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Die Symmetrien in den Naturgesetzen

Prof. Dr. J. M. Jauch (Genf)

Der Begriff der Symmetrie, alt und ehrwürdig wie er ist, hat nicht
immer dieselbe Bedeutung gehabt. Heute bezeichnen wir mit Symmetrie
vornehmlich einen exakten mathematischen Begriff, der uns in diesem
Vortrag fast ausschließlich beschäftigen wird und der sich in den
exakten Naturwissenschaften als äußerst wichtig und fruchtbar
erwiesen hat. Wir finden aber etwas von dem andern Sinn des Wortes
wieder, wenn wir versuchen, das Fremdwort «Symmetrie» ins Deutsche
zu übertragen. Man hat für eine solche Übersetzung das Wort «Ebenmaß»

vorgeschlagen. Es ist wohl kein Zweifel, daß Ebenmaß und
Symmetrie nicht genau dasselbe bedeuten. Wir sprechen einem Kunstwerk
Ebenmaß zu, wenn es uns in harmonischer Ausgeglichenheit erscheint.
Aber Symmetrie mit seiner harschen Präzision ist etwas, das dem lebendigen

Kunstwerk fremd ist. Symmetrie in der Kunst führt zum reinen
Formalismus, bestensfalls zur Dekoration.

In diesem Doppelsinn des Wortes erkennen wir etwas von dem
Urboden, aus dem der Begriff gewachsen ist. Wir finden ihn mit dieser
Doppelbedeutung zum Beispiel bei den Pythagoräern, wo sich in der
entzückten Betrachtung der Harmonien des Kosmos die höchste Stufe
menschlicher Vollkommenheit äußert, wo sich aber gleichzeitig diese
Harmonien in Zahlen und Formen dargestellt finden. Für einen reinen
Mathematiker heutiger Prägung wäre die Entdeckung der Irrationalzahlen

ein großer Erfolg gewesen, für den Pythagoräer dagegen war es
eine Katastrophe, weil sie dem Glauben an die innere Harmonie der Welt
das Fundament entriß. Wenn wir die Schriften der antiken Gelehrten
lesen, so sind wir erstaunt, wie oft zur Rechtfertigung einer bestimmten
Vorstellung über die physikalische Welt ihre Vollkommenheit
herangezogen wurde. So lehrt uns Aristoteles zum Beispiel, daß nur die
Kreisbewegung mit ihrer vollkommenen Symmetrie für die ewige Bewegung
der Himmelskörper in Frage kommen könne, eine Lehre, die durch
Ptolemäus weiter entwickelt wurde und die für anderthalb Jahrtausende
den Fortschritt in der Astronomie durch ihren dogmatischen Charakter
aufgehalten hat.

Die Priorität der Symmetrie als ein ästhetisches Prinzip in der
Naturerkenntnis ist beim antiken Menschen ein tiefverwurzeltes
Vorurteil. Erst nach der Befreiung von diesem Vorurteil waren diejenigen
Fortschritte möglich, welche zur modernen Naturerkenntnis geführt
haben.
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Doch will ich hier nicht lange bei der historischen Entwicklung des

Begriffes der Symmetrie in der Naturerkenntnis verweilen. Nur ganz
kurz möchte ich auf einige Höhepunkte dieser Entwicklung hinweisen:
Wie sich unter dem verwegenen Blick des mit dem neuerfundenen
Teleskop ausgerüsteten Galilei die kristallklaren Sphären des Kosmos
in korruptible Materie auflöst; wie Keplers Ellipsen der Vorherrschaft
der Kreisbahnen, die noch bei Kopernikus und bei Galilei besteht, den
Bang abstreiten ; wie sich langsam die Erkenntnis einer ganz neuen Art
Symmetrie in der Naturerkenntnis durchsetzt, welche zur Grundlage der
modernen Naturerkenntnis geworden ist: der Weltraum ist homogen.
Die Naturgesetze auf dem Mond, den Planeten, der Sonne und überall
sind identisch. Das Gesetz, mit dem der Apfel vom Baume fällt, ist
genau dasselbe wie das Gesetz, das den Mond und die Planeten auf
ihren Bahnen hält. Die neugefundene Symmetrie ist selbst ihrem
Entdecker Newton schwer gefallen. Aus dem berühmten Briefwechsel von
Leibniz mit Clarke wissen wir, daß erst Leibniz den Sinn dieser
Symmetrie erkannt hat und daß wir von ihm die erste Formulierung des
Belativitätsprinzipes haben.

Die mathematisch präzise Formulierung des Symmetriebegriffes
war dem Mathematiker Galois vorbehalten, der gezeigt hatte, daß der
mathematische Sinn genau identisch ist mit dem der Gruppe von
Transformationen, welche eine gewisse Eigenschaft invariant lassen. Eine
Symmetrie im abstrakten Sinn ist erschöpfend charakterisiert durch die
Struktur einer solchen Gruppe. Was die invariante Eigenschaft selbst
ist und was durch die Transformationen transformiert wird, bleibt dabei
unwesentlich. Eine Symmetrie kann sich also zum Beispiel in einer
geometrischen Figur, einem Naturgesetz, einer algebraischen Gleichung oder
in einem Kristall äußern. Wir sprechen von einer Gruppe von
Automorphismen. Die Automorphismen einer ebenen geometrischen Figur
sind diejenigen euklidischen Bewegungen der Ebene, welche diese Figur
mit sich selbst zur Deckung bringen. Die Automorphismen eines
Naturgesetzes sind diejenigen Transformationen der physikalischen Größen,
welche dieses Gesetz unverändert lassen.

In dieser abstrakten Form, die wir von Galois gelernt haben, ist
der Begriff der Symmetrie in die moderne Physik eingedrungen, und er
spielt dort eine außerordentlich wichtige Bolle. Aber nicht nur in der
Physik, sondern auch die moderne Mathematik ist ohne diesen Begriff
undenkbar. So ist zum Beispiel das sogenannte Erlanger Programm von
Felix Klein nichts anderes als eine Klassifikation der verschiedenen
Geometrien nach ihren Automorphismengruppen. Die euklidische
Geometrie ist die Invariantentheorie der orthogonalen Transformationen,
die projektive Geometrie diejenige der projektiven Transformationen, die
Topologie diejenige der kontinuierlichen Transformationen.

Doch gehen wir jetzt über zum Hauptpunkt unserer Betrachtungen :

die Symmetrie in den Naturgesetzen. Zunächst eine Vorbemerkung,
welche die zentrale Stellung des Symmetriebegriffes in der Naturerkennt-



— 21 —

nis eindrücklich beleuchtet. Jedes Naturgesetz ist überhaupt schon eine
Symmetrie. Um dies zu erläutern, fragen wir uns, was wir eigentlich unter
einem Naturgesetz verstehen. Ohne auf philosophisch-technische
Finessen einzugehen, können wir mit einer für unsere Zwecke genügenden
Präzision ein Naturgesetz etwa definieren als «eine unveränderliche
Beziehung zwischen beobachtbaren physikalischen Größen».

Wenn ich also ein physikalisches Gesetz, zum Beispiel das Faraday-
sche Induktionsgesetz, hinschreibe

V XE — B

so drückt dieses Gesetz eine unveränderliche Beziehung aus zwischen
dem elektrischen Feld E und der magnetischen Induktion B. Ganz
wesentlich ist dabei, daß diese Relation zu allen Zeiten dieselbe ist. Wir
würden nicht von einem Gesetz sprechen, wenn diese Relation nur an
einem einzigen Zeitpunkt erfüllt wäre, für einen andern Zeitpunkt aber
ganz anders lauten würde.

Auf der Unveränderlichkeit des Naturgesetzes beruht ja gerade
seine Verifizierbarkeit und die Möglichkeit, es mitzuteilen und zu
erlernen. Reichenbach erwähnte einmal, daß bei der Vorführung eines
Filmes, worin ein Felsen gesprengt wird, gerade in dem Augenblick ein
Erdbeben erfolgte und die Zuschauer daher eine Erschütterung
verspürten, als der Schuß abging. Es ist klar, daß diese Beziehung zwischen
zwei Naturereignissen kein Naturgesetz darstellt. Es fehlt die Invarianz-
eigenschaft. Als der Film ein zweitesmal gespielt wurde, trat das
Erdbeben nicht mehr ein. Wir sprechen dann von einem Zufall.

Ein Naturgesetz ist kein Zufall. Die Beziehung zwischen gewissen
beobachtbaren Eigenschaften tritt immer und mit Notwendigkeit ein.

Die Transformationen, mit denen wir hier zu tun haben, sind die
Translationen in der Zeit. Die invariante Eigenschaft ist die besondere
Relation, welche zwischen den beobachtbaren Größen ausgedrückt wird.
Die Naturgesetze sind also alle diejenigen Beziehungen zwischen den
beobachtbaren Größen, welche unter der Translation der Zeit invariant
sind.

Mit der Invarianz unter der Zeittranslation ist aber die Symmetrie
des Naturgesetzes im allgemeinen nicht erschöpft. Es ist zum Beispiel
klar, daß die Gleichung in den USA genau so richtig ist wie in Rußland.
An einem internationalen Physikerkongreß verstehen sich die Russen
mit den Amerikanern sehr gut, solange sie nur über Physik reden. Wir
haben also auch eine Invarianz des Naturgesetzes gegenüber
Translationen des Raumes. Das ist es, was wir als die Homogenität des Raumes
bezeichnen. Ebenso finden wir, daß die Naturgesetze im allgemeinen
keine Richtung des Raumes auszeichnen. Wir sprechen von Isotropie
des Raumes.

Diese Symmetrieeigenschaften lassen sich durch gewisse Erhaltungssätze
nachweisen. So zum Beispiel entspricht der Invarianz unter der

Zeittranslation der Satz von der Erhaltung der Energie, dem der Raum-
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translation die Erhaltung des Impulses, und endlich die Isotropie drückt
sich durch den Satz von der Erhaltung des Drehimpulses aus. Wir sehen
hier, wie tief diese Erhaltungssätze mit dem Wesen des Naturgesetzes
verbunden sind. Es gibt keine Möglichkeit, diese Erhaltungssätze zu
verwerfen, ohne überhaupt die Existenz des Naturgesetzes in Frage zu
stellen. Dieser Zusammenhang zwischen Symmetrie und Erhaltungssatz
bleibt auch in der Quantenmechanik bestehen.

Doch kehren wir zu den Symmetrien der klassischen Physik zurück.
Schon Newton und Leibniz war es bekannt, daß die Gesetze der Mechanik

noch weitere Symmetrien aufweisen. So zum Beispiel läßt sich eine
gleichförmige Translation aus den Bewegungsgleichungen nicht erkennen.
Mathematisch gesprochen: die Transformation

x^x'=x~\-vt mit v konstant

läßt die Newtonschen Bewegungsgleichungen

F =mx
invariant. Allerdings hat sich später gezeigt, daß diese sogenannten
Galilei-Transformationen nur eine erste Annäherung an die richtigen
Symmetrietransformationen, die sogenannten Lorentz-Transformationen,

sind. Die allgemeine Invarianz der Naturgesetze gegenüber
Lorentz-Transformationen wurde von Einstein zu einem Prinzip
erhoben, das den Grundstein der speziellen Relativitätstheorie bildet und
das zu einer großartigen Synthese von Elektrizität und Mechanik
geführt hat und das damit die klassische Physik zum Abschluß brachte.

Nun zeigt sich aber weiter, daß die Gesetze der klassischen Physik
sogar invariant sind unter den Spiegelungen des Raumes und unter der
Transformation der Zeitumkehr.

Die zwei letztgenannten Symmetrien sind besonders beachtenswert.

Versuchen wir uns einmal zu vergegenwärtigen, was sie bedeuten:
Die Spiegelungssymmetrie betrifft die Unterscheidung zwischen rechts
und links. Es gibt in der klassischen Mechanik keine Möglichkeit, die
zwei Orientierungen des Raumes voneinander zu unterscheiden. Die
Definition von links und rechts ist eine bloße Konvention, genau so
willkürlich wie zum Beispiel die Wahl eines Koordinatensystems oder der
Name eines Elementarteilchens. Daß in der klassischen Physik diese
Symmetrie besteht, ist um so erstaunlicher, als nämlich in der
organischen Welt diese Symmetrie nicht vollständig ausgenützt ist. Es ist
zum Beispiel bekannt, daß der Zucker in zwei spiegelbildlich orientierten
Formen auftritt, die chemisch völlig gleichwertig sind. Der lebende
Körper benutzt aber nur eine dieser zwei Formen und kann die andere
nicht verarbeiten. Ähnlich steht es mit den Schneckenhäusern. Die meisten

sind Spiralen in einem und demselben Drehsinn. Nur ganz selten
gibt es eine Abart, welche ihr Haus im umgekehrten Sinne baut. Der
menschliche Körper selbst hat zwar im großen und ganzen eine
Spiegelsymmetrie, die aber nicht konsequent durchgeführt ist. Das Herz ist
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bekanntlich auf der linken Seite, und auch die Nervenbahnen sind im
allgemeinen nicht genau spiegelsymmetrisch entwickelt, wie zum
Beispiel das Phänomen der Links- und Rechtshändigkeit beweist.

Ich mache hier auf diesen Unterschied zwischen den unorganischen
und der organischen Welt aufmerksam, weil es wichtig ist zu bemerken,
daß die mangelnde Symmetrie der Lebewesen nicht auf eine mangelnde
Symmetrie der Naturgesetze zurückzuführen ist. Wir beobachten hier
ein Phänomen, das uns oft begegnet: Die Symmetrie der Naturgesetze
selbst ist zu unterscheiden von der Symmetrie, welche von den Objekten
realisiert werden, welche diese Naturgesetze befolgen. Zum Beispiel
daß es Rechts- und Linksquarz gibt bedeutet nicht, daß jeder
Quarzkristall ein Zwilling ist. Die physikalischen Objekte sind nämlich das
Produkt von den Naturgesetzen und von den Anfangsbedingungen. Die
Naturgesetze sind symmetrisch, aber die Anfangsbedingungen nicht
notwendigerweise.

Dieser Unterschied wird besonders deutlich, wenn wir uns die
Symmetrie der Zeitumkehr vor Augen führen. In der klassischen Mechanik

war diese Symmetrie Newton schon bekannt. Sie zeigt sich zum
Beispiel darin, daß es zu jeder vorgegebenen Planetenbahn genau zwei
Bewegungen gibt, welche Lösungen der Bewegungsgleichungen sind und
welche durch die Zeitumkehr ineinander transformiert werden.

In der Hamiltonschen Form der allgemeinen mechanischen Systeme
drückt sich die Symmetrie der Zeitumkehr ganz einfach aus: Wenn
q (t und p (t eine Lösung ist, dann ist

q'(t)=q(-t)
p'(t)=-p(-t)

auch eine Lösung. Alle bekannten mechanischen Systeme erfüllen diese
Bedingung. Es ist ganz leicht, mathematisch Systeme zu konstruieren,
welche diese Bedingung nicht erfüllen. Sie kommen aber in der Natur
nicht vor. Das ist die Symmetrie der Zeitumkehr.

Sie sehen, es ist mit der Symmetrie der Zeitumkehr nicht wesentlich

anders als mit der Symmetrie der Spiegelung, und doch sträubt
sich unser Gefühl dagegen. Gibt es in dieser Welt etwas Eindrucksvolleres,

als daß die Zeit für uns abläuft, daß wir ein unvermeidliches
Schicksal erfüllen. Wo spiegelt sich in den Naturgesetzen die Evolution

Es gibt in der ganzen Physik nur ein einziges Gesetz, das einen Unterschied

zwischen der Vergangenheit und Zukunft macht. Das ist der
berühmte zweite Hauptsatz der Thermodynamik. Dort wird zum Beispiel
ausgesagt, daß die Wärme immer vom warmen zum kalten Körper
fließt, und dieses Gesetz ist offenbar nicht invariant bei der Transformation

der Zeitumkehr. Das Merkwürdige an diesem Gesetz ist, daß es
weder fundamental noch allgemein richtig ist. Es ist erstens nicht
fundamental in dem gleichen Sinne, wie zum Beispiel die klassische Mechanik
fundamental ist, denn es läßt sich auf die Mechanik zurückführen. Es
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ist also bloß eine logische Konsequenz eines anderen Gesetzes und
gewisser statistischer Zusatzannahmen und sagt daher im wesentlichen
nicht mehr aus, als was schon implizite in der Mechanik und diesen
Annahmen enthalten ist.

Es ist aber auch nicht allgemein richtig, denn es ist genau betrachtet
ein statistisches Gesetz, das bloß Aussagen macht über das mittlere
Verhalten von Systemen, welche aus einer großen Zahl von Molekülen
bestehen und von denen wir nur unvollständige Kenntnisse haben. Es
gibt beobachtbare Abweichungen von diesem Gesetz, welche sich zum
Beispiel in dem Phänomen der Brownschen Bewegung äußern.

Für das tatsächliche Verhalten makroskopischer Systeme sind zwar
diese Abweichungen von geringer Bedeutung. Für das prinzipielle
Verständnis der irreversiblen Prozesse in einer Natur, welche nur Gesetze
hat, die bei der Zeitumkehr invariant sind, ist der statistische Charakter
des zweiten Hauptsatzes aber ganz wesentlich. Denn nur weil der zweite
Hauptsatz statistischer Natur ist, ist er in der Tat trotz seiner Irreversibilität

mit der Zeitumkehrsymmetrie vereinbar.
Etwas extrem gesprochen könnte man sagen: Es gibt keine

Irreversibilität in der Natur, es gibt nur statistische Schwankungen, die
unter Umständen äußerst unwahrscheinlich sein können.

Wir sind heute sicher, daß diese Auffassung der Irreversibilität für
die abgeschlossenen mechanischen Systeme richtig ist. Ob sich diese
Auffassung auch auf das Verhalten der organischen Natur und den
Kosmos als Ganzes übertragen läßt, bleibt noch offen.

Die Symmetrie der Zeitumkehr ist nicht etwa eine Erfindung der
Physiker, um sich das Leben einfacher zu machen, sondern es ist ein
durch viele Erfahrungen bewährtes Naturgesetz. Es ist in der klassischen
sowie in der Quantenmechanik gültig.

Ich will hier einige dieser Tatsachen erwähnen, durch welche sich
dieses Gesetz empirisch verifizieren läßt.

Als erstes Beispiel erwähne ich die sogenannten Onsager-Relationen.
Wenn ein thermodynamisches System durch äußere Einflüsse aus dem
Gleichgewicht gebracht wird, so sucht es dieses Gleichgewicht wieder
zu erreichen, indem die thermodynamischen Variablen eine zeitliche
Veränderung aufweisen.

Zum Beispiel ein Stab kann durch Zufuhr oder Abfuhr von Wärme
unter einem konstanten Temperaturgradienten gehalten werden, es
fließt dann ein konstanter Strom von Wärme vom wärmern zum kältern
Ende. Nun gibt es die Möglichkeit, daß zwei oder mehrere solche äußern
Kräfte gleichzeitig auftreten können, und dementsprechend kann es
zwei oder mehrere thermodynamische Variablen geben, welche sich
unter dem Einfluß der äußeren Bedingungen verändern können. Wenn
wir diese Varablen mit oq,..., an bezeichnen, zum Beispiel so gewählt,
daß a1 =an 0 den Gleichgewichtszustand bezeichnet, dann ist die
Entropie eine gewisse Funktion S(av..., an) dieser Variablen. Zu jedem



— 25 —

Wert der Variablen gehören gewisse äußere Kräfte Xi9 welche man
folgendermaßen definieren kann

r 38 r i ÏXi —(i l,
OCLi

Diese äußern Kräfte bewirken eine zeitliche Veränderung der
Variablen und in der Nachbarschaft des Gleichgewichtes wird diese
zeitliche Veränderung eine lineare Funktion der Kräfte:

k

Onsager hat nun die wichtige Entdeckung gemacht, daß die
Koeffizienten Lik nicht von einander unabhängig sein können, wenn die
Symmetrie der Zeitumkehr besteht. Sie erfüllen die sehr einfache
Beziehung

Lik — Lki

Das sind die berühmten Onsager-Relationen, welche man auf viele
verschiedene Arten experimentell nachweisen kann.

Als ein zweites Beispiel nenne ich die sogenannte Kramers-Verdoppelung.
Es handelt sich um folgendes Phänomen: Wenn man ein Ion

mit einer ungeraden Anzahl von Elektronen in ein äußeres elektrisches
Feld bringt, so spalten sich die möglichen Zustände in verschiedene
Energieniveaus auf. Kramers hat gezeigt, daß wegen der Symmetrie der
Zeitumkehr diese Aufspaltung nie vollständig sein kann. Jedes Niveau
muß mindestens aus zwei (oder einer geraden Anzahl) von Zuständen
bestehen. Dieses Phänomen läßt sich experimentell sehr schön
nachweisen, indem man die Ionen in ein Kristallgitter mit starken elektrischen

Feldern einbettet und die Aufspaltungen durch die paramagnetische
Resonanz mißt.

Eine dritte Möglichkeit, die Symmetrie der Zeitumkehr nachzuweisen,
besteht auf dem Gesetz des sogenannten «detailed balancing». Wenn wir
einen Streuprozeß betrachten, wobei zwei Teilchen A und B gestreut
werden, die nach der Streuung in zwei neue Teilchen G, D übergehen,
so können wir den Streuprozeß auch immer in der umgekehrten Richtung

betrachten, also entweder

A+B^C+D (1)

oder C+L-+A+B (2)

A priori ist nicht der geringste Grund vorhanden, weshalb die zwei
Prozesse etwas miteinander zu tun haben sollten. Ganz anders aber,
wenn die Symmetrie der Zeitumkehr zu Recht besteht. Dann sind die
beiden Prozesse nicht unabhängig voneinander. Diese Abhängigkeit kann
man folgendermaßen anschaulich ausdrücken. Man betrachte den Prozeß

(2), lasse aber darin die Zeit rückwärts laufen. Es kommt dann ein
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Prozeß vom'Typus (1) zustande. Die zwei StreuVorgänge, welche durch
diese Operation auseinander hervorgehen, treten immer mit gleicher
Häufigkeit auf. Das ist das Prinzip des «detailed balancing».

Es gibt viele Möglichkeiten, dieses Prinzip nachzuweisen. Ich
erwähne als Beispiel nur den Prozeß

+ d p + p

welcher in einem berühmten Experiment zur Bestimmung des Spins vom
jr-Meson benutzt worden war.

Diese drei Beispiele mögen genügen. Es gibt noch viele andere. Wir
wollen aber nicht dabei verweilen. Wichtig ist für uns, daß die Symmetrie
der Zeitumkehr der Naturgesetze eine empirisch gesicherte Tatsache
ist, daß in dem reichen Erfahrungsmaterial der modernen Physik kein
einziges Faktum bekannt ist, welches dieser Symmetrie widerspricht.

Die Symmetrien, welche ich bis jetzt betrachtet habe, sind alles
solche, welche auf den Eigenschaften des Raum-Zeit-Kontinuums
beruhen. Sie haben also sozusagen eine natürliche Ursache, die man als
die «Strukturlosigkeit» dieses Kontinuums bezeichnen könnte. Die
Unterscheidung verschiedener Punkte, Richtungen und Orientierungen
in Raum und Zeit ist bloße Konvention und hat kein physikalisches
Korrelat. Wenn die Symmetrien der fundamentalen Naturgesetze damit
erschöpft wären, so könnte ich hier abbrechen. Dem ist aber nicht so.
Es zeigt sich nämlich, daß es noch andere Symmetrien gibt, deren
Existenz wir zwar empirisch feststellen können, für die wir aber keine
so natürliche Erklärung haben wie diejenigen, welche mit dem Raum-
Zeit-Kontinuum zusammenhängen.

Die Betrachtung dieser Symmetrien führt uns mitten in die aktuellsten

Probleme der modernen Physik. Ich will hier im zweiten Teil meines
Vortrages einige dieser Symmetrien erwähnen sowie einige der
Spekulationen, welche sich daran knüpfen.

Als erstes Beispiel nenne ich die Symmetrien des gewöhnlichen
Wasserstoffatoms. Als zentralsymmetrisches System haben wir natürlich

eine Symmetrie, welche durch die dreiparametrige Gruppe der
euklidischen Drehungen mit einem festen Zentrum dargestellt werden.
Die Folge dieser Symmetrie ist ein Phänomen, welches wir in der
Quantenmechanik als Entartung bezeichnen. Das bedeutet folgendes: In der
Quantenmechanik eines Einelektronensystems zeigt man, daß der
Zustand eines solchen Systems durch drei Quantenzahlen n, l, m beschrieben
wird. In allgemeinen Systemen ist die Energie des stationären Zustandes
eine Funktion aller drei Zahlen. Wenn dagegen Rotationssymmetrie
besteht, dann beweist man allgemein, daß die Energie von m unabhängig
sein muß. Daraus folgt, daß jeder Energiewert genau 2 l + 1 Zustände
enthalten muß, und das nennen wir eine 2 l + 1-fache Entartung.

Diese Entartung ist nun beim Wasserstoffatom tatsächlich der Fall.
Aber es ist nun merkwürdigerweise eine zusätzliche Entartung vorhanden,
welche nur beim Wasseratoffatom auftritt und sonst bei keinem anderen
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zentralsymmetrischen System. Die Energie hängt auch nicht von l ab,
ist also nur eine Funktion von n allein, und jedes Energieniveau ist
n2-fach entartet (wir vernachlässigen hier den Spin des Elektrons,
welcher die Entartung noch einmal verdoppelt).

Dieses merkwürdige Phänomen hat eine gewisse Ähnlichkeit mit
der oben erwähnten Kramers-Verdoppelung, und genau wie in jenem
Fall, so ist die Ursache dieser Entartung eine zusätzliche Symmetrie,
welche in diesem Falle nichts mit der Raum-Zeit-Symmetrie zu tun hat.
Diese zusätzliche Symmetrie ist nun vom russischen Physiker Fock
tatsächlich entdeckt und von mir in meiner Dissertation weiter untersucht
worden. Ich konnte zeigen, daß es noch mehrere andere Systeme gibt,
wo solche unerwarteten zusätzlichen Symmetrien auftreten können.

Diese Beispiele zusätzlicher Symmetrien sind aber meines Erachtens
nicht von fundamentaler Bedeutung. Sie drücken ganz spezielle
Eigenschaften der Wechselwirkungen zwischen den verschiedenen Teilchen
des Systems aus.

Viel tiefergehend ist eine Symmetrie, welche man als
Ladungssymmetrie bezeichnet. Die Bedeutung dieser Symmetrie wird uns klarer,
wenn wir uns die gegenwärtige Situation der Elementarteilchen rasch
vor Augen führen. Man kennt heute etwa dreißig Elementarteilchen. Sie
unterscheiden sich in der Masse, dem Spin, der Lebensdauer, dem
Zerfallsschema und weiteren Eigenschaften, die man als Isotopenspin
und Seltsamkeit bezeichnet. Dieser erstaunlichen Vielfalt steht eine
ebenso erstaunliche Uniformität gegenüber bezüglich ihres Verhaltens
im elektromagnetischen Feld. Die elektrische Ladung aller dieser Teilchen

ist auf genau drei Werte beschränkt, nämlich o und -j-e, wo
e 1,6 X 10~19 Coulomb, das elektrische Elementarquantum der Ladung
ist.

Aber noch mehr: Zu jedem Teilchen mit der Ladung -\-e gehört ein
Partner mit der Ladung —e und umgekehrt. Die Vertauschung dieser
Partner nennen wir die Ladungskonjugation, und die Ladungssymmetrie
sagt aus, daß diese Vertauschung eine Symmetrietransformation ist.
Das heißt also, die Naturgesetze sind gegenüber dieser Vertauschung
invariant.

Diese Symmetrie ist deshalb nicht trivial, weil die uns bekannte
Welt die Ladungsträger durchaus nicht symmetrisch enthält. So ist zum
Beispiel in den Atomen und Molekülen die positive Ladung immer an
die schweren Atomkerne gebunden, während die negative Ladung immer
an den viel leichtern Elektronen auftritt. Also von Ladungssymmetrie
ist da keine Rede. Das Prinzip dieser Symmetrie sagt aber aus, daß es
neben dem negativen Elektron (das wir auch kürzer Negaton nennen)
noch ein Gegenstück, ein Positon, geben muß, das sich in nichts vom
Negaton als in seiner Ladung unterscheidet. Dieses von der Theorie
vorausgesagte Teilchen existiert in der Tat und ist in den dreißiger
Jahren von Anderson und Neddermeyer in den kosmischen Strahlen
entdeckt worden. Ebenso muß es neben dem gewöhnlichen positiven
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Proton das negative Antiproton geben, und auch dieses ist vor etwa
sechs Jahren von Segré und Chamberlain entdeckt worden. Seither sind
noch mehrere Antiteilchen entdeckt worden, und die erwähnte Symmetrie

der Ladungskonjugation ist für ein großes Gebiet der Physik
bestätigt.

Sie sehen, daß wir es hier mit der gleichen Situation zu tun haben
wie mit den Symmetrien in den Lebewesen. Die tatsächlich bekannte
physikalische Welt realisiert nicht die volle Symmetrie, welche in den
Naturgesetzen selbst enthalten ist.

Das gibt Anlaß zur Frage, ob vielleicht andere Spiralnebel
existieren, welche die andere ladungskonjugierte Hälfte der Welt
realisieren. Wegen der Ladungssymmetrie ist diese Frage nicht leicht zu
entscheiden, denn diese Symmetrie sagt ja eben aus, daß sich die zwei
konjugierten Weltsysteme in keinem physikalischen Gesetz unterscheiden
und deshalb physikalisch völlig gleich erscheinen. Erst wenn zwei
konjugierte Weltsysteme miteinander in Zusammenstoß gerieten,
würde sich eine Katastrophe von kosmischem Ausmaß ereignen, indem
sie sich gegenseitig unter Verwandlung in Photonen und Neutrinos
vernichten würden.

Die Ladungskonjugation ist nun allerdings nicht eine vollkommene
Symmetrie. In jüngster Zeit ist, durch eine Betrachtung von Lee und
Yang angeregt, diese Symmetrie einer experimentellen Prüfung unterzogen

worden, und es hat sich dabei herausgestellt, daß bei den
sogenannten schwachen Wechselwirkungen, welche zum Beispiel den
radioaktiven Zerfalls des Neutrons vermitteln, diese Symmetrie in der Tat
verletzt ist. In gleicher Weise ist bei denselben Wechselwirkungen die
Spiegelsymmetrie verletzt, und nurmehr die Kombination dieser zwei
Transformationen läßt die Wechselwirkung invariant. Diese wichtige Entdeckung
kam als eine große Überraschung für viele, denn sowohl die
Ladungskonjugation als auch die Spiegelsymmetrie haben sich in einem weiten
Gebiet der Physik als Symmetrietransformation neu bewährt.

Dieses letzte Resultat muß im Zusammenhang mit einem von
Schwinger und Lüders entdeckten Theorem betrachtet werden, welches
unter dem Namen TCP-Theorem in die Literatur eingegangen ist. Die
drei Buchstaben stehen für die drei Transformationen der Zeitumkehr
(T), Ladungskonjugation (C) und Raumspiegelung (P). Das Theorem
sagt aus, daß unter sehr allgemeinen Voraussetzungen (die ich hier nicht
genauer charakterisieren kann) das Produkt dieser drei Transformationen
immer eine Symmetrietransformation sein muß. Daraus folgert man
zum Beispiel, daß aus der Symmetrie der Zeitumkehr (T) immer auch
die Symmetrie bezüglich CP folgt.

Zum Schluß dieses Vortrages will ich noch auf eine Klasse von
Symmetrien hinweisen, welche von mir Supersymmetrien genannt werden.

Diese Symmetrien gibt es nur in der Quantenmechanik. In der
klassischen Mechanik hat es nichts Analoges. Ein Prototyp dieser Symmetrie
ist in der Quantenmechanik schon längst bekannt. Er entspricht der
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Symmetrie, welche die Identität der Elementarteilchen ausdrückt. In
der Quantenmechanik ist diese Identität eine viel radikalere Aussage
als in der klassischen Mechanik. Es heißt dort nämlich nichts weniger,
als daß es im Prinzip unmöglich ist, zwei identische Elementarteilchen
(z.B. zwei Elektronen) durch irgendeine Beobachtung voneinander zu
unterscheiden.

In der klassischen Mechanik läßt sich eine solche Unterscheidung
zwar etwas künstlich immer durch ein Gedankenexperiment durchführen.
Man braucht bloß an einem beliebigen Zeitpunkt eine willkürliche
Identifizierung der zwei Teilchen vorzunehmen und dann diese
Identifizierung auf ihrer klassischen Bahn zu verfolgen. In der Quantenmechanik

läßt sich eine solche Identifizierung auch angehen, sie läßt
sich aber nicht in die Zukunft oder die Vergangenheit ausdehnen, da
es in der Quantenmechanik keine stetigen Bahnkurven gibt, welche von
den Teilchen durchlaufen werden. Es gibt statt dessen nur Wellenpakete,
welche sich immer zum Teil etwas überlappen. Unter solchen Umständen
weiß man nie, ob die zwei Teilchen nicht plötzlich ihre Bollen vertauscht
haben. Sie lassen sich also prinzipiell nicht dauernd voneinander
unterscheiden.

In einem quantenmechanischen System mit genau n identischen
Teilchen ist die Symmetriegruppe die Gruppe der Permutation der
n Teilchen. Sie besteht also aus n\ Elementen. Die Operationen der n\
Permutationen stellen Symmetrien dar, das heißt sie lassen das
dynamische Gesetz des Systèmes invariant. Nun haben diese Symmetrien
aber noch eine besondere zusätzliche Eigenschaft, welche sie von den
bis jetzt erwähnten gewöhnlichen Symmetrien unterscheidet. Die oben
erwähnte prinzipielle UnUnterscheidbarkeit heißt nämlich, daß auch
jede observable Größe unter der Permutation der n Teilchen invariant
sein muß, denn nur auf diese Weise kommt die vollständige Identität
der Teilchen zum Ausdruck. Ich nenne eine solche Symmetrie mit dieser
zusätzlichen Eigenschaft eine Supersymmetrie. Das Studium der Super -

symmetrien, welches ich mit meinem Mitarbeiter in Genf, Herrn Misra,
durchgeführt habe, hat einige interessante Eigenschaften zutage gefördert,

welche ich hier ganz kurz erwähnen möchte.
Wiederum wie beim CPT-Theorem von ganz allgemeinen

Voraussetzungen ausgehend, konnten wir zeigen, daß die Supersymmetrien im
Darstellungsraum der Zustandsvektoren eine abelsche, unitäre Gruppe
sein müssen. Ferner läßt sich der Darstellungsraum auf eindeutige Weise
in eine direkte Summe von Unterräumen aufspalten, derart daß in
jedem dieser Unterräume die Observablen ein irreduzibles System von
Operatoren bilden.

Wenn wir diese Resultate auf die Supersymmetrien der Vertauschung

von n identischen Teilchen anwenden, so ergibt sich sofort ein
Resultat, welches man schon längst als empirische Tatsache kennt, das
aber bis jetzt keine befriedigende Erklärung gefunden hat. Zunächst
bemerkt man, daß die Gruppe der Permutationen von n Objekten nur
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für n 1 und n 2 abelsch ist. Unser Theorem bedeutet nun nicht
etwa, daß es Systeme mit mehr als zwei identischen Teilchen nicht gibt -
das wäre offensichtlich Unsinn -, sondern bloß, daß in der
Quantenmechanik nur die abelschen Darstellungen dieser Symmetriegruppe
auftreten können. Man hat also unter allen möglichen Darstellungen der
Permutationsgruppe alle abelschen aufzusuchen. Zum Glück ist die
Darstellungstheorie der endlichen Gruppen ein vollständig bekannter
Zweig der modernen Algebra. Es gibt für jedes n ^ 2 genau zwei abelsche
Darstellungen der Permutationsgruppe. Bei der ersten, der symmetrischen,

bleibt die Wellenfunktion unverändert, wenn man zwei Teilchen
vertauscht, bei der zweiten wechselt sie das Vorzeichen.

Man kommt also hier zwangsläufig auf die beiden Fälle, welche man
in der Physik als Einstein-Bose- beziehungsweise Fermi-Dirac-Statistik
bezeichnet. Es gibt nur zwei Symmetrieklassen der identischen Teilchen.
Diese Anwendung unseres Theorems ist von dem spanischen Mathematiker

G.Tixaire zuerst angegeben worden.
Es hat nicht an Versuchen gefehlt, die Statistik solcher Teilchen zu

verallgemeinern, entsprechend den nichtabelschen Darstellungen der
Permutationsgruppe. Einer der neuesten dieser Versuche ist von Glaser
und Fierz für eine mögliche Erklärung des //-Mesons in Betracht gezogen
worden. Nach dem obigen Theorem verstehen wir jetzt besser, wieso alle
diese Ansätze nicht gelungen sind.

Ich möchte noch hinzufügen, daß nach dem obenerwähnten Theorem
nur die symmetrische oder antisymmetrische Darstellung auftreten
kann. Das Theorem sagt aber nichts darüber aus, welche der beiden
möglichen Darstellungen für eine gegebene Teilchensorte nun auch
tatsächlich auftritt. Darüber gibt ein anderes Theorem Aufschluß, das von
Pauli vor etwa zwanzig Jahren gefunden wurde. Dieses sagt aus, daß
Teilchen mit halbzahligem Spin antisymmetrische, solche mit ganzzahligem

Spin dagegen symmetrische Wellenfunktionen haben. Alle
Elementarteilchen, welche man bis jetzt in der Natur gefunden hat, befolgen
diese Gesetzmäßigkeiten.

Misra und ich haben noch auf weitere Anwendungen des obigen
Theorems über Supersymmetrien hingewiesen, welche die Rolle der
Eichtransformationen in der Quanten-Elektrodynamik aufklären. Ich
möchte hier auf die etwas technischen Resultate nicht weiter eingehen.
Es sei bloß festgehalten, daß der Begriff der Supersymmetrie in der
Theorie der Elementarteilchen ein nützlicher Begriff ist, der auf mehrere
bekannte Tatsachen ein neues Licht wirft und bisher unbekannte
Zusammenhänge aufzeigt.

Ich komme zum Schluß meiner Darstellung, in der ich zu zeigen
versuchte, welche Rolle der Begriff der Symmetrie in der modernen
Physik spielt und wie sich durch Symmetriebetrachtung neue Einsichten
gewinnen lassen in die vielen noch wenig bekannten Gesetzmäßigkeiten
der Physik.
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Ich muß aber nun zugestehen, daß ich etwas einseitig vorgegangen
bin, um die Bedeutung der Symmetrien besonders eindrucksvoll vor
Augen zu führen. Von meinen Ausführungen könnten Sie leicht die
Überzeugung gewinnen, daß die Aufzeigung der fundamentalen Symmetrien

zum wesentlichen Teil der Naturerkenntnis gehört. Um diesen
Eindruck etwas abzuschwächen, möchte ich hier auf zwei wichtige
Einschränkungen hinweisen in den Anwendungsmöglichkeiten des
Symmetriebegriffes.

Zunächst muß betont werden, daß die Kenntnis der Symmetrien
der physikalischen Systeme die Struktur dieser Systeme nicht eindeutig
bestimmt. Symmetriebetrachtungen allein genügen nie, um das
dynamische Grundgesetz aufzufinden. So zum Beispiel kann man durch
Symmetriebetrachtungen wohl feststellen, in welche Termsysteme ein
atomares System aufspalten kann. Die Größe dieser Aufspaltung selbst
aber ist durch Symmetriebetrachtungen allein nie festzustellen. Dazu
gehört eine Kenntnis des dynamischen Gesetzes selbst.

Eine zweite Einschränkung kommt daher, daß unter Umständen
Symmetrien nur eine angenäherte Gültigkeit haben können. Ein
eindrucksvolles Beispiel ist die Symmetrie der Ladungskonjugation, welche
sich in der ganzen Physik bewährt hat, mit Ausnahme der ganz schwachen
Wechselwirkungen, welche um mehrere Zehnerpotenzen schwächer sind
als die elektromagnetischen oder gar die Kernkräfte.

Es scheint allgemein so zu sein: je feinere Einzelheiten man
experimentell unterscheidet, desto geringer wird die Symmetrie eines
physikalischen Systems. Dieser Umstand zeigt besonders deutlich, daß der
scharfe, mathematisch formulierte Symmetriebegriff dem wahren
Sachverhalt nicht vollkommen entspricht. Es ist deshalb zweckmäßiger, zum
vorneherein auf eine vollständige Beschreibung des physikalischen
Systems zu verzichten und das wahre System durch ein Modellsystem
zu ersetzen, das sich nur in gewissen gröbern Zügen mit dem wahren
System deckt, das aber in den feinern Einzelheiten davon abweicht. In
der Kristallographie ist dieses Vorgehen schon längst angewendet worden,

und man unterscheidet dort den Idealkristall vom realen Kristall,
der mit allen seinen Kristallfehlern bloß eine Annäherung an den
Idealkristall darstellt. Solche Modellsysteme zeigen dann wohl die Symmetrien

in ihrer vollen Präzision, sie sind aber eben nur Modelle und haben
deshalb nur eine eingeschränkte Bedeutung.

Ich komme abschließend zum Ausgangspunkt meiner Betrachtungen
zurück, in der ich auf den andern Sinn des Wortes Symmetrie
hingewiesen habe, der dem ästhetischen Bedürfnis des Menschen entspricht,
in seiner Umwelt nicht nur eine chaotische Ansammlung von Ereignissen
zu sehen, sondern eine Verwirklichung eines unfaßbar großen Kunstwerkes,

das seine innern Gesetzmäßigkeiten durch seine Symmetrie-
strukturen kundgibt.

Zwar sprechen wir heute nicht mehr von einer «Harmonie der
Sphären», und viele Erfahrungen haben uns gelehrt, daß die Symmetrien
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nicht als a priori gegeben betrachtet werden können, sondern erst aus
den Naturgesetzen selbst abgelesen werden müssen.

Die Priorität des ästhetischen Erlebnisses ist also aus der
Naturwissenschaft sicher entfernt. Und doch hat dieses Erlebnis immer und
immer wieder die innere Antriebskraft geliefert, um von den sichern
Gefilden der Alltagswelt aus immer tiefer in die unfaßbaren Geheimnisse

des Naturgeschehens vorzudringen. In diesem Sinne ist der Pythago-
räische Standpunkt also auch heute noch nicht vollständig aus der
Wissenschaft verschwunden. Das ästhetische Erlebnis als Motiv der
Forschung bleibt bestehen und stellt ein wichtiges Gegenstück dar zum
extremen Pragmatismus, der uns heute von allen Seiten umgibt und dessen
Überhandnehmen den Tod allen wahren Forschens bedeuten würde.
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