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1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft

Samstag, den 24. September 1960

Präsident: Prof. Dr. H. Jecklin (Zürich)
Sekretär: Prof. Dr J. de Siebenthal (Lausanne)

1. H. Bieri (Bern). - Beitrag zum Reinhardschen Problem.

2. W. Holenweg (Wolhusen). - Über die Ordnung von Burnside-
Gruppen mit zwei Erzeugenden.

3. J. 0. Fleckenstein (Basel). - <\Z~3 bei Archimedes1.

4. P. Nolfi (Zürich). - Mathematische Analyse des Jaßspieles.

Einleitung: In den nachstehenden Ausführungen werden die Grundregeln

des Jaßspieles als bekannt vorausgesetzt. Wer dieses Spiel noch
nicht kennen sollte, dem ist zu empfehlen, es zu erlernen. Es handelt sich
um ein schönes, aber auch instruktives Spiel. Man lernt, wie man die
Karten, die einem durch den Zufall zugeteilt werden, am besten einsetzen
kann. Das ist eine gute Übung, denn im täglichen Leben kommt es auch
darauf an, daß man seine Kräfte so gut wie möglich einsetzt.

Wer für das Jaßspiel Interesse hat, kaufe das Schweizerische Jaß-
reglement. Darin findet er die Grundregeln und die Verhaltungsvorschriften.

Da es mehrere Spielarten gibt, wie den Aucho, den Hindersi
usw. haben wir unsere Ausführungen möglichst allgemein gehalten; im
speziellen beziehen sie sich auf den Schieber, der wohl am bekanntesten
sein dürfte. Das Spiel besteht — um es kurz in Erinnerung zu rufen —
aus 36 Karten, unterteilt in vier Sorten (Farben genannt), nämlich:
Schaufel, Eckstein, Herz und Kreuz bzw. Schiiten, Schellen, Rose und
Eichel beim deutschen Spiel. Die 9 Karten einer Farbe heißen nach ihrem
Stichwert geordnet: As (11), König (4), Dame (3), Bub (2), Trumpfbub
(20), Zehner (10), Neuner (0), Neil (14), Achter (0), Siebner (0), Sechser
(0). Die in Klammern angeführten Ziffern geben die Punktzahl an bei
der Auswertung des Erlöses. Die Summe aller Punktzahlen : 4 • 11 +4 • 4-f

1 Erscheint in «L'Enseignement Mathématique».
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4-3+3-2+20+4-10+14 152, ergibt zusammen mit den 5 Punkten
für den letzten Stich 157.

Der Weis: Die Karten werden gemischt und zu je dreimal drei
verteilt. Jeder der vier Spieler erhält 9 ihm vom Zufall zugeteilte Karten.
Dabei werden gewisse Zusammensetzungen, insgesamt 78 einschließlich
Stöcke, prämiiert. Drei Karten gleicher Farbe und in der Reihenfolge gelten

20, vier 50, fünf 100, 4 Asse, 4 Könige oder 4 Damen oder 4 Zehner
100, vier Buben sogar 200, König und Dame der Trumpfkarten 20 Punkte.

Für den Mathematiker entsteht zunächst die interessante Aufgabe,
die Häufigkeiten zu berechnen, mit der diese besonderen Ereignisse sich
einstellen. Zunächst ist es einfach, die Wahrscheinlichkeit für 4 Asse,
4 Könige, 4 Damen, 4 Buben oder 4 Zehner zu berechnen. Bezeichnët man
allgemein mit n die Zahl der Karten, mit r die Zahl der einem Spieler

zukommenden Karten, so gibt es für ihn insgesamt unterschiedliche

Möglichkeiten der Zuteilung. Werden nun nur diejenigen Austeilungen
berücksichtigt, die A bestimmte Karten enthalten, so gibt es deren

unterschiedliche Möglichkeiten.

Die gesuchte Wahrscheinlichkeit wird : (^j •

Für n 36, r 9 und A 4 erhält man — 0,0021.

Ein Spieler hat also auf 468 Kartenverteilungen die Chance, einmal
4 Könige zu erhalten, irgendeiner der Spieler auf 117 KartenVerteilungen.
Da es insgesamt 5 solche Weise gibt (4 Asse, 4 Könige, 4 Damen, 4 Buben,
4 Zehner), erscheint irgendeines dieser Ereignisse im Durchschnitt auf
rund 25 Verteilungen. Etwas schwieriger zu berechnen ist die Häufigkeit
der Weise aus Folgeblättern (z. B. As, König, Dame), also der Punktzahlen

20 bei 3 Karten, 50 bei 4 Karten und 100 bei 5 Karten. Hier ist es
so, daß auch bei gleicher Kartenzahl nicht alle Weise gleich oft erscheinen.

Das Dreiblatt As-König-Dame tritt häufiger auf als z.B. König-
Dame-Bub. Es erscheint paradox, doch ist zu beachten, daß ein Dreiblatt
nur dann entsteht, wenn keine Anschlußkarte vorausgeht oder nachfolgt.
Nun kann das Dreiblatt As-König-Dame nur nach einer Seite hin, nämlich

durch den Buben, zu einem Vierblatt ergänzt werden, während beim
Dreiblatt König-Dame-Bub diese Möglichkeit nach beiden Seiten hin
besteht. Im ersten Falle gilt die Formel:

wj w/3 r
^

j Im zweiten Fall dagegen

wlsl — r ^^ ^ j : • Für n 36, r — 9 undzl 3 erhält man w3j

— wlz 0,0018 bzw. w/J 0,0015. Der Erwartungswert, mit dem die
Weisung von 20 Punkten auftritt, beträgt (immer auf zwei Stellen genau)
E3= 0,23 pro Spieler und 0,93 auf jede Kartenverteilung (Partie). Es
können somit im Durchschnitt fast nach jeder Verteilung 3 Blatt gewie-
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sen werden. — Nach dem gleichen Vorgehen kann die Häufigkeit für
4 Folgekarten berechnet werden. Der Erwartungswert beträgt Z?4 0,04.
Derjenige für das Auftreten von 5 Karten beträgt Eb 0,005.. DerErwartungswert

für irgendeinen Weis stellt sich auf 0,34 pro Spieler. Der
durchschnittliche Wert eines Weises beläuft sich auf 28 Punkte. Er kann
indessen nicht yoll angerechnet werden, weil die Gegner mitunter zu
überbieten vermögen. - Sehr selten tritt das Neunblatt auf, d.h. der Fall, daß
ein Spieler alle 9 Karten der gleichen Farbe zugeteilt erhält. Er kann
beim Zuger mit 300 Punkten als der «Große Weis» angerechnet werden.
Seine Wahrscheinlichkeit beträgt pro Partie 0,00000017 oder 17 -lO-10.

Die Möglichkeiten eines Spielverlaufs. Den Spieler interessiert
insbesondere, zu wissen, ob Möglichkeiten bestehen, gewisse Verhaltungsregeln

anzugeben, wie man am vorteilhaftesten spielen soll. Diese Frage
kann grundsätzlich bejaht werden. Abgesehen von den praktischen
Schwierigkeiten besteht tatsächlich die Möglichkeit, Richtlinien
anzugeben, um im Einzelfall ein möglichst gutes Ergebnis zu erzielen. Aber
die Gewinnung dieser Richtlinien erfordert einen unheimlichen
Arbeitsaufwand und ist wohl nie zu bewältigen. Dagegen lassen sich bei derartigen

Betrachtungen gewisse Einsichten gewinnen, die sehr interessant
sind. — Man denkt sich dazu am besten einen Registrator, dem die
Aufgabe zukommt, jedes Spiel zu registrieren. Angenommen es wäre ihm
möglich, alle Fälle einzutragen und diejenigen zu streichen, die nicht gut
sind, dann müßten von jeder Kartenverteilung die bestmöglichen
zurückbleiben. — Betrachten wir den Verlauf aller Partien: Sie beginnen
mit der Verteilung der Karten. 36 Karten können auf 4 Spieler zu je 9
Karten, insgesamt auf

a 9!93^!j9! 21452752266265320000

oder auf rund 21,5-1018, das sind 21,5 Trillionen unterschiedliche Arten
verteilt werden. Man kann sich nun alle diese Fälle numeriert denken, so
daß der Registrator jedesmal bei jeder Verteilung angeben kann, welcher
von den 21,5 Trillionen Fällen tatsächlich eingetreten ist.

Nach erfolgter Verteilung hält jeder Spieler 9 Karten in der Hand.
In einer ersten Runde legt jeder Spieler eine Karte auf den Tisch. Dazu
bestehen - abgesehen von den Vorschriften über das Ausspielen der Karten
- für jeden Partner 9 Möglichkeiten, insgesamt also 94. Zu Beginn der
zweiten Runde hat jeder Spieler 8 Karten in der Hand, womit die Spieler
84 Möglichkeiten für die Abgabe einer weiteren Karte haben. Insgesamt
erhält man nach dieser Rechnung
ß (9!)4 oder rund 17,340 Trillionen (17,3 -1021) Möglichkeiten. Das
Produkt mit der Zahl der Verteilungen ergibt die obere Grenze für die Zahl
der Partien.
Sie beträgt <5 a-ß 36 (9!)3 und erreicht rund 37,2-1040 oder 372000
Sextillionen. Diese Zahl ist zwar noch lange nicht unendlich, aber für
irdische Verhältnisse überaus groß. Zum Vergleich sei angeführt, daß
der Durchmesser der Milchstraßenlinse «nur» 760 • 1018, d. h. 760 Trillionen
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Meter mißt. Es kann mit Sicherheit angenommen werden, daß noch lange
nicht alle Möglichkeiten durchgespielt wurden.

Die Entropie. Besondere Bedeutung kommt bei den Kartenspielen
der Information zu. Wüßte ein Spieler von Anfang an, wie die Karten
verteilt sind, könnte er sich viel besser verteidigen. Vor der Karten
Verteilung schwebt der Spieler vollständig im ungewissen, was er selbst für
Karten erhalten wird. Nach der Verteilung ist er zwar über die eigenen
Karten genau informiert, dagegen ist ihm unbekannt, was für Karten
seine Mitspieler erhalten haben; d.h. über die tatsächliche Verteilung ist
er nur teilweise orientiert. Insgesamt sind bei gleichen Handkarten eines

(27!)
Spielers noch oder rund 4,7 Millionen Fälle möglich.

Die Gesamtheit aller dieser Fälle bildet den Informationsbereich des
Spielers. Nach der KartenVerteilung kann jeder Spieler somit lediglich
feststellen, in welchem Informationsbereich er sich befindet. Der Durchschnitt

aller 4 Informationsbereiche ergibt den tatsächlichen Ort, dieser
ist aber den einzelnen Spielern bei Beginn des Ausspielens unbekannt.
Wenn wir die Entropie des Spieles mit

a

H —E lg
1

definieren, so ist diese anfänglich gleich eins : H 1. Nach der Verteilung
geht die Unkenntnis über die KartenVerteilung stark zurück, die Entropie

beträgt nur noch 0,59. Sie sinkt entsprechend der Abnahme an
Unkenntnis mit jeder Runde (Abgabe von 4 Karten) und beträgt z.B. nach
der zweiten Runde 0,44, nach der 5. Runde 0,23 und nach der 8. Runde
0,04. Nach der Abgabe der letzten Karte ist die Entropie Null. Jeder
Spieler ist genau orientiert, wie die Karten verteilt waren, sofern er den
Spielverlauf verfolgt hat. Man sieht hieraus, daß die Information im
Laufe einer Partie zunimmt und erst am Ende derselben vollständig ist,
d. h. erst, wenn es zu spät ist. Aus dieser Eigenart des Jaßspieles entstehen

viele Streitigkeiten. Namentlich wenn Zuschauer anwesend sind.
Diese sind dann von Anfang an vollständig orientiert, weil sie auch in die
Karten der Mitspieler blicken und darum auch besser wissen können, wie
der einzelne Partner spielen sollte. Sie sind sich jedoch meistens ihrer
besseren Situation nicht bewußt und meinen ganz zu Unrecht, sie hätten
es besser gemacht. Zuschauer sind deshalb unerwünscht.

Die Strategie. Die Chancen bei einem Kartenspiel hängen aber nicht
nur von der Verteilung ab, also vom Zufall, sondern auch von der
Geschicklichkeit, mit der ein Spieler seine Karten ausspielt. Gute Spieler
wissen, daß es sehr darauf ankommt, und treffen schon bald nach der
Kartenverteilung den Entscheid über die Reihenfolge für das Ablegen
der Karten. Sie fassen eine bestimmte Strategie ins Auge und erreichen
damit meistens gute Resultate. Da jeder Partner zu Beginn des Ausspielens

9 Karten in der Hand hält, stehen ihm insgesamt 9 Strategien zur
Auswahl. Das Studium dieser Strategien würde zweifellos wertvolle
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Erkenntnisse zu Tage fördern. Das folgt aus der Tatsache, daß der
Registrator (abgesehen von der praktischen Durchführbarkeit) grundsätzlich
immer die Möglichkeit hat, jedem Spieler zu sagen, welche Strategie für
ihn die beste ist. Für den Registrator ist nämlich die Information von
Anfang an vollständig, da er genau feststellen kann, welche Verteilung
tatsächlich vorliegt. Er steht also vor einem Spiele mit vollständiger
Information, und für solche hat Neumann gezeigt, daß sie immer eine
Losung, d.h. für jeden Spieler eine optimale Strategie besitzen.

Bei einem Jaßspiel mit aufgedeckten Karten hätte nämlich jede
Spielpartei die Möglichkeit, ihre (9!)2 eigenen sowie die ihr bekannten
(9!)2 gegnerischen Strategien in einem Quadrat mitsamt den Ergebnissen
einzutragen und die Gleichgewichtspunkte aufzusuchen. Das gäbe
allerdings ein sehr großes Quadrat mit rund 5 Millionen Eingängen auf beiden
Seiten, und zwar für jede der 21,5 Trillionen Möglichkeiten.

Aus dieser wichtigen Vorarbeit ließen sich dann auch Anhaltspunkte
gewinnen für das eigentliche Spiel, indem man für alle möglichen
Kartenzuteilungen an einen Spieler aus den ihm zustehenden Strategien die
wahrscheinlich beste herausliest. — Wegen der großen Zahl der Fälle
erscheint ein solches Programm vollständig undurchführbar. Es ist aber
doch denkbar, daß durch Beschränkung auf reduzierte Spiele, z. B. mit
nur 12 statt 36 Karten, sich Anhaltspunkte ergeben würden. Jedenfalls
gibt es hier interessante Probleme.

5. J. Hersch (Genève). - Le principe de Thomson comme corollaire de

celui de Dirichlet1.

6. S. Piccard (Neuchâtel). - Des problèmes de la théorie générale des

groupes.
Tout élément d'un groupe multiplicatif libre G possède un degré

fixe par rapport à tout élément libre de G aussi bien que par rapport à
tout ensemble de générateurs libres de G. Cela permet d'associer h G un
treillis de groupes abéliens qui facilite grandement l'étude de sa structure
et se prête tout particulièrement a la recherche de sous-groupes invariants
de G, à celle de sous-groupe d'index fini et à celle des éléments libres de G.

Les groupes libres font partie d'une classe plus générale de groupes
que nous avons appelés quasi libres et dont on peut donner les deux
définitions équivalentes suivantes: 1. Un groupe multiplicatif G est
quasi libre s'il possède un système A de générateurs tel que tout élément
a de G possède un degré fixe par rapport à tout élément de A. Tout
élément a de G peut être obtenu par composition finie d'éléments de A,
plusieurs compositions distinctes pouvant représenter le même élément,
mais chacune de ces compositions ayant le même degré par rapport à a*,
quel que soit l'élément aÀ de A. Ce degré est, par définition, le degré de
a par rapport à aTout élément d'un groupe quasi libre a également un

1 Erscheint in «L'Enseignement Mathématique».
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degré fixe par rapport à l'ensemble des éléments de A, ce degré étant par
définition la somme des degrés de a par rapport à tous les éléments de A.
Les éléments de A sont dits quasi libres et le système de générateurs A
est irréductible. Nous appelons A une base de G.

2. D'autre part, on peut définir un groupe quasi libre G par un
ensemble A d'éléments générateurs liés par une famille F de relations quasi
triviales. Une relation f(^l5 a^2) a^k) 1 entre des éléments de A est
dite quasi triviale si son premier membre est de degré nul par rapport à
tout élément de A.

Tout groupe libre est quasi libre mais la réciproque n'est pas vraie et
il existe une infinité de groupes quasi libres qui ne sont pas libres.

On peut décomposer d'une infinité de façons les éléments d'un
groupe quasi libre en classes d'équivalence ayant un caractère intrinsèque

indépendant de la base A de G. A partir de ces décompositions, on
définit un treillis de groupes abéliens associés à G et qui permet de
résoudre de nombreux problèmes de structure de G. Tout groupe quasi
libre possède une infinité de sous-groupes invariant et si le groupe quasi
libre G est de puissance infinie m, l'ensemble de ses sous-groupes
invariants est de puissance supérieure à ni- Tout sous-groupe d'un groupe
quasi libre n'est pas quasi libre. Il existe même des groupes quasi libres à

un nombre fini de générateurs qui possèdent des sous-groupes à une infinité

de générateurs et qui sont dépourvus de bases. Tout groupe quasi
libre engendré par un ensemble de puissance tn de générateurs quasi
libres possède un ensemble de puissance > ttt de sous-groupes quasi
libres. Tout sous-groupe quasi libre d'un groupe quasi libre à un nombre
fini de générateurs est lui-même à un nombre fini de générateurs.

Soit n un entier ^2, soit A un système donné de générateurs quasi
libres de G et soit i un nombre quelconque de la suite 0, 1,. n—1. Nous
disons qu'un élément a de G est de classe C- (A) si a est de degré congru à
i modulo n par rapport à l'ensemble des éléments de A. On décompose
ainsi les éléments de G en n classes d'équivalence qui dépendent de la
base A de G et qui avec la loi de composition C£CL C/«. où O ^k ^n—1,
k=i+j (mod n), forment un groupe abélien. La classe C0 (A) est un sous-
groupe invariant d'index n de G. Quel que soit l'entier n^2, tout groupe
quasi libre possède des sous-groupes invariants d'index n. Tout groupe
quasi libre à un nombre fini k de générateurs possède en tout cas (nfc—1—
Nn? k)/q(n) de sous-groupes d'index fini n, quel que soit n^2, Nnfcdésignant

le nombre de suites distinctes jv j2,. jfc formées de nombres non
tous nuls de la suite 0,1,. n—1, tels que le p.g.c.d. des h nombres d'une
telle suite et de n soit >1.

Tout élément quasi libre d'un groupe quasi libre est d'ordre infini.
Tout groupe quasi libre est d'ordre infini et possède un treillis de sous-
groupes invariants distincts composés uniquement d'éléments qui ne sont
pas quasi libres. Tout élément de G (que nous appelons «nul») de degré
nul par rapport à chaque élément d'une base donnée de G jouit de la
même propriété par rapport à tout élément de chaque base de G et il n'est
pas quasi libre. Quelle que soit la base B d'un groupe quasi libre G et
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quel que soit le sous-ensemble B* non vide de G-, B* engendre un sous-
groupe quasi libre G* de G et tout élément quasi libre de G* est aussi un
élément quasi libre de-G1.

Nous disons qu'un groupe G est fondamental s'il possède des systèmes

irréductibles de générateurs appelés bases de G. Tous les groupes
d'ordre fini, les groupes quasi libres, etc. sont fondamentaux mais il
existe aussi une infinité de groupes non fondamentaux.

Nous disons qu'un groupe fondamental G est décomposé en le
produit quasi libre de ses sous-groupes fondamentaux Gh XeA,et nous écrivons
1) G G^ si les sous-groupes G^ engendrent G et si quelle que
soit la base de G^, AeA, l'ensemble A constitue une base de

ÀeA
G. Le produit quasi libre présente de grandes analogies avec le produit
libre. liest également susceptible de prolongement et de raccourcissement.

7. S. Piccard (Neuchâtel). - Sur les éléments libres des groupes libres.
Un élément d'un groupe libre est appelé libre s'il fait partie d'un

système de générateurs libres du groupe, c'est-à-dire d'un système de
générateurs qui ne sont liés que par des relations triviales découlant des
axiomes de groupe. Tous les éléments d'un groupe libre ne sont pas libres.
Soit L l'ensemble des éléments libres et N l'ensemble des éléments non
libres d'un groupe libre G. Si G est cyclique, engendré par le seul élément
libre a, l'ensemble L se compose, comme on sait, des deux éléments a et
a-1 alors que l'ensemble N est infini. Si le groupe libre G n'est pas cyclique,
les deux ensembles A et A sont infinis et de même puissance. On peut
répartir les éléments de G en classes d'équivalence, telles que chacune de
ces classes soit où bien composée uniquement d'éléments de N ou bien
qu'elle contienne aussi bien des éléments de L que des éléments de N,
chacune de ces classes contenant au plus un élément de tout système
irréductible de générateurs de G. Ces classes sont les éléments des groupes
abéliens dont le treillis est associé à G. Soit A un système donné de
générateurs libres a^ XeA, du groupe libre G. Soit a un élément quelconque
de G. Il existe comme on sait une composition finie réduite unique
d'éléments de A qui représente a. Cette composition est de la forme

1) aXl a
2 an où n est un entier ^ 1, aXt s A, t 1, 2, n,

K K An

aXt ^ aXt+v t — 1, 2,. n-1, et il5. in, sont des entiers dont aucun
n'est nul si a 1. Une composition finie réduite d'éléments de A étant
donnée, il s'agit de savoir si elle représente un élément libre de G ou non.
Dans le cas où l'ensemble A est fini, la solution de ce problème découle

1 Voir à ce sujet :

1. S. Piccard : Structure des groupes libres. Annales se. de l'Ecole normale supérieure,
Paris, LXXVI, 1959, fasc. 1, p. 1-58.

2. S.Piccard: Les groupes quasi libres. Comptes rendus des séances de l'Académie
des sciences, Paris, t. 250, p. 3260—3262.

3. S.Piccard: Les groupes quasi libres. Publications du Séminaire de géométrie de
l'Université de Neuchâtel, fasc. 3, 1961.
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d'un théorème du mathématicien russe Grouschko1. Cette solution peut
être formulée comme suit : Soit A À (al5 a2,..., afc) (k fini ^ 2). On sait
que tout système de générateurs libres, appelé base, de G, est alors formé

de k éléments. Soit B(bx, b2,..., bfc) une base quelconque de G, soit
Ox l'opération qui consiste à remplacer dans une base de G un élément
par son inverse et soit 02 l'opération qui consiste à remplacer dans une
base de G un élément quelconque par le produit à droite ou à gauche de
cet élément avec une composition finie quelconque des autres éléments
de la base considérée. Toute base B de G peut se déduire de la base A par
un nombre fini d'opérations et 02.

Supposons maintenant que l'ensemble A est de puissance infinie. On a
alors les deux propositions suivantes :

Proposition 1. Quel que soit le sous-groupe G* du groupe libre G,
tout élément libre de G qui fait partie de G* est aussi un élément libre

Proposition 2. Quelle que soit la base A d'un groupe libre G et quel
que soit le sous-ensemble non vide A* de A, tout élément libre du groupe
libre G* engendré par A* est aussi un élément libre du groupe G.

Il ressort de ces deux propositions que pour savoir si un élément
quelconque a d'un groupe libre à base infinie A est libre ou non, il suffit de
considérer la composition finie réduite d'éléments de A qui le représente :

soit f (aÀi, aAr) cette composition dans laquelle figurent certains
éléments aXr de A, en nombre fini r ; on envisagera ensuite le
sous-groupe G* de G engendré par les éléments a^,. et on
s'appuiera sur le théorème de Grouschko pour décider si a est un élément
libre de G* ou non. Si a est libre dans G* il l'est également dans G d'après
la proposition 2.

Il ressort de ces considérations que toute composition finie réduite
de la forme 1) d'éléments d'une base d'un groupe libre G dans laquelle
tous les exposants i1? i2,. ire sont ^ 1 ou — 1 représente un élément
non libre de G. D'autre part, quels que soient les entiers r., /\,. r*, si
le groupe libre G est engendré par les k éléments a±, a2,. ak, le produit

définit un élément libre de G.
Si un élément a d'un groupe libre G est de degré nul par rapport à

tout élément d'une base A de G, il est également de degré nul par rapport
à chaque élément de toute autre base B de G. Un tel élément de G n'est
pas libre.

Quel que soit l'entier n ^ 2, si un élément a d'un groupe libre G est
de degré congru à zéro modulo n par rapport à chaque élément d'une
base A de G, cet élément est également de degré congru à zéro modulo n

de G*.

(a2 «i')r'(«3 ao'«î')r«...
' ?*r1 r
ak ak—1 ak~2 • • • ai

.1 Je—1 Je— 2 rl1 rk k k
ak ak—1 ak—2 • • • al

1 Voir, par exemple, Kurosch: Théorie des Groupes, 2e éd. russe, Moscou,
p. 252 et ss.
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par rapport à chaque élément de toute autre base de G et un tel élément
n'est également pas libre.

Tout groupe libre possède une infinité de sous-groupes invariants
distincts composés uniquement d'éléments non libres.

Les propositions 1 et 2 facilitent grandement la recherche des
éléments libres et permettent de ramener le cas des groupes libres à base de
puissance infinie quelconque à celui des groupes libres à un nombre fini de
générateurs.

8. G. Hunziker (Reinach). - Kritisches zum Parallelenpostulat
Euklids. - Kein Manuskript erhalten.


	Sektion für Mathematik

