschale charakteristisch. Juniperus communis hat im Fruchtfleisch keine Sklereiden, bei Juniperus oxycedrus sind sie vorhanden, sind aber nur bis 140 μ gross, haben ein grosses, zum Teil oft mit einem braunen Inhalt gefülltes Lumen und eine sehr ungleich dicke Wand.

In der letzten Zeit sind im Handel sogenannte «Indische Petersilienfrüchte» erschienen. Sie sind nach ihrer körnig-rauhen Oberfläche und
nach dem starken Thymiangeruch sofort erkennbar und stammen von
Trachyspermum ammi (L.) Sprague (Syn.: Carum copticum Benth. et
Hook.). Dem Geruch entsprechend, zeigt das Dünnschichtehromatogramm
einen grossen Thymolfleck. In Pulverform sind für die Droge die grossen,
glockenförmigen Sekretzellen der Epidermis, oft mit ihren gestreiften
Begleitzellen und ihre Bruchstücke charakteristisch.

Der überwiegende Teil des im Handel erhältlichen Salbeiöles stammt aus Spanien, von Salvia lavandulaefolia Vahl. Dieses Öl war bis jetzt Ph-konform. Im Dünnschichtchromatogramm ist aber, wie auch bei Salvia triloba, ein grosser Cineolfleck vorhanden, wodurch für die Sexta nur noch das in ganz kleinen Mengen, evtl. gar nicht erhältliche dalmatinische Salbeiöl entsprechen würde. Um dies zu vermeiden, sollten auch die bis jetzt gebrauchten eineolreicheren Salbeiöle auch in der Ph. Helv. VI zugelassen werden.

3. A. Saner, K. Leupin (Basel) – Beitrag zur Kenntnis der flavonoiden Inhaltsstoffe von Arnica montana L.

Barz¹ erwähnt ein Arnikaflavon, das aus den frischen Blüten von Arnica montana L. gewonnen wurde. Zimmermann-Niedergesäss² vermutet, dass die intensive Gelbfärbung mit Aluminiumsalzen bei der Fluoreszenzanalyse von Tct. Arnicae PhH V von diesem Arnikaflavon herrühre. Die papierchromatographische Charakterisierung der Tct. Arnicae gibt je nach Laufmittel 3–5 Flecken, die sich mit AlCl₃ gelb färben. Wir extrahierten Flos Arnicae sine involucro – das ist die Droge der in der Schweiz offizinellen Tinktur – mit verschiedenen Lösungsmitteln und arbeiteten diese Extrakte durch Fällen mit Bleiazetat, durch Ausschütteln, durch Chromatographie an Polyamid-, Cellulosepulver-, Kieselgel- und

¹ Barz E.: Z. gesamt. exp. Med. III, 690 (1943).

² Zimmermann-Niedergesäss E.: Diss. Univ. Basel, S. 24 (1954).

Sephadexsäulen und durch Sublimation im Vakuum auf. Wir konnten dabei folgende Flavone, die auch in der Tinktur vorkommen, in geringer Menge isolieren: die Glykoside Q_1 , Q_2 und K_1 , die Aglykone K und F. Durch Hydrolyse erhielten wir von Q_1 und Q_2 Querzetin, von K_1 Kaempferol. Wir vermuten, bei Q_1 Galakturonsäure und Glukose im Zuckerteil zu haben. Bei Q_2 und K_1 fanden wir Glukose. Sowohl Q_1 und Q_2 als auch K_1 sind C-3-glykoside. Friedrich³ isolierte kürzlich aus der Arnikablüte Astragalin, ein Kaempferol-3-monoglukosid, und Isoquerzitrin, ein Querzetin-3-monoglukosid. Unser Befund scheint damit übereinzustimmen. Bei unserem K_1 allerdings handelt es sich um ein Gemisch verschiedener Glukoside.

Das Aglykon K ist mit Kaempferol identisch, das Aglykon F ist zum Unterschied der bisher erwähnten ein Flavon ohne Hydroxyl am C-3.

Desgleichen konnten wir aus der Arnikablüte Querzetin und Isorhamnetin anreichern und papier- und dünnschichtehromatographisch identifizieren. Beide sind im Chromatogramm der Tinktur zu sehen.

Die Erkennung der isolierten Stoffe erfolgte vornehmlich durch ihre UV-Spektren und Farbreaktionen, die im Spektrophotometer ausgemessen wurden⁴. Die Identifizierung erfolgte durch Vergleich mit Testsubstanzen.

4. Horst H.A. Linde (Basel) – Über die Alkaloide von Melodinus australis (Apocynaceae).

Aus dem Rindenpulver von Melodinus australis (Apocynaceae) isolierten wir bisher 14 Alkaloide. Drei davon wurden als Condylocarpin, Stemmadenin und (-)-Quebrachamin identifiziert. Das Hauptalkaloid sowie ein Nebenalkaloid erwiesen sich als Kopsininderivate.

5. E. Weigert (Basel) – Über die Alkaloide von Datura fastuosa L. (= Datura metel var. fastuosa Safford).

Datura fastuosa L. (= Datura metel var. fastuosa Safford) scheint bisher noch nie auf ihren Gehalt an Alkaloiden hin untersucht worden zu sein.

Das uns für eine solche Untersuchung zur Verfügung stehende Material stammte von den Kanarischen Inseln, wo die Pflanze als Volksheilmittel gegen Asthma verwendet wird. Die die basischen Bestandteile enthaltenden Auszüge wurden durch Kieselgel-Dünnschichtchromatographie mit dem für Tropinalkaloide als besonders geeignet befundenen Fliessmittel VI von Oswald und Flück¹ aufgetrennt. Die Sichtbarmachung der gewander-

³ Friedrich H.: Naturwissenschaften 49, 541 (1962).

⁴ Jurd L. in T.A. Geissmann: The chemistry of flavonoid compounds, Pergamon Press, S. 107-155 (1962).

¹ Oswald N., Flück H.: Pharm. Acta Helv. 39, 293 (1964).