Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft.

Wissenschaftlicher und administrativer Teil = Actes de la Société

Helvétique des Sciences Naturelles. Partie scientifique et administrative

= Atti della Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 144 (1964)

Artikel: Radar-Reflexionsquerschnitte von gefrierenden Eis-Wasser-Gemischen

Autor: Aufdermauer, Armin N. / Joss, J.

DOI: https://doi.org/10.5169/seals-90568

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Regenintensität mm/h

Schirmhelligkeit in Funktion der Regenintensität $R=(P\ D^2/k)^{1/c}$ und der Distanz D von einem Radargerät mit dem üblichen linearen Empfänger (gestrichelt) und der in Locarno verwendeten Apparatur

mit Regenmessern nie festgestellt wurden, beispielsweise 600 mm/h. Wir vermuten, dass die Ursache ein Hagel enthaltendes Tropfenspektrum sei, und es besteht grosse Wahrscheinlichkeit, dass auf diese Weise Hagel in Gewittern untersucht und erkannt werden kann. Zu seiner Verifikation werden die Gebiete grösster Intensität auf dem Radarschirm einzeln ausgemessen und mit den Hagelmeldungen aus der betreffenden Gegend in Beziehung gebracht.

In diesem Jahr hat es im Tessin selten gehagelt, und es sind demzufolge noch zu wenig Vergleiche vorhanden, um definitive Schlüsse ziehen zu können.

Es wurden ausserdem Versuche angestellt, um die Reflexionseigenschaften einzelner Hagelkörner zu bestimmen, damit man die von einem gegebenen Hagelspektrum zu erwartende Echointensität berechnen kann (siehe A. Aufdermaur, Weissfluhjoch-Davos, und J. Joss, Locarno-Monti: Radar-Reflexionsquerschnitte von gefrierenden Eis-Wasser-Gemischen).

8. ARMIN N. AUFDERMAUR (Eidg. Institut für Schnee- und Lawinenforschung, Weissfluhjoch-Davos), Jürg Joss (Osservatorio Ticinese, Locarno-Monti) – Radar-Reflexionsquerschnitte von gefrierenden Eis-Wasser-Gemischen.

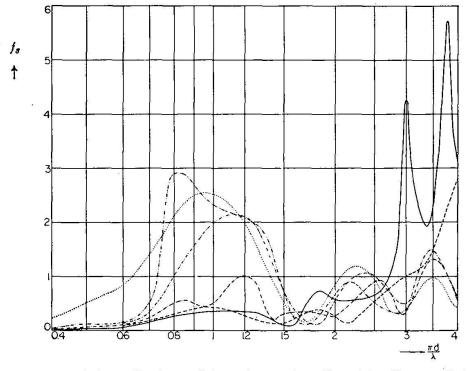
Möchte man mit Hilfe des Radars genauere Aussagen über die Entwicklung einer Hagelwolke machen, so begegnet man zahlreichen Schwierigkeiten, die ohne Doppler-Radar kaum zu überwinden sind. Aber selbst

wenn optimale Radargeräte zur Verfügung stehen, gibt es noch Probleme, z. B. das grundsätzliche Problem der Reflexionseigenschaften jener Hagelkörner, die flüssiges Wasser enthalten. Die Abklärung dieser Frage war das Ziel der zu besprechenden Untersuchungen.

Eine Stichprobe (J. Joss und R. List, 1963, Zur Radarrückstrahlung von Eis-Wasser-Gemischen, Z. angew. Math. Phys. 14, 376) hatte früher bereits gezeigt, dass die bestehende Theorie unzulänglich war. Nachdem eine neue, nur im Rayleigh-Gebiet gültige Theorie gefunden war (J. Joss, 1964, Die Bestimmung der Rückstreuquerschnitte von Eis-Wasser-Gemischen bei einer Wellenlänge von 5,05 cm, Z. angew. Math. Phys. 15, 509), fehlte noch die Theorie oder umfangreiche Messungen im Mie-Gebiet. Über diese Messungen soll hier kurz berichtet werden.

Als Testobjekte dienten in Wasser getränkte homogene Schneekugeln und im Hagelversuchskanal produzierte Hagelkornmodelle, bestehend aus einer Eiskugel und einer 1 bis 3 mm dicken äusseren Schale aus Schwammeis von verschiedenem Wassergehalt, der vor der Radarmessung durch eine Dichtebestimmung abgeschätzt wurde. Die Korndurchmesser d lagen zwischen 13 und 40 mm, der totale Wassergehalt ($W_{tot} =$ Wasser: Totalgewicht) zwischen 50 und 2%. Jedes Korn wurde für die Radarmessung einzeln im Freien aufgehängt und von unten mit etwa 15 m/s ventiliert, so dass bei den herrschenden Temperaturen um — 5 °C das Eis-Wasser-Gemisch allmählich gefror. Während dieser Zeit wurde die Radarrückstrahlung auf drei Wellenlängen, nämlich $\lambda = 3.2, 4.7$ und 10 cm, gleichzeitig registriert. Diese Rückstrahlungskurven wurden jeweils nicht auf die Zeit, sondern auf den beim Gefrieren abnehmenden Wassergehalt bezogen, indem zwischen dem Anfangs- und Endpunkt des Gefrierens W_{tot} linear interpoliert wurde. Die Anfangswerte und Kurven der wenig Wasser enthaltenden Körner fügten sich meistens gut in die Kurven der Körner gleichen Durchmessers mit grösserem anfänglichem Wassergehalt. Zur weiteren Auswertung wurden deshalb nicht bloss die Anfangswerte, sondern die ganzen Kurven benützt. Es waren über 200

im Gebiet der dimensionslosen Durchmesserzahl $\frac{\pi d}{\lambda}$ zwischen 0,4 und 4.


Aus diesen Kurven wurde der dimensionslose Rückstreufaktor f_s bei einem totalen Wassergehalt von 30, 20, 10, 5 und 0% (vollständig durchgefroren) herausgelesen und gegen die Durchmesserzahl aufgetragen. Die Abbildung zeigt die daraus gemittelten Kurven gleichen Wassergehaltes. Die Mittelung wurde unter Berücksichtigung aller Messpunkte und ohne Anpassung an irgendwelche theoretischen Erwägungen vorgenommen.

Die Streuung der einzelnen Messpunkte war ausser bei den durchgefrorenen Körnern erwartungsgemäss sehr gross und konnte sich im Mie-Gebiet über zwei Grössenordnungen erstrecken. Die im Mie-Gebiet auftretenden Maxima und Minima des Streufaktors sind eine Interferenzerscheinung und deshalb auf Asymmetrien sehr empfindlich. Solche Asymmetrien, z.B. in der Anordnung des flüssigen Wassers, waren bei den Modellhagelkörnern in wechselndem Masse vorhanden, ja sogar die

durchgefrorenen Körner ergaben weniger ausgeprägte Maxima und Minima als die Theorie (J.J. Stephens, 1961, Radar-Cross-Sections for Water and Ice Spheres, J. Meteor. 18, 348), wo doch im übrigen gute Übereinstimmung herrschte (± 0.5 db).

Die Voraussetzungen, Gründe und Beweise für die Bildung von Eis-Wasser-Gemischen beim natürlichen Hagelkornwachstum können hier nicht diskutiert werden, ebensowenig die Frage der Verteilung des Wassers in den betreffenden Hagelkörnern. Die verschiedenen Möglichkeiten dürften ebenso vielfältig sein wie die Hagelkornstrukturen, die oft bei ein und demselben Gewitter gar nicht einheitlich sind. Gerade deshalb ist es aber für die Praxis wichtig, Mittelwerte der Radarreflexion von verschiedenen, nicht zu sehr idealisierenden Hagelkornmodellen zu kennen. Die Wahl der Modelle ist dabei nicht überaus kritisch, weil die Mittelwerte nur bei ausgefallenen Modellen grössere Abweichungen ergeben. Über solche Fälle und über eine gewisse Wellenlängenabhängigkeit wird später berichtet werden. Für die Praxis sollte vorläufig genügen, Radar-Reflexionsquerschnitte von wässrigen Hagelkörnern aus ihrem Gewicht

(bzw. den für Kugeln berechneten Durchmesserzahlen $\frac{\pi d}{\lambda}$) und ihrem Wassergehalt W_{tot} mit Hilfe der Abbildung zu bestimmen.

Gemessener mittlerer Rückstreufaktor f_s von kugeligen Hagelkornmodellen mit einem Wassergehalt $W_{tot} = 0\%$ (----), 5% (----), 10% (----), 20% (.--.-) und 30% (--..-) in Funktion der Durchmesserzahl $\frac{\pi d}{\lambda}$. Theoretischer Wert für Wasserkugeln (......) von Stephens (im Text zitiert)