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1. Section de mathématiques
Séance de la Société suisse de mathématiques

Dimanche le 25 septembre 1955

Président: Prof. Dr. J. J. BURCKHARDT (Ziirich)
Secrétaire : Prof. G. VINCENT (Lausanne)

1. SorHIE PiccarD (Neuchitel). — Les systémes fixes d’éléments géné-
rateurs d’un groupe.

Soit ¢ un groupe d’ordre fini N qui admet des automorphismes
externes de deux espéces. Un automorphisme externe est dit de preriére
espece §'il fait correspondre & tout élément a de G son transformé bab—1
par un élément fixe b d’un groupe @, plus vaste que G et dont G est un
sous-groupe distingué. Un automorphisme externe est dit de seconde
espece 8’il ne peut pas étre réalisé de cette fagon. Soit e4,; [e4,]le groupe
de tous les automorphismes internes (de tous les automorphismes) du
groupe (. L’ensemble e 4, de tous les automorphismes internes et externes
de premiere espéce constitue également un groupe dont 4, est un sous-
groupe distingué et qui est & son tour un sous-groupe de c4;. Quel que
soit I’élément a et quel que soit I’automorphisme A de @, nous désignons
par Aa I'élément de G homologue de a dans 4. Nous appelons base de @
tout systéme d’éléments indépendants générateurs de G. Tout auto-
morphisme de ¢ transforme une base de G' en une base de G (pas néces-
sairement distincte de la premiére). Soit 4 un automorphisme, soit

ayq,. . ., 0, une base quelconque de ¢ et soit Aa; = b;,1=1, ..., m. Lesm
couples ordonnée a;, b, (1 =1, ..., m) définissent automorphisme 4 de
fagon univoque. m est ’ordre de chacune des basesa,, ..., a,etby,...,b,,.

On peut répartir aussi bien les éléments que les bases d’ordre donné de
G en classes d’éléments respectivement de bases équivalents relativement
a chacun des trois groupes e4;. Nous dirons, pour abréger, que deux é1é-
ments a et b de G sont ¢-équivalents g'il existe un automorphisme 4 du
groupe cA;, tel que Aa =5, et nous dirons que deux bases d’ordre m:
@y, .., @, et by, ..., b, de G sont i-équivalentes s’il existe un auto-
morphisme 4 du groupe e4;, tel que Aa;=b;,j=1, ..., m, quel que soit
1=1, 2, 3. Deux éléments ou deux bases 1-équivalents de G sont conju-
gués. Deux bases équivalentes sont caractérisées par les mémes relations
fondamentales. Tout automorphisme du groupe c4; transforme en elle-
méme chaque classe d’éléments i-équivalents de . Nous disons qu’un élé-
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ment a de ¢ est un élément fixe d’un automorphisme 4 si Aa =a. Nous
disons qu’une base de @ est une base fixe d’un automorphisme A4 si cette
base est transformée en elle-méme par 4. L’élément unité 1 de G est
fixe dans tous les automorphismes de G et 'automorphisme identique
A, laisse fixes tous les éléments et toutes les bases de . Une base fixe
a4, @y du second ordre d’un automorphisme 4 détermine ce dernier de
fagcon univoque et, si A#£A4, on a dAa,=a,, Aa,=a,, A2=A,, autre-
ment dit 'automorphisme 4 est du second ordre, il permute les deux
éléments a, et a, et la base a,, a, n’est fixe dans aucun autre automor-
phisme non identique du groupe G. Supposons que ¢ posséde des bases
du second ordre et que son centre est d’ordre 1, soit ¥;1’ordre du groupe c4;
1=1, 2, 3. Soit a,, a, une base de G. Nous disons que cette base est de
premiére espéce par rapport aux automorphismes du groupe cA4; si la base
envisagée n’est fixe dans aucun tles automorphismes £ 4, de c4; et nous
disons que la base a,, a, est de seconde espéce par rapport aux automor-
phismes du groupe eA; s’il existe un automorphisme 4 £ 4 du groupe e4;
qui laisse cette base fixe, quel que soit + =1, 2, 3. Pour toute base de pre-
miére (seconde) espéce par rapport aux automorphismes du groupe A4, il
existe »; (v;/2) bases de G qui lui sont i-équivalentes, quel que soit
1=1, 2, 3. A

Tout automorphisme effectue une substitution des éléments de G.
L’étude de ces substitutions permet de déterminer les bases de G et 1’exa-
men des substitutions des éléments de G qui correspondent aux auto-
morphismes du second ordre permet de déterminer toutes les base de
seconde espéce.

Envisageons, & titre d’exemple, I'alterné A, de degré 6. Il possede,
comme on sait, 360 automorphismes internes, 360 automorphismes ex-
ternes de premiere espece et 720 automorphismes externes de seconde
espéce. Le groupe e 4, (e4,) est simplement isomorphe & U, (&) et chaque
automorphisme interne ou externe de premiére espece est représenté par
une substitution paire des éléments de Yq. Par contre, les automorphismes
externes de seconde espéce sont représentés par des substitutions impaires
des éléments de . 144 de ces substitutions sont d’ordre 10, 360 d’ordre
8, 180 d’ordre 4 et 36 du second ordre. Les deux éléments de toute base
fixe dans un automorphisme externe de seconde espece de 9, figurent
dans une transposition de la substitution du second ordre qui représente
un automorphisme externe déterminé de seconde espéce du groupe U,.
Chaque automorphisme externe de seconde espéce de U qui est du se-
cond ordre laisse fixe 10 éléments du groupe, notamment quatre cycles
du 5me ordre, cinq doubles transpositions et 1 et il laisse fixes 140 bases
du second ordre de g Le nombre total des bases de U, laissées fixes
par I'un quelconque des automorphismes externes de seconde espéce de
A, est de 5040. Le nombre total des bases de U, laissées fixes par un
quelconque des automorphismes internes £ A, de U, est de 2160. 720
bases de U4 au total sont laissées fixes par les différents automorphismes
externes de premiére espéce et le nombre total des bases du second ordre
de A, qui sont de seconde espéce par rapport aux automorphismes du
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groupe cA, est de 7920 alors que 30 240 bases du second ordre de U
sont de premiere espéce et ne sont laissées fixes par aucun automorphisme

+#*A, de eA,.

2. SorHIE Procarp (Neuchatel). — Quelgues problémes de la théorie
des groupes.

Soit G un groupe d’ordre fini N défini par un systéme d’éléments
générateurs 1) a;, ..., a, liés par les relations caractéristiques
2)filaq, ...,a,)=1,1 =1, ...,k Appelons multiplication la loi de compo-
sition du groupe G et appelons base d’ordre m de ¢ le systéme d’éléments
générateurs 1). Il n’est généralement pas aisé d’étudier la structure d’un
groupe @ ainsi défini. 1l existe cependant des cas ot un simple examen
des relations 2) fournit de nombreux renseignements sur la structure de
G et permet de déceler la présence de certains sous-groupes distingués,
de déterminer le nombre minimum d’éléments générateurs de G, d’indi-
quer une borne supérieure au nombre total des bases minima et une borne
inférieure au nombre total de sous-groupes distingués de G, etc. Nous nous
sommes attachés aux cas suivants.

Soit » un entier quelconque = 2 et soit 3) a;, ay, ..., @, (1=t =m,
1 slh<l,<...<l,<m) téléments quelconques de la base 1). Nous disons
que G jouit de la propriété P (mod ») par rapport a I'ensemble de ces
éléments si f; est de degré = 0 (mod n) par rapport a ’ensemble des é1é-
ments 3) quel que soit ¢ =1, ..., k, et nous disons que G jouit de la
propriété P (mod n) par rapport & chacun des éléments 3) si f; est de
degré = 0 (mod =) par rapport éma,,j,j =1,..,t,v=1, ...,k

Si G jouit de la propriété P (mod n) par rapport & chacun des élé-
ments 3), il jouit évidemment aussi de la propriété P (mod n) par rapport
a I’ensemble de ces éléments. La réciproque n’est pas vraie. Si ¢ < m, le
groupe G peut jouir de la propriété P (mod ») par rapport & chacun des
éléments 3) de la base 1) et étre dépourvu de la méme propriété par rap-
port & une seconde base de G. Par contre, si le groupe G jouit de la pro-
priété P (mod n) par rapport a chacun des éléments de sa base 1), cette
base est minimum et le groupe G jouit de la propriété P (mod =) par rap-
port & tout élément de chacune de ses bases minima.

Si le groupe G jouit de I'une ou 'autre des propriétés P (mod n) par
rapport aux éléments 3) de I'une quelconque de ses bases 1), G n’est pas
simple et il posséde au moins un sous-groupe distingué d’ordre N /n, 'ordre
de chacun des éléments 3) ainsi que 'ordre de G sont des multiples de n
et on peut répartir les éléments de G en n classes 4, ..., 4,_, composées
chacune de N/n éléments de G et comprenant, avec tout élément a de G
la classe entiére des éléments de G conjugués & a. Les classes A, avec
la loi de composition 4,4, = A4, ol w=u-+ v (mod n) forment un
groupe abélien d’ordre n dont 1’élément zéro A, est un sous-groupe
distingué de G.

Si le groupe G jouit de la propriété P (mod n) par rapport & chacun
des éléments 3), on peut répartir les éléments de G en ' classes M, .. .;

ity
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ou les indices 4;, ..., 4, sont des nombres de I'ensemble {0, ..., n—1}.
Chaque classe M; ...; comprend N/n' éléments de G et elle contient

avec tout élément a de G la classe entiére des éléments de G conjugués
a a. Si ¢t =m, les classes M ont un caractére intrinséque et sont indépen-
dantes de la base 1). Avec la loi de composition M uype g Mogeoow, =
er"wt ol w;=wu;+v; (mod n), j=1, ..., 1, les classes M forment
un groupe abehen I' dont 1’élément zéro M,,..., est un sous-groupe
distingué de G. Quel que soit le sous-groupe y de I, la réunion des classes
M qui constituent les éléments de y est un sous-groupe distingué de G.

Si le groupe G jouit de la propriété P (mod =) par rapport & l’en-
semble [par rapport a chacun] des éléments 3) de sa base 1), il jouit
évidemment de la propriété P (mod d) par rapport & I'ensemble [par
rapport & chacun] des éléments 3), quel que soit le diviseur d > 1 de
n et par conséquent ¢ possede au moins un sous-groupe distingué d’ordre
N/d quel que soit le diviseur d > 1 de n. Si G jouit de la propriété
P (mod n) par rapport & chacun des éléments 3), il posséde au moins
un sous-groupe distingué d’ordre N/d*, quel que soit le diviseur d > 1 de .

Si le groupe G jouit de la propriété P (mod =) par rapport & chacun
des éléments de sa base 1), quel que soit le nombre premier p diviseur
de n, le groupe ¢ posséde au moins (p™— 1) (p™ — p) ... (p™ — p* 1)/
(p —1) (p"—p)... (p'— p™1) sous-groupes distingués distincts d’ordre
Nip™~ii=1,...,m—]1.

Si ¢ jouit de la propriété P (mod n) par rapport & chacun des élé-
ments de sa base 1), le nombre total n de bases minima de G satis-
fait I'inégalité n < (N/p™)™(p™ —1) (p™—p)... (p™ — p™1)/m!, ou
p est le plus petit diviseur premier de n.

Tout groupe abélien jouit de la propriété P (mod a,) par rapport
a chaque élément de n’importe laquelle de ses bases minima, a, désignant
le plus petit des invariants du groupe considéré.

Il existe aussi des groupes non abéliens qui jouissent de la propriété
P (mod n) par rapport & tout élément de chacune de leur base minima.
Ainsi, par exemple, le groupe non abélien G, d’ordre 108, engendré
par les deux substitutions S§; = (1 2) 34) (56 7) (11 12 13 14 15 16),
S, = (1 3) (2 4) (5 6) (89 10) jouit par rapport & chacune des substitu-
tions 8, et S, de la propriété P (mod 6), puisque S; et S, sont liées par les
relations fondamentales 8,6 = 1, S,8 = 1, 8,2 S, 8,2 5,5 = 1,
85838582 =1.

3. H. ME1ER (Ziirich). — Aus der Theorie der Abelschen Gruppen?.

4. M. KERVAIRE (Berne). — Courbure intégrale généralisée et homo-
topiel.

5. G. VincENT (Lausanne). — Sur les représentations linéaires de cer-
tains groupes finisl.

1 Paraitront dans «L’ens. math.» 1955.
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6. SopHIE PiccarD (Neuchatel). — Sur des ensembles parfaits.
Soit 7 un entier quelconque = 3 qu’on prend pour base de numé-

ration. Soit K = {a,, a,, ..., a;} un vrai sous-ensemble de I'’ensemble
{0,1,....n—1},telque 0 = a, < a, <...< @, =n—1etsoitd =
la,, @y, ..., @], 'ensemble des nombres du segment 6 = < 0, a,/n —1 >

qui peuvent s’écrire dans le systéme de numération & base n avec les
seuls chiffres de ’ensemble K. On obtient ’ensemble 4 & partir du segment
0 par la suppression successive d’intervalles contigus de rangs 1, 2, ...
définis comme suit. Quel que soit 'entier m =1, si o, < n—1, les
intervalles contigus de rang m sont les (k + 1)™ 'k intervalles (ouverts)
de la forme (0, o ay-.. Qpny @ (%); 0,0, Q5. .0y @yy) ol aekK,

j=1 ..., m—1let0 <i¢ <k—1. Et, sia, =n— 1, les intervalles
contigus derang m sont tous les intervalles de la forme (0, a; a,. . .0, ;@,.;
0,a,0a5...0,B,)00aeK,j=1....m—1la,=a+1 (0 =1 <

k—1,a;.,—a; >1), B, =a,.,. Appelons intervalle contigu de rang 0
de A Vensemble des nombres réels qui ne font pas partie de §. Soit F
la famille de tous les ensembles 4. Deux ensembles de la famille F
4 =1la,a, ...,q],et A = [a/, a, ..., d'y]» peuvent étre confon-
dus sans que l'on ait les égalitésn =n', k =k eta, =a;/',i =1, ..., k,
comme l’avaient remarqué M. Henri Cartan et Mlle Héléne Cartan qui
avaient formulé deux critéres permettant de résoudre le probléeme de I’iden-
tité de deux ensembles delafamille #'. Onala proposition généralesuivante;
Soient 4 =[a,, ay, ..., a ], et 4" = [a,/,a,, ..., a' ], deux ensembles
de la famille F, soit K = {a,, a,, ..., a,} et soit K' = {a,,a'y, ..., a'i}.
Sid = A4', il existe deux entiers positifs « et v, tels que n* = n'* et que
Pensemble K, des entiers de la forme n*la; + n*2%a, + ... 4+ a,, ou
a;eK, ¢t =1, ..., u, se confond avec '’ensemble K, des entiers dela
forme »n'*16; +n'*2 8,4+ ... +f,, ou BieK'sj=1, ..., v

Montrons que si les deux ensembles A et A’ ont les mémes inter-
valles contigus derang 0,1 et 2, ona 4 = A’ n =n', k = k' et a; = a;,
t =1, ...,k Eneffet, comme 4 et 4’ ont les mémes intervalles contigus
de rang 0, ils sont construits sur le méme segment et par suite on a
1) ay/n — 1 =a'y/n’ — 1. Deux cas sont & distinguer. Ou bien a, <<n—1

et a’y, < n' — 1. Les intervalles contigus de rang 1 de 4 sont alors
(& + % ; —%i»l—), 0 <7 <k—1 et les intervalles con-

n n(n—1) n

- ! / !
tigus de rang 1 de A’ sont(a’—}— k- . a‘“),Oéiék’—l.
n' n (n' —1) n'
Puisque ces deux groupes d’intervalles sont identiques, on doit avoir
’ !
2) k=k'et 3) % gi, 1 £ 95k De 2) et 1) il ressort que % _
n n' n—I1

! !

Ve et, d’aprés 3), on a2t — %% Donen—n et d’apres 3), a; =
n' —1 n n'

a;, 1 =1, 2, ..., k. Supposons maintenant qu’on a I'une au moins des
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égalités a, = n — 1, @', =n’ — 1. D’apreés 1), 'un au moins des rapports
ag a/k' . '

U1 étant, par hypotheése, égal & 1, le second est aussi = 1.
n—1 n'—

Onadonc a, =n—1eta'y, =n'—1.S0ilent §,,, 6;, ..., d;, lesinter-
valles contigus de rang 1 de 4 pris dans un ordre tel que §,; est situé
@ gauche de d;;si4 <j. D’apres nos prémisses, 6,4, 615, ..., 0;, consti-
tuent aussi I’ensemble des intervalles contigus de rang 1 de A'. Il existe
donc d’une part r indices ¢, ..., ¢ O< t;, << ... <t,< k—1)
et d’autre part r indices s, ...,8, (0 &< ... <s, <k — 1), tels
@, + 1 Ay, + 1 a,si +1 alsi +1 a L
que 61i = o : " = . ; o , s, +1
a,>1,a,,,—a, >1 1< ¢<r. On doit donc avoir
a, + 1 a, +1 a,. a,.
4) S Y S AL L P T
n n n n

Les intervalles contigus de rang 2 de 4 sont au nombre de (k + 1)

(aj @y, 5= 1 a; a’ti-I-l)

et ce sont les intervalles 62ij —

n nt  on 2

v=1,2,...,7;5=0,1, ..., k. D’aprés nos hypothéses, les intervalles

contigus de rang 2 de A’ doivent aussi étre au nombre de (¢ + 1) r.
Or, ce nombre est, d’autre part, égal & (k' +1)r. Il s’ensuit 6) k = &'.
Les intervalles contigus de rang 2 de A’ sont

/ ! ! !
(aj o, +1 a; Wy, 11

—

n n'z o pn

7 ), 1=1,2,...,7r5=0,1, ..., F,
et, par hypothése, ces intervalles se confondent avee les intervalles conti-
gusderang 2de 4. Commea, <a,<<...< g et que @' ,<a', <...<a',
on doit avoir

a; a, +1 a;j+a,
7) 521']': T 9 ? 2 =
n n n
! / i /
aj+ asi—[—l‘ a; @y, 41
n' n't n'2 ’

v=1,2,...,r;9=0,1, ...,k

Soit ¢ un entier fixe quelconque compris entre 1 et ». On a, d’aprés
4) et 5),

! !/
a,,—a, —1 @y, +,— a0, —1
8) —- ' &= ! et, d’aprés 7) on a
n n'
a: a, +1 a; a, + 1
- J t j 5
9) — + = + - et
) n n? n' n'?
!
a a a'; a
'j t; + 1 J 5 +1
10) — : == —, ;j=0,1, , k
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Attribuons & j une valeur fixe quelconque comprise entre 0 et k et

soustrayons membre & membre les deux égalités correspondantes 9) et
10). 11 vient

a, .,—a, —1 a, .,—a,—1
11) ;1 2:, R i+ 1 R 5 .

n n
Divisons 8) et 11) membre & membre. Il vient 12) » = n’. Donc, d’aprés
4) et 5), ona 13) o, =d', et 14) a,, 4 ; = a/,, ;. Et, d’aprés 9), 10),
11),12) et 13),0ona14)a; = a';,j =0,1,..., k, c.q.f.d.
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