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1. Section de mathématiques
Séance de la Société suisse de mathématiques

Dimanche le 25 septembre 1955

Président: Prof. Dr. J. J. Burckhardt (Zürich)
Secrétaire : Prof. G. Vincent (Lausanne)

1. Sophie Piccard (Neuchâtel). - Les systèmes fixes d'éléments
générateurs d'un groupe.

Soit G un groupe d'ordre fini N qui admet des automorphismes
externes de deux espèces. Un automorphisme externe est dit de première
espèce s'il fait correspondre à tout élément a de G son transformé bab_1

par un élément fixe b d'un groupe G1 plus vaste que G et dont G est un
sous-groupe distingué. Un automorphisme externe est dit de seconde
espèce s'il ne peut pas être réalisé de cette façon. Soitc^ [o43] le groupe
de tous les automorphismes internes (de tous les automorphismes) du
groupe G. L'ensemble qA2 de tous les automorphismes internes et externes
de première espèce constitue également un groupe dont oA1 est un sous-
groupe distingué et qui est à son tour un sous-groupe de eAz. Quel que
soit l'élément a et quel que soit l'automorphisme A de G, nous désignons
par Aa l'élément de G homologue de a dans A. Nous appelons base de G
tout système d'éléments indépendants générateurs de G. Tout
automorphisme de G transforme une base de G en une base de G (pas
nécessairement distincte de la première). Soit A un automorphisme, soit
av.. .,am une base quelconque de G et soit Aat — bi9i= 1, m. Les m
couples ordonnée ai,bl{i 1, m) définissent l'automorphisme A de
façon univoque. m est l'ordre de chacune des bases av am et bu bm.

On peut répartir aussi bien les éléments que les bases d'ordre donné de
G en classes d'éléments respectivement de bases équivalents relativement
à chacun des trois groupes Nous dirons, pour abréger, que deux
éléments a et b de G sont ^-équivalents s'il existe un automorphisme A du
groupe ctel que Aa b, et nous dirons que deux bases d'ordre m:
av am et bl9 bm de G sont i-équivalentes s'il existe un
automorphisme A du groupe tel que Aaj bj,j 1, m, quel que soit
i 1, 2, 3. Deux éléments ou deux bases 1-équivalents de G sont conjugués.

Deux bases équivalentes sont caractérisées par les mêmes relations
fondamentales. Tout automorphisme du groupe oAi transforme en elle-
même chaque classe d'éléments i-équivalents de G. Nous disons qu'un élé-
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ment a de G est un élément fixe d'un automorphisme A si Aa a. Nous
disons qu'une base de G est une base fixe d'un automorphisme A si cette
base est transformée en elle-même par A. L'élément unité 1 de G est
fixe dans tous les automorphismes de G et l'automorphisme identique
A0 laisse fixes tous les éléments et toutes les bases de G. Une base fixe
av a2 du second ordre d'un automorphisme A détermine ce dernier de

façon univoque et, si A^éA0, on a Aa1—a2, Aa2 av A2 A0, autrement

dit l'automorphisme A est du second ordre, il permute les deux
éléments ax et a2 et la base av a2 n'est fixe dans aucun autre automorphisme

non identique du groupe G. Supposons que G possède des bases
du second ordre et que son centre est d'ordre 1, soit vt l'ordre du groupe
i — 1, 2, 3. Soit av a2 une base de G. Nous disons que cette base est de

première espèce par rapport aux automorphismes du groupe si la base

envisagée n'est fixe dans aucun des automorphismes ^ Aa de oAt et nous
disons que la base av a2 est de seconde espèce par rapport aux automorphismes

du groupe s'il existe un automorphisme A ^ A0 du groupe
qui laisse cette base fixe, quel que soit i 1, 2, 3. Pour toute base de
première (seconde) espèce par rapport aux automorphismes du groupe oAx il
existe vt (vJ2) bases de G qui lui sont ^'-équivalentes, quel que soit
i 1,2,3.

Tout automorphisme effectue une substitution des éléments de G.

L'étude de ces substitutions permet de déterminer les bases de G et l'examen

des substitutions des éléments de G qui correspondent aux
automorphismes du second ordre permet de déterminer toutes les base de
seconde espèce.

Envisageons, à titre d'exemple, l'alterné 216 de degré 6. Il possède,
comme on sait, 360 automorphismes internes, 360 automorphismes
externes de première espèce et 720 automorphismes externes de seconde
espèce. Le groupée^ (qA2) est simplement isomorphe à 216 (@6) et chaque
automorphisme interne ou externe de première espèce est représenté par
une substitution paire des éléments de 216. Par contre, les automorphismes
externes de seconde espèce sont représentés par des substitutions impaires
des éléments de 216. 144 de ces substitutions sont d'ordre 10, 360 d'ordre
8, 180 d'ordre 4 et 36 du second ordre. Les deux éléments de toute base
fixe dans un automorphisme externe de seconde espèce de 2l6 figurent
dans une transposition de la substitution du second ordre qui représente
un automorphisme externe déterminé de seconde espèce du groupe 216.

Chaque automorphisme externe de seconde espèce de 216 qui est du
second ordre laisse fixe 10 éléments du groupe, notamment quatre cycles
du 5me ordre, cinq doubles transpositions et 1 et il laisse fixes 140 bases
du second ordre de 2l6. Le nombre total des bases de 2ï6 laissées fixes
par l'un quelconque des automorphismes externes de seconde espèce de
2t6 est de 5040. Le nombre total des bases de 2ï6 laissées fixes par un
quelconque des automorphismes internes ^ A0 de 216 est de 2160. 720
bases de 216 au total sont laissées fixes par les différents automorphismes
externes de première espèce et le nombre total des bases du second ordre
de 2l6 qui sont de seconde espèce par rapport aux automorphismes du
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groupe est de 7920 alors que 30 240 bases du second ordre de Sl6

sont de première espèce et ne sont laissées fixes par aucun automorphisme
A0 de qAs.

2. Sophie Piccard (Neuchâtel). - Quelques problèmes de la théorie
des groupes.

Soit G un groupe d'ordre fini N défini par un système d'éléments
générateurs 1) av am liés par les relations caractéristiques
2) ^ (av am) =l,i 1, k. Appelons multiplication la loi de composition

du groupe G et appelons base d'ordre m de G le système d'éléments
générateurs 1). Il n'est généralement pas aisé d'étudier la structure d'un
groupe G ainsi défini. Il existe cependant des cas où un simple examen
des relations 2) fournit de nombreux renseignements sur la structure de
G et permet de déceler la présence de certains sous-groupes distingués,
de déterminer le nombre minimum d'éléments générateurs de G, d'indiquer

une borne supérieure au nombre total des bases minima et une borne
inférieure au nombre total de sous-groupes distingués de G, etc. Nous nous
sommes attachés aux cas suivants.

Soit n un entier quelconque ^ 2 et soit 3) «j, aïa, au (1 <J t < m,
1 £h<l2<...<lt <Jm) t éléments quelconques de la base 1). Nous disons

que G jouit de la propriété P (mod n) par rapport à l'ensemble de ces
éléments si f{ est de degré 0 (mod n) par rapport à l'ensemble des
éléments 3) quel que soit i 1, k, et nous disons que G jouit de la
propriété P (mod n) par rapport à chacun des éléments 3) si est de

degré — 0 (mod n) par rapport à a/j5 j 1, t, i 1, k.
Si G jouit de la propriété P (mod n) par rapport à chacun des

éléments 3), il jouit évidemment aussi de la propriété P (mod n) par rapport
à l'ensemble de ces éléments. La réciproque n'est pas vraie. Si t < m, le

groupe G peut jouir de la propriété P (mod n) par rapport à chacun des
éléments 3) de la base 1) et être dépourvu de la même propriété par
rapport à une seconde base de G. Par contre, si le groupe G jouit de la
propriété P (mod n) par rapport à chacun des éléments de sa base 1), cette
base est minimum et le groupe G jouit de la propriété P (mod n) par
rapport à tout élément de chacune de ses bases minima.

Si le groupe G jouit de l'une ou l'autre des propriétés P (mod n) par
rapport aux éléments 3) de l'une quelconque de sés bases 1), G n'est pas
simple et il possède au moins un sous-groupe distingué d'ordre N/n, l'ordre
de chacun des éléments 3) ainsi que l'ordre de G sont des multiples de n
et on peut répartir les éléments de G en n classes A0, An_x composées
chacune de N/n éléments de G et comprenant, avec tout élément a de G

la classe entière des éléments de G conjugués à a. Les classes A, avec
la loi de composition AUAV Aw, où w u-\~ v (mod n) forment un
groupe abélien d'ordre n dont l'élément zéro A0 est un sous-groupe
distingué de G.

Si le groupe G jouit de la propriété P (mod n) par rapport à chacun
des éléments 3), on peut répartir les éléments de G en n1 classes
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où les indices ih it sont des nombres de l'ensemble {0, n—1}.
Chaque classe comprend Njn1 éléments de G et elle contient
avec tout élément a de G la classe entière des éléments de G conjugués
ha. Si t m, les classes M ont un caractère intrinsèque et sont indépendantes

de la base 1). Avec la loi de composition MUi.. .Uf Mv .V{

MWl.. .Wti
où Wj u- -f- Vj (mod n), j 1, t, les classes M forment

un groupe abélien jT dont l'élément zéro M00...a est un sous-groupe
distingué de G. Quel que soit le sous-groupe y de T, la réunion des classes

M qui constituent les éléments de y est un sous-groupe distingué de G.
Si le groupe G jouit de la propriété P (mod n) par rapport à

l'ensemble [par rapport à chacun] des éléments 3) de sa base 1), il jouit
évidemment de la propriété P (mod d) par rapport à l'ensemble [par
rapport à chacun] des éléments 3), quel que soit le diviseur d > 1 de

n et par conséquent G possède au moins un sous-groupe distingué d'ordre
N/d quel que soit le diviseur d > 1 de n. Si G jouit de la propriété
P (mod n) par rapport à chacun des éléments 3), il possède au moins
un sous-groupe distingué d'ordre Njdl, quel que soit le diviseur d > 1 den.

Si le groupe G jouit de la propriété P (mod n) par rapport à chacun
des éléments de sa base 1), quel que soit le nombre premier p diviseur
de n, le groupe G possède au moins (pm — 1) (pm — p) (pm — p*-1)/
(p — 1) (p1 — p)... (p1 — p1-1 sous-groupes distingués distincts d'ordre
N/p-1, i — 1, m— 1.

Si G jouit de la propriété P (mod n) par rapport à chacun des
éléments de sa base 1), le nombre total n de bases minima de G satisfait

l'inégalité n (Nlpm)m(pm—1) (pm—p)... (pm — pm-1)/m!, où
p est le plus petit diviseur premier de n.

Tout groupe abélien jouit de la propriété P (mod a!) par rapport
à chaque élément de n'importe laquelle de ses bases minima, cq désignant
le plus petit des invariants du groupe considéré.

Il existe aussi des groupes non abéliens qui jouissent de la propriété
P (mod n) par rapport à tout élément de chacune de leur base minima.
Ainsi, par exemple, le groupe non abélien 6r108, d'ordre 108, engendré
par les deux substitutions S1 (1 2) (3 4) (5 6 7) (11 12 13 14 15 16),
S2 (1 3) (2 4) (5 6) (8 9 10) jouit par rapport à chacune des substitutions

et S2 de la propriété P (mod 6), puisque S1 et S2 sont liées par les
relations fondamentales /Sf16 1, >S26 1, S22 Sx $24 $x5 1,

S2S^S2'S^ 1.

3. H. Meier (Zürich). - Aus der Theorie der Aheischen Gruppen1.

4. M. Kervaire (Berne). - Courbure intégrale généralisée et homo-
topie1.

5. G. Vincent (Lausanne). - Sur les représentations linéaires de
certains groupes finis1.

1 Paraîtront dans «L'ens. math.» 1955.
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6. Sophie Piccard (Neuchâtel). - Sur des ensembles parfaits.
Soit n un entier quelconque ^ 3 qu'on prend pour base de

numération. Soit K \a0, av ak\ un vrai sous-ensemble de l'ensemble
-j 0,1, •. •, n — 1}., tel que 0 ac< ax < < ak — 1 et soit A
\a0, av ak]n l'ensemble des nombres du segment < 0, ak\n— 1 >
qui peuvent s'écrire dans le système de numération à base n avec les
seuls chiffres de l'ensemble K. On obtient l'ensemble A à partir du segment
d par la suppression successive d'intervalles contigus de rangs 1, 2,
définis comme suit. Quel que soit l'entier m ^ 1, si ak < n— 1, les
intervalles contigus de rang m sont les (k + 1 )mr~1k intervalles (ouverts)
de la forme (0, oq a2 a^ at (ak)\ 0, aL a2 • • «m_i ûq+1) où a^K,
j — 1, m — letO ^ i < k — 1. Et, si ak n — 1, les intervalles
contigus de rang m sont tous les intervalles de la forme (0, cq a2.. • am_i am\
0, cq a2.. ßj où a^K, j « 1, m — 1, am ^ cq + 1 (0 i ^
k — 1, ai+1 — cq > 1), ßm — ai+1. Appelons intervalle contigu de rang 0
de A l'ensemble des nombres réels qui ne font pas partie de <5. Soit F
la famille de tous les ensembles A. Deux ensembles de la famille F
A [a0, %, ak]n et A' [aß, aß, a'k>]n> peuvent être confondus

sans que l'on ait les égalités n n', k k' et cq aß, i — 1, k,
comme l'avaient remarqué M. Henri Cartan et Mlle Hélène Cartan qui
avaient formulé deux critères permettant de résoudre le problème de l'identité

de deux ensembles de la famille .F. On a la proposition générale suivante ;

Soient A [aQ, cq, ak] n et A' [aß, aß, a'k>] deux ensembles
de la famille F, soit K [a0, cq, ak } et soit K' { aß, a\, a'k>\.
Si A A', il existe deux entiers positifs u et v, tels que nu — n,v et que
l'ensemble K1 des entiers de la forme n"^cq + nu~2a2 + + au, où
cqe K, i 1, u, se confond avec l'ensemble Kß des entiers delà
forme n'v~1ß1 + w/1,_2/?2+ A* ßv, où ß-eK', j 1, v.

Montrons que si les deux ensembles A et A' ont les mêmes
intervalles contigus de rang 0,1 et 2, on a A A', n n', k k' et cq — aß,
i 1, k. En effet, comme A et A' ont les mêmes intervalles contigus
de rang 0, ils sont construits sur le même segment et par suite on a
1) akfn — 1 =afk'/nf — 1. Deux cas sont à distinguer. Ou bien ak<n— 1

et a'k>, < n' — 1. Les intervalles contigus de rang 1 de A sont alors

/— -I — ; —, 0 <^i k — 1 et les intervalles con-
\ n n(n— 1) n J

tigus de rang 1 de A' sont + —1
;

a 1 +1\ 0^ i < k' — 1.

\n' n'(n' — 1) n' J

Puisque ces deux groupes d'intervalles sont identiques, on doit avoir

2) k=k'et 3)— —, 1 ^ i ^ k. De 2) et 1) il ressort que———
n n' n—1

a k et, d'après 3), on a — —k. Donc n n' et d'après 3), cq
n' — 1 n n'
aß, i — 1, 2, k. Supposons maintenant qu'on a l'une au moins des
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égalités ak — n — l, ark=n' — 1. D'après 1), l'un au moins des rapports
a k étant, par hypothèse, égal à 1, le second est aussi — 1.

n—1 n'—1
On a donc ak — n — 1 et al k> =n' — 1. Soient l5 ^ 2, .,ôlr les

intervalles contigus de rang 1 de A pris dans un ordre tel que est situé
à gauche de ôysii <j. D'après nos prémisses, ôlv ô12, ..ôlr constituent

aussi l'ensemble des intervalles contigus de rang 1 de A'. Il existe
donc d'une part r indices tl9 tr (0 < tx < t2 < <.tr< k — 1)

et d'autre part r indices sv +*sr (0 ^ s1 < < sr k' — 1), tels

+1 a'H +1/«,. +1 \+i\ /
quei1(= [—i—; —j—) [- % + 1

n

ati> 1, a's. + j — a's. > 1, 1< i < r. On doit donc avoir

at. 4~ 1 a' ». -j- 1 at. i i a', i -,
A \ * » M K. \ i ^ l ' 1 -i4) et 5) 7—, 1 < i < r.un n n

Les intervalles contigus de rang 2 de A sont au nombre de (k + l)r
/ aj at. + 1 aj +

et ce sont les intervalles <52;T- I— 4- —1 ' — 4- —~—I
1 \n n2 n n2 ]

i 1,2, r ; j 0,1, k. D'après nos hypothèses, les intervalles
contigus de rang 2 de A' doivent aussi être au nombre de (k -j- 1) r.

Or, ce nombre est, d'autre part, égal à (k' 4~ 1)r- II s'ensuit 6) k kf.
Les intervalles contigus de rang 2 de A' sont

/ di a's. 4- 1 a'; a'. \
(—r+ '

/2 ; -4+ '~2—), =1, 2, =0,1,\ n n 2 ' n n2 /
et, par hypothèse, ces intervalles se confondent avec les intervalles contigus

de rang 2 de A. Comme a0 <%<...<% et que a'0< a\ <... < a'k)
on doit avoir

^ * _/aJ +1- ^- + ^ + 4 -' ®2ij — I ~f~ 2 ' 2 IJ \ n n2 n2 /
(a'i a'si +1, _j_

a'si+1 \
\ n' n'2 ' n' n'2 /'

i 1, 2, r \ j 0, 1, k.

Soit i un entier fixe quelconque compris entre 1 et r. On a, d'après
4) et 5),

a(. — at. — 1 a'. + n — a'. — 1
ON I I J i) \ fj\8) —7 et, d après 7) on a

n n
ft,- ft,. 4~ 1 ft ,* ft,. 4- 1

ri ./ i si
9) J_ + _Ji__ -4 +n n2 n n

ai at. i a'i a',

>2 et

IV i LVf _[_ 1 Uj i II e. _L 1

10) J- + - -4 + y o, 1, fc.
n n* nn± n* 3
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Attribuons à j une valeur fixe quelconque comprise entre 0 et h et
soustrayons membre à membre les deux égalités correspondantes 9) et
10). Il vient

a,i + 1 — at. — l
_

1

' n2w'2

Divisons 8) et 11) membre à membre. Il vient 12) .Donc, d'après
4) et 5), on a 13) a,. a',, et 14) a,. +x a',. + l4 Et, d'après 9), 10),
11), 12) et 13), on a 14) ay. a'jtj 0,1,..., c.q.f.d.
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