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Symmetrie und Unordnung in der Kristallwelt
Prof. Dr. F. Laves, (Zürich)

Gesetz ist nur, daß keines ist.
(F. Dürrenmatt in «Frank der Fünfte»)

Seit Jahrtausenden haben Kristalle und ihre Verwachsungen den
Menschen fasziniert. Er spürt Gesetzmäßiges, welches sich hinter einer
ungesetzmäßigen Variation der sich dem Auge bietenden Gestalten -

mannigfaltigkeit verbirgt. Die Spannung zwischen Gesetz und Ungesetz
empfindet er als schön, auch wenn er von dem Gesetz nichts weiß, dessen
Existenz er aber ahnt.

Um das Ungesetzmäßige oder die Unordnung in der Kristallweit
diskutieren zu können, ist es zweckmäßig, sich zunächst darüber zu
einigen, was unter Gesetz oder Ordnung verstanden werden soll. Jede
Abweichung von der Ordnung kann dann als «Unordnung» aufgefaßt
werden. In diesem Sinne gibt es viele Grade und Typen der Unordnung,
von denen später die Rede sein wird.

«Ordnung» kann in einfacher Weise durch Symmetriebedingungen
definiert werden, denen ein idealer Kristall genügen sollte: Ein Körper
(oder eine Anordnung von Punkten bzw. eine Anordnung von
irgendwelchen Motiven) besitzt im kristallographischen Sinne Symmetrie, wenn
es möglich ist, die Anordnung durch kristallographisch mögliche
Symmetrieoperationen mit sich selbst zur Deckung zu bringen.

Welche kristallographischen Symmetrieoperationen möglich sind,
läßt sich aus einer Diskussion der wichtigsten Symmetrieeigenschaft von
Kristallen ableiten, nämlich der Translation. Das heißt, zu jedem Atom
eines Kristalles muß es andere gleiche Atome des Kristalles geben,
welche die Punkte eines Translationsgitters besetzen. Unter
Translationsgitter versteht man eine dreidimensional ausgedehnte Anordnung
diskreter Punkte, welche folgender Bedingung genügt: Verschiebt man
die Anordnung parallel mit sich selbst derart, daß nach der Verschiebung
irgendein Punkt der Anordnung auf irgendeinen Platz zu liegen kommt,
an welchem vor der Verschiebung ein Punkt der Anordnung lag, so
müssen alle Punkte der Anordnung auf Plätze zu liegen kommen, die
vor der Verschiebung Punkte der Anordnung waren. Die im vorstehenden
Satz erwähnte Verschiebung ist eine Symmetrieoperation im obigen
Sinne, sie wird Translationsoperation (oder oft auch kurz Translation)
genannt. Bei einem «idealen Kristall» muß jede in dieser Weise definierte
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Translationsoperation die gesamte Atomanordnung des Kristalles mit
sich selbst zur Deckung bringen. Die Punkte eines Translationsgitters
werden identische Punkte genannt.

Die vorstehend beschriebene Translationssymmetrie hat eine
bemerkenswerte Konsequenz: Ein idealer Kristall sollte unbegrenzt sein!
Die Kristalle unserer Welt sind aber begrenzt. Es gibt große und kleine
Kristalle, oft dicht nebeneinander auf der gleichen Stufe sitzend. Die
«unordentliche» Abweichung vom Symmetriegesetz der Translation
äußert sich hier in einer dem Zufall unterworfenen Verschiedenheit der
Kristallgrößen.

Außer dieser sich im Makroskopischen äußernden Abweichung von
der Translationssymmetrie, die man vielleicht als eine triviale Abweichung

bezeichnen könnte, seien hier gleich noch zwei weitere triviale
Abweichungen kurz erwähnt, die sich im Atomaren äußern : 1. Die Atome
von Kristallen führen Wärmeschwingungen aus und genügen daher nicht
exakt den Forderungen der Translationssymmetrie. 2. Die meisten
chemischen Elemente sind Isotopengemische. Kristalle, welche derartige
Elemente als Komponenten enthalten, werden deswegen nicht exakt den
Forderungen der Translationssymmetrie genügen, da auf identischen
Punkten zwar ähnliche, aber nicht identische Atome liegen.

Nach Besprechung dieser trivialen Abweichungen von idealer
Translationssymmetrie, Abweichungen, welche man bei allen Kristallen
antrifft, wollen wir uns folgenden Fragen zuwenden: 1. Inwieweit ist es

möglich, die endlich begrenzten Kristalle wenigstens als «Ausschnitte»
aus unendlich ausgedehnt zu denkenden, der Translationssymmetrie
genügenden Kristallen aufzufassen 2. Welche Folgerungen ergeben sich
aus der Translationssymmetrie für die Symmetrie der endlich begrenzten
Kristallgebilde - Wir wollen uns zunächst der zweiten Frage zuwenden.

Die Translationssymmetrie der Kristalle bedingt, daß kristallisiertes
und kristallisierendes Material in verschiedenen Richtungen verschiedene

Eigenschaften haben kann, sofern die betrachteten Richtungen
nicht «gleichwertig» sind. Gleichwertig nennen wir Richtungen dann,
wenn sie durch Symmetrieoperationen zur Deckung gebracht werden
können. Da Wachstumsgeschwindigkeiten auch «Eigenschaften» sind,
werden diese richtungsabhängig sein, und es ist zu erwarten, daß sich die
Symmetrie der Atomanordnung in der Symmetrie der Kristallbegrenzung
äußert.

Um die Symmetriemöglichkeiten, welche bei Kristallen als
beobachtbar in Frage kommen, zu überblicken, kann man in folgender Weise
vorgehen :

Versteht man unter «Symmetrieoperation» eine Operation, mit
Hilfe derer sich eine Anordnung in sich selbst überführen läßt, so kann
man die Translationsgitter (siehe oben) daraufhin untersuchen, wieviel
bezüglich Symmetrie verschiedene es gibt. Kristallbegrenzungen sollten
dann höchstens solche Symmetrieoperationen erkennen lassen, welche
auch bei Translationsgittern erkennbar sind.
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Eine systematische Untersuchung zeigt, daß es 14 bezüglich
Symmetrie verschiedene Translationsgitter gibt (14 «Bravaisgitter»), welche
folgende (für diese morphologische Betrachtung wichtige) Symmetrie -

Operationen erkennen lassen :

a) Drehungen um 360°, 180°, 120°, 90°, 60° und um deren Vielfache. Die
Richtungen, um die man derart drehen kann, daß Deckung erreicht
wird, nennt man Drehungsachsen, und zwar w-zählige Drehungsachsen,

wenn der zur Deckung führende Drehwinkel 360°/n beträgt.
Man kann also 1-, 2-, 3-, 4- und ßzählige Drehachsen unterscheiden.

b) Spiegelung. Ebenen, an denen sich die zur Deckung führende Spie¬
gelung vollzieht, nennt man Spiegelebenen.

c) Koppelung von Drehung und Spiegelung an einer Ebene senkrecht zur
Drehung: Drehspiegelung bzw. Drehspiegelachsen. Als mögliche
Drehwinkel für diese Symmetrie erkennt man 360°, 180°, 120°, 90°, 60°.
Entsprechend kann man 1-, 2-, 3-, 4- und 6zählige Drehspiegelachsen
unterscheiden. Da 1 zählige Drehspiegelung identisch ist mit Spiegelung

und da 3zählige Drehspiegelung identisch ist mit einer Kombination

von 3zähliger Drehung und Spiegelung, bedeuten nur die 2-,
4- und ßzähligen Drehspiegelungen gegenüber den unter a und b
genannten Operationen etwas Neues.

Die Operation der 2zähligen Drehspiegelung kann auch als
«Spiegelung an einem (Zentral-) Punkt» aufgefaßt werden und wird
deswegen meist Inversion genannt. Jede Richtung wird durch diese
Operation gleichwertig mit ihrer Gegenrichtung. Der (zentrale) Punkt,
an dem «gespiegelt» wird, hat als Symmetrieelement den Namen
Inversionszentrum oder Symmetriezentrum. Nach Einführung dieses
Begriffes «Inversions- oder Symmetriezentrum» kann die vorstehend
erwähnte 6zählige Drehspiegelung auch als eine Kombination von
3zähliger Drehung und Inversion aufgefaßt werden.

d) Koppelung von Drehung und Inversion: Drehinversion bzw. Drehinver¬
sionsachsen. Wieder kommen als Drehwinkel nur 360°, 180°, 120° 90°,
60° in Frage. Im speziellen gilt : 1 zählige Drehinversion Inversion

2zählige Drehspiegelung; 2zählige Drehinversion Spiegelung;
3zählige Drehinversion ßzählige Drehspiegelung — 3zählige
Drehung kombiniert mit Inversionszentrum; 4zählige Drehinversion
4zählige Drehspiegelung ; 6zählige Drehinversion 3zählige Drehung
kombiniert mit Spiegelung.
Kombiniert man die unter a bis d aufgeführten Symmetrieelemente

miteinander, so ergeben sich 32 «widerspruchsfreie» Kombinationen von
Symmetrieelementen, welche man auch die 32 Kristallklassen nennt.
Jeder Kristall kann im Prinzip eindeutig einer dieser Kristallklassen
zugeordnet werden (praktisch ist es manchmal schwierig), und seine
Begrenzung sollte im Idealfall dieser Kristallklassensymmetrie genügen.

Im Rahmen jeder Kristallklasse gibt es eine kleine, und zwar
bestimmte Anzahl von sogenannten kristallographischen Formen, welche
als Begrenzungsflächen für Kristalle der betreffenden Kristallklasse
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Abb. 1

Die Achsenabschnitte der stark
umrandeten und der schraffierten
Fläche verhalten sich in den a-,
b- und c-Richtungen wie 2:1,
2:1 und 1:1.

möglich sind. Oft wird statt des Ausdruckes «kristallographische Form»
kurz «Form» gesagt. In diesem Sinne versteht man unter einer Form die
Summe gleichwertiger, das heißt ununterscheidbarer Flächen. Im ganzen
gibt es 47 Formen. Die Form mit der kleinsten Flächenanzahl - nämlich 1 -
nennt man Pedion, die Form mit der größten Flächenanzahl - nämlich
48 - nennt man Hexakisoktaeder. Als weitere Formen gibt es unter
anderem Pyramiden, Prismen, Tetraeder, Oktaeder und Würfel.

Den relativ kleinen Zahlen von 32 Kristallklassen und 47 Formen
steht eine unbegrenzte Vielfalt der kristallographischen Gestalten gegenüber.

Sie ergibt sich daraus, daß an den Gestalten meist mehrere Formen
beteiligt sind. Man spricht dann von (Formen-) Kombinationen.

Die Winkel, welche die Flächen einer Gestalt miteinander bilden,
sind nicht beliebig, sondern entsprechen einem wichtigen kristallographischen

Gesetz: dem sogenannten Rationalitätsgesetz. Dieses Gesetz,
eine Folge von Translationssymmetrie und WachstumsVorgang, verlangt
folgendes : Es muß möglich sein, die Flächen einer Gestalt derart parallel
zu verschieben, daß sie die Achsen eines sinnvoll gewählten Koordinatensystems

in rationalen Verhältnissen schneiden (Abb. 1). Als Folge davon
lassen sich dann für die Verhältnisse der reziproken Achsenabschnitte
einer jeden Fläche drei ganze Zahlen (meist kleine ganze Zahlen, positive
und negative, inklusive 0) ableiten, welche man die Indizes der betreffenden

Fläche nennt. Durch ein mit diesem Rationalitätsgesetz verträgliches

Koordinatensystem ist für jede Kristallart eine bestimmte Metrik
festgelegt, welche, unabhängig von der Symmetrie, im allgemeinen von
Kristallart zu Kristallart variiert und durch fünf Größen - zwei Längen
und drei Winkel - charakterisiert werden kann.

Obwohl es also vom Symmetriestandpunkt aus nur 32 verschiedene
Kristallgestalten geben kann, gibt es für das Auge beliebig viele : erstens
infolge der 47 verschiedenen Formen sowie deren zahllosen
Kombinationsmöglichkeiten und Verschiedenheiten der relativen Ausbildungsgröße

und zweitens infolge der beliebig großen Variabilität der Metrik,
für deren fünf Werte überhaupt keine Bedingungen bestehen. Diese fünf
Werte sind lediglich durch die Kräfte bestimmt, welche die den Kristall
aufbauenden Atome aufeinander ausüben, also letzten Endes durch die
chemische Zusammensetzung und die physikalischen Umweltbedingun-
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gen (zum Beispiel Temperatur, Druck, elektrische und magnetische
Felder).

Nennen wir die Gestalten, die den vorstehenden Bedingungen genügen,

ideale Kristallgestalten, so erkennen wir bereits bei diesen idealen
Kristallgestalten eine faszinierende Mischung von Gesetz und Unordnung

: 32 Kristallklassen und Rationalitätsgesetz einerseits, beliebig viele
Kombinationsmöglichkeiten von Formen und Variationen der Metrik
anderseits. Der Zufall der Wachstumsbedingungen spielt eine ausschlaggebende

Rolle dafür, welche Formen oder welche Kombinationen von
Formen ein wachsender Kristall als seine Gestalt wählt.

Zu dieser durch kein Gesetz erfaßbaren Mannigfaltigkeit bereits der
«idealen Kristallgestalten» («ideal» im Sinne des oben, im dritten Absatz,
definierten Symmetriebegriffes) gesellt sich eine zusätzliche «Unordnung»
dadurch, daß die Symmetrie der Kristallgestalten oft - und, wenn man
es genau nimmt, meist - erheblich niedriger ist, als sie theoretisch auf
Grund der Kristallklassensymmetrie sein müßte. Man beschreibt diese
Tatsache mit dem Wort «Verzerrung» (Abb. 2).

Da der Ausdruck «Verzerrung» sprachlich nicht sehr glücklich ist,
soll er durch ein Beispiel illustriert werden. Man stelle sich einen in einer
strömenden NaCl-Lösung wachsenden NaCl- (Stein- oder Kochsalz-)
Kristall vor. Die Atomanordnung des NaCl ist «kubisch» und derart, daß
man Begrenzungen kristallographisch höchstmöglicher Symmetrie
erwarten sollte. Sie sollte im Idealfall derart hochsymmetrisch sein, daß
man 4zählige Drehungsachsen erkennen kann, zum Beispiel einen Würfel,

dessen Flächen bekanntlich Quadrate sind und dessen Kanten alle
gleich groß sein sollten. Infolge spezieller Wachstumsbedingungen ist das
oft nicht der Fall. Der Kristall wächst in den verschiedenen
Würfelnormalenrichtungen verschieden schnell, und es mag eine «würfelartige»
Begrenzung resultieren mit Kantenlängenverhältnissen etwa ähnlich
denen einer Streichholzschachtel.

Abb.2. Links: ideale Ausbildung eines hexagonalen (Hochtemperatur-Form-)
Quarzkristalles. Rechts: «verzerrte» Ausbildung. (Man beachte die Parallelität
korrespondierender Kanten.) In beiden Fällen besteht die «Gestalt» aus der Kombination

von zwei und nur zwei «Formen»: hexagonales Prisma plus hexagonale
Bipyramide.



— 38 —

Obwohl man bei einem solchen Körper drei verschieden große Flächen
unterscheiden kann, werden diese kristallographisch als gleichwertig
angesehen, also «ununterscheidbar», weil sie nur «zufällig» verschieden
groß sind, bei idealem Wachstum aber gleich groß sein könnten, und weil
sie, kristallphysikalisch gesehen, gleiche Eigenschaften haben. Die kri-
stallographische Gleichwertigkeit der Flächen und die hohe Symmetrie
des Würfels (zum Beispiel 4zählige Drehungsachsen) kommen natürlich
sofort dann zum Ausdruck, wenn man von den Flächengrößen absieht
und nur die JPYàchenwinkel berücksichtigt. Dies geschieht am übersichtlichsten

dadurch, daß man statt der Flächen deren Normalen betrachtet
und letztere derart parallel verschoben denkt, daß sie von einem
gemeinsamen Punkt ausstrahlen. Man erhält auf diese Weise ein
Flächennormalen bündel, dessen Symmetrie der wahren Formensymmetrie
entspricht. Ist die Symmetrie einer gebildeten Formenoberfläche bzw. eines
gebildeten Formenkörpers identisch mit der wahren Formensymmetrie,
dann spricht man von idealer Ausbildung; ist sie es nicht, dann spricht
man von verzerrter Ausbildung.

Es gibt natürlich kontinuierlich verschiedene Grade der Verzerrung.
Um beim Beispiel des NaCl-Würfels zu bleiben : Ein Parallelepiped, dessen

Flächen senkrecht aufeinander stehen und dessen Kantenlängen
nicht mehr als etwa 10 Prozent voneinander abweichen, wird ein Kri-
stallograph noch ohne Gewissensbisse als einen ideal ausgebildeten Würfel

anerkennen (denn den wirklich idealen Würfel gibt es nur in der
Mathematik bzw. in der Vorstellung). Eine «Streichholzschachtel»-Form
würde man jedoch bereits als einen stark verzerrten Würfel bezeichnen;
und von Steinsalzkristallen, welche wie Streichhölzer aussehen, würde
man sagen, daß sie von den Flächen eines sehr stark verzerrten Würfels
begrenzt sind. (Es gibt in der Tat Wachstumsbedingungen, unter denen
Steinsalz « haarförmig » wächst.

Zusammenfassend sei bereits für den «frei», von Nachbarn
«ungehindert» gewachsenen «Einkristall» festgehalten: Der begrenzten Anzahl
von Symmetriemöglichkeiten (32 Kristallklassen) und Kristallformen (47)
stehen die unbegrenzten Möglichkeiten verschiedener Kristallgestalten
sowie deren Verzerrungen gegenüber. Gesetz und Unordnung beeinflussen

in einer magisch wirkenden Mischung das vom Auge als Kristall
Wahrgenommene und vom Gefühl als ästhetisch schön Empfundene.
Der Zufall der Wachstumsbedingungen spielt eine ausschlaggebende
Bolle dafür, welche Formen oder welche Kombinationen von Formen als
Kristallgestalten in Erscheinung treten, und dafür, ob diese Gestalten
«ideal» oder «verzerrt» ausgebildet sind.

Die bisherigen Betrachtungen bezogen sich stillschweigend auf solche
Kristallgestalten, welche als konvexe, von ebenen Flächen begrenzte
Polyeder ausgebildet sind und als solche herausgeschnitten gedacht
werden können aus einem der Translationssymmetrie exakt genügenden,
unbegrenzt zu denkenden Kristall. Hierdurch sollte jedoch nicht der
Eindruck entstehen, daß zu dem Begriff «Kristall» eine konvex poly-



— 39 —

edrische Begrenzung durch ebene Flächen gehört, welche dem Rationali-
tätsgesetz gehorchen. Für den Begriff «Kristall» ist lediglich notwendig,
daß die Anordnung seiner Atome Translationssymmetrie erkennen läßt,
was experimentell mit Hilfe von Röntgenstrahlen geprüft werden kann.
(Ein Stück Glas, dessen Atomanordnung keine Translationssymmetrie
erkennen läßt, wird niemals dadurch zum «Kristall», daß man ihm durch
Schleifen die Gestalt eines ebenflächig begrenzten Polyeders gibt.) Es
gibt daher auch viele Kristalle, die infolge trivialer Gründe eine völlig
unkristallographische Begrenzung haben, sei es infolge zufälliger Hindernisse

während des Wachstums, sei es infolge willkürlicher Formgebungen,
zum Beispiel durch Anschleifen von Facetten für Schmuckstücke.

Es gibt aber auch Kristalle, welche infolge besonderer Wachstumsbedingungen

- meist infolge schnellen Wachstums - eine natürliche
Begrenzung haben, welche nicht als konvexes Polyeder beschrieben
werden kann. Es wachsen dann mehr oder weniger «regelmäßige»
Gebilde mit Zacken oder Ästen oder als Gewebe ausgebildet, deren
«Regelmäßigkeit» die kristalleigene Symmetrie der betreffenden Kristallklasse

mehr oder weniger vollkommen widerspiegelt. Als besonders
schönes Beispiel derartiger Ausbildungen sei an Schneekristalle erinnert,
über die Thomas Mann im «Zauberberg» schreibt:

«Und unter den Myriaden von Zaubersternchen in ihrer untersichtigen, dem
Menschenauge nicht zugedachten, heimlichen Kleinpracht war nicht eines dem
anderen gleich; eine endlose Erfindungslust in der Abwandlung und allerfeinsten
Ausgestaltung eines und immer desselben Grundschemas, des gleichseitig-gleichwinkligen

Sechsecks herrschte da; aber in sich selbst war jedes der kalten Erzeugnisse

von unbedingtem Ebenmaß und eisiger Regelmäßigkeit, ja dies war das
Unheimliche, Widerorganische, Lebensfeindliche daran; sie waren zu regelmäßig,
die zum Leben geordnete Substanz war es niemals in diesem Grade; dem Leben
schauderte vor der genauen Richtigkeit; es empfand sie als tödlich, als das Geheimnis

des Todes selbst, und Hans Castorp glaubte zu verstehen, warum Tempelbaumeister

der Vorzeit absichtlich und insgeheim kleine Abweichungen von der
Symmetrie in ihren Säulenordnungen angebracht hatten.»

Bei solchen Gebilden, insbesondere wenn die Ausbildung eine
«gewebeartige» ist, wird es manchmal schwer sein, zu entscheiden, ob
ein solches Gebilde ein «Einkristall» ist oder eine Anordnung mehrerer
Einzelkristalle, welche parallel zueinander orientiert sind.

Diese Frage führt dazu, unsere Betrachtungen auf eine Diskussion
der Anordnung mehrerer Kristalle zueinander auszudehnen. Auch hier
läßt die von der Natur gebotene Mannigfaltigkeit Gesetze und
Gesetzmäßigkeiten erkennen, deren Strenge durch den Zufall aufgelockert wird
und Gebilde entstehen läßt, welche unser ästhetisches Empfinden
wohltuend ansprechen.

Auf der einen Seite gibt es gesetzmäßige ParallelVerwachsungen
(Abb. 3) und «Verzwillingungen» von Kristallen gleicher Symmetrie, in
ihrer abstrakten Schönheit etwa gleichwertig den Schöpfungen
künstlerischer Architektur, auf der anderen Seite gibt es die völlige gegenseitige

Unordnung von Kristallen verschiedener Symmetrie und Farbe,
wie etwa in granitischen Gesteinen, eine Unordnung, welche nicht nur



— 40 —

Abb. 3
« Einkristall» oder «Parallelverwachsung»
Diese Photographie eines Steinsalz(NaCl)-
Kristalles wurde einem Buch von
A. Ehrhardt : « Kristalle »,

Verlag H. Eilermann, Hamburg, 1939,
entnommen.

dekorativ schön wirkt. Dazwischen liegt eine kontinuierliche
Mannigfaltigkeit von Kristallanordnungen, mit wechselndem Verhältnis von
«Ordnung» und «Unordnung» (Abb. 4-6). Das als «Ordnung»Empfundene
läßt sich zwar oft nicht exakt in Worte fassen, hat aber letzten Endes
seine Wurzeln in den Symmetrien der am Aufbau beteiligten
Kristalleinheiten. Die gleichzeitige Beteiligung von Ordnung und Unordnung
erzeugt oft Spannungen, deren Schönheitswirkung der Betrachtende sich
kaum entziehen kann. In dieser Weise werden von der Natur oft Gebilde

erzeugt, die beglückend wirken wie Werke modern-abstrakter Plastik,
und es ist wohl kein Zufall, daß gerade in unseren Zeiten die Freude am
Sammeln schöner Kristallstufen so stark zugenommen hat.

Abb. 4

Mikrophoto
(polarisiertes
Licht) eines

Dünnschliffesvon
« polysynthetisch

verzwillingtem »

Mikroklin
(K-Feldspat ;

KAlSi308).
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Abb. 5 Abb. 6

Mikrophoto eines Metallanschliffes.
(Perlit, Ausscheidung von Zementit,
Fe3C, in a-Eisen.)

Zwillingsbildung in In,Tl-Mischkri-
stallen infolge einer beim Abkühlen
eintretenden Symmetrieerniedrigung
der Kristallstruktur.

Während in der Natur derartige, schön wirkende Spannungen durch
«Zufall» entstehen, findet man sie gelegentlich in der bildenden Kunst
intuitiv-bewußt erzeugt. Erinnert sei an Dürers «Melancholie»: Ein
trigonaler Kristall ruht auf einem tetragonalen Block. Die hierdurch
bereits erzeugte Spannung zwischen trigonaler und tetragonaler Symmetrie
wurde - offenbar bewußt - dadurch noch erhöht, daß die 3zählige und die
4zählige Drehungsachse nur parallel und nicht zusammenfallend gewählt
wurden. Zusätzlich wurde dem tetragonalen Block noch eine Ecke
abgeschnitten. Abbildung 7 zeigt eine Zeichnung Dürers zum Polyeder der
«Melancholie».

Im bisherigen Teil dieses Vortrages haben wir uns mit den «sichtbaren»

Symmetrien der Kristalle und ihrer gegenseitigen Anordnungen
befaßt, und wir haben die «sichtbaren» Symmetriegesetze zu verstehen
gelernt als Folge der «unsichtbaren», aber mit Röntgenstrahlen beweisbaren

Symmetrieeigenschaften des atomaren Aufbaus, der
Translationssymmetrie. Zur Veranschaulichung: Ein Na-Ion hat einen Radius
von etwa 1 x 10-7 mm, ein Cl-Ion einen solchen von etwa 1,8 X 10~7 mm ;

das bedeutet, in der Kante eines SteinsalzkristallWürfels von etwa 1 cm
Kantenlänge sind etwa 20 Millionen Na- und 20 Millionen Cl-Ionen
aneinandergereiht ; das entspricht etwa einer Kette sich berührender Rappen

- Geldstücke, nicht Pferde - von Zürich nach Paris. Man kann also
mit gutem Gewissen die Periodizität der Kristalle als ins Unendliche
reichend annehmen und die Translationssymmetrie der Kristalle als
wichtige Kristalleigenschaft anerkennen.

Inwieweit ist diese Translationssymmetrie nun aber streng verwirklicht

Wir haben oben schon einige triviale Abweichungen (infolge der
Wärmebewegungen und Isotopengemische) kennengelernt. Im folgenden
seien einige nichttriviale Abweichungen besprochen.
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Abb. 7

Zeichnung Dürers zum Polyeder
der «Melancholie» (Dresden, Sächsische
Landesbibliothek; Abb. 171 in
W. Waetzoldt : «Dürer und seine Zeit»,
Phaidon-Verlag, Wien, 1935).

1. Leerstellen: Die meisten chemischen Elemente kristallisieren derart, daß
die Atome die Punkte eines und nur eines Translationsgitters (siehe
oben) besetzen. Genaue Untersuchungen haben jedoch gezeigt, daß
nicht alle identischen Punkte des Translationsgitters mit Atomen
besetzt sind. In «zufälliger» Weise bleiben einige Punkte unbesetzt.
Die Anzahl unbesetzter Punkte vergrößert sich mit steigender Temperatur.

2. Mischkristallbildung : Identische Punkte eines (oder mehrerer)
Translationsgitter sind nicht in identischer Weise besetzt. Man kennt
folgende Unterfälle :

a) Substitutions-Mischkristalle: Identische Punkte eines (oder
mehrerer) Translationsgitter sind mit verschiedenen Atomsorten
besetzt (z.B. Kupfer-Gold, bei höherer Temperatur).

b) Subtraktions-Mischkristalle: Identische Punkte eines (oder mehrerer)
Translationsgitter sind teilweise unbesetzt - in «zufälliger Weise»

(z.B. Magnetkies, Fej_xS).

c) Additions-Mischkristalle: In die Lücken zwischen mehr oder weni¬

ger vollständig besetzten Translationsgittern werden mehr oder

weniger zusätzliche Atome eingelagert (z.B. Fe+C; Ti+O).
Die Fälle b und c sind Grenzfälle, die kontinuierlich ineinander
übergehen können, wie zum Beispiel im System CaF2-YF3.

3. Divisions-Fehlordnung: Während die unter 2. genannten « Unordnungen»
durch kontinuierliche Zwischenglieder mit Anordnungen «idealer
Ordnung» verbunden sind oder zum mindesten als verbunden gedacht
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werden können, besteht bei der Divisions-Fehlordnung die folgende
Situation: Trotz stöchiometrischer Zusammensetzung (z.B. Li2Fe204)
ergibt sich aus dem röntgenographischen Experiment und aus
strukturtheoretischer Deduktion die Notwendigkeit, daß «identische» Punkte
nicht «identisch» besetzt sein können (während im hier gewählten
Beispiel der Sauerstoff derart angeordnet ist wie das Chlor im NaCl,
sitzen Li und Fe zufällig verteilt auf den Plätzen des Na des NaCl).

Alle vorstehend behandelten Fehlordnungsfälle haben folgendes
gemeinsam : Jeder Punkt verhält sich - bezüglich der Wahrscheinlichkeit,
von einer bestimmten Atomsorte besetzt zu sein oder nicht - gleich wie
jeder andere identische Punkt seines Translationsgitters.

Das bedeutet: Wenn man sich den Kristall in beliebig kleine
Bereiche aufgeteilt denkt, so verhält sich jeder Bereich bezüglich seiner
Fehlordnung wie jeder andere Bereich (abgesehen von denjenigen
Schwankungen, die sich nach den Gesetzen des Zufalls ergeben und
natürlich um so größer werden, je kleiner die Aufteilung vorgenommen
wird).

Im Gegensatz dazu gibt es Kristalle, bei welchen es möglich ist,
Bereichseinteilungen derart vorzunehmen, daß sich die Bereiche bezüglich

ihrçs Fehlordnungsgrades unterscheiden. Eine systematische
Diskussion führt zu folgenden Hauptfällen :

Ideale Ordnung in allen drei Dimensionen; «Idealkristall»

Ideale Ordnung nur in zwei Dimensionen : Eindimensionale Fehlordnung
Z inkblende -Wurtzit

Ideale Ordnung nur in einer Dimension: Zweidimensionale Fehlordnung
(Faserstoffe; Harnstoff- und
Thioharnstoff-Addukt -Verbindungen)

Ideale Ordnung in keiner Dimension, aber
verschiedener Ordnungsgrad, je nach
gewählter Bereichsaufteilung :

f
t

Dreidimensionale
Domänenfehlordnung
(Cu-Au; Anorthit)

Abb. 8
Hechts : geordnete
AB-Verteilung, etwa
derjenigen des NaCl
entsprechend.
Links: zufällige
Verteilung, etwa derjenigen
eines AB-Mischkristalles
entsprechend
(vergrößerter Ausschnitt
aus der Abb. 9, links).



Abb. 9. AB-Anordnungen. Links: zufällige Verteilung. Mitte: willkürliche
Abweichung (5%) von zufälliger Verteilung in Richtung stärkerer Dispergierung;
man beachte die Vermehrung und Vergrößerung von «Domänen» geordnet wie in
Abb.8, rechts. Rechts: willkürliche Abweichung (5%) von zufälliger Verteilung in
Richtung stärkerer Koagulation, «Entmischung».

Die Abbildungen 8 und 9 zeigen zur Veranschaulichung derartiger
Fehlordnungen einige schematische Zeichnungen, Abbildung 10 gibt zum
Vergleich das Beispiel einer abstrakten Malerei (Theo von Doesberg,
Komposition A16, 1916).

Abb. 10
Theo van Doesburg: Komposition A16,
1916 (nach einer Reproduktion
aus Marcel Brion: «Geschichte
der abstrakten Malerei»,
Verlag M. Du Mont Schauberg, Köln,
1960).

Derartige Gegenüberstellungen ließen sich vielfach vermehren. Sie
demonstrieren einerseits die Formschönheit, welche die Natur in der
Kristallweit dadurch produziert, daß sie mit spielerischen Zufälligkeiten
das Starre ihrer Gesetze auflockert; anderseits lassen sie erkennen, wie
der menschliche Geist das Zufällige seiner Umwelt - individuell erarbeiteten

Gesetzen folgend - zum Schönen formen kann.
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