Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 134 (1954)

Rubrik: Vorträge gehalten in den Sektionssitzungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Leere Seite Blank page Page vide

1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, den 26. September 1954

Präsident: Prof. J. J. Burckhardt (Zürich)

Sekretär: Prof. G. Vincent (Lausanne)

1. A. Maret (Biel). – Eine Beweismöglichkeit des Vierfarbensatzes.

Beim Problem, die Höchstzahl der Farben zu bestimmen, die für die Färbung einer (politischen) Karte nötig sind, kann man sich auf sog. Minimalkarten beschränken, d. h. auf Karten, die nur Dreiländerecken aufweisen. Bis heute ist nun nicht bemerkt oder dem Umstand zu wenig Bedeutung gegeben worden, daß solche Karten Länder oder Ländergruppen aufweisen können, die nur von zwei andern Ländern umgeben werden. Läßt man dies zunächst nicht zu, sollen also zunächst alle Länder oder Ländergruppen von mindestens drei andern Ländern umgeben werden, so hat man Karten, die wir «spezielle» Minimalkarten nennen wollen. Es kann nun gezeigt werden, daß diese Karten die maximal mögliche gegenseitige Benachbarung der Länder unter sich aufweisen und mit vier Farben immer gefärbt werden können.

Dazu wird eine für jede Karte charakteristische «Benachbarungsmatrix» aufgestellt. Ist ein Land zu einem andern benachbart, so wird «1» in die Matrix eingetragen, und wenn nicht «0». Es kann nun leicht die maximale Anzahl von Einern für eine solche Matrix angegeben werden. Sie beträgt N=6n-12, wenn n die Zahl der Länder bedeutet. Es stellt sich nun heraus, daß just die «speziellen» Minimalkarten diese Maximalzahl von Einern aufweisen. Da diese mit höchstens vier Farben immer gefärbt werden können, ist es auch der Fall für alle andern Karten, die ja nie diese maximale Benachbarung der Länder untereinander aufweisen können. Ihre Matrix hat immer weniger Einer als N.

Auf Grund dieser Erkenntnisse kann eine Färbregel aufgestellt werden, die verhindert, daß eine angefangene Färbung einer Karte unter Umständen wieder rückgängig gemacht werden muß, um mit nur vier Farben auszukommen (s. dazu Hilbert und Cohn-Vossen, Anschauliche Geometrie, New York, Dover publications 1944, S. 297). Damit findet ebenfalls vom praktischen Gesichtspunkt aus das im Jahre 1878 von Caylay formulierte Problem wenigstens teilweise eine Lösung.

2. Sophie Piccard (Neuchâtel). – Structure de groupes.

Soit G un groupe d'ordre fini N défini par un système d'éléments générateurs indépendants 1) $S_1,$ $S_2,$..., S_m (pas nécessairement minimum) liés par les relations caractéristiques 2) $f_i(S_1, S_2, \ldots, S_m) = 1$, $i = 1, 2, \ldots, k$. Appelons «produit» la loi de composition du groupe G. Soit p un nombre premier ≥ 2 , soient r et $i_1, \ldots i_r$ des entiers tels que $1 \leq r \leq m$, $1 \leq i_1, < i_2 < \ldots < i_r \leq m$.

Nous dirons que le groupe G jouit de la propriété $P_r(\text{mod }p)$ par rapport aux r éléments $S_{i_1}, S_{i_2}, \ldots, S_{i_r}$ du système 1) si $f_i(S_1, \ldots, S_m)$ est de degré $v_{ij} \equiv 0 \pmod{p}$ par rapport à $S_{i_j}, j = 1, \ldots, r, i = 1, \ldots, k$. D'autre part, nous dirons que G jouit de la propriété $P \pmod{p}$ par rapport à l'ensemble des éléments S_{i_1}, \ldots, S_{i_r} si $f_i(S_1, \ldots, S_m)$ est de degré $v_i \equiv 0 \pmod{p}$ par rapport à l'ensemble des éléments S_{i_1}, \ldots, S_{i_r} .

Si le groupe G jouit de la propriété $P_r \pmod{p}$ par rapport à un système de m éléments générateurs, il peut être dépourvu de la même propriété par rapport à un autre système formé de m éléments générateurs, au cas où r < m.

Si G jouit de la propriété $P \pmod{p}$ par rapport à r éléments S_{i_1} , ..., S_{i_r} d'un système d'éléments générateurs 1), l'ordre de chacun des éléments S_{i_1} , ..., S_{i_r} est un multiple de p, l'ordre N de G est un multiple de p et G possède au moins un sous-groupe distingué d'ordre N/p.

Supposons maintenant que G jouit de la propriété $P_r \pmod{p}$ par rapport aux éléments S_{i_1}, \ldots, S_{i_r} du système 1). Alors l'ordre de chacun des éléments S_{i_1}, \ldots, S_{i_r} est un multiple de p, l'ordre N de G est un multiple de p^r .

Soient $a_1, \ldots, a_r r$ nombres quelconques de l'ensemble $\{0, \ldots, p-1\}$ et soit $R = f(S_1, \ldots, S_m)$ un élément quelconque de G. Nous dirons que R est de classe $Ma_1 \ldots a_r$ si le degré \mathbf{n}_j de f par rapport à S_{i_j} satisfait la congruence $n_j \equiv a_j \pmod{p}, \ j = 1, \ldots, \ r$. On définit ainsi p^r classes $Ma_1 \ldots a_r$ dont chacune contient N/p^r éléments de G. Appelons produit de deux classes $Ma_1 \ldots a_r$ $Mb_1 \ldots b_r$ l'ensemble des éléments ST de G, $S \in Ma_1 \ldots a_r$, $T \in Mb_1 \ldots b_r$. On a $Ma_1 \ldots a_r Mb_1 \ldots b_r = Mc_1 \ldots c_r$, où $c_i \equiv a_i + b_i \pmod{p}, \ i = 1, \ldots, r$. Avec cette loi de composition, les classes M constituent un groupe abélien Γ dont la classe $Moo \ldots o$, est l'élément zéro et dont tout élément autre que zéro est d'ordre p.

Si une classe M contient un élément R de G, elle contient la classe entière des éléments de G conjugués à R. Quel que soit le sous-groupe γ de Γ , la réunion des éléments de G faisant partie des classes M qui constituent le groupe γ est un sous-groupe distingué de G. Le groupe G ne saurait être engendré par moins de r éléments. Quel que soit l'entier i

 $(1 \le i \le p-1)$, G possède au moins $(p^r-1) \dots (p^r-p^{r-1})/(p^i-1) \dots (p^i-p^{i-1})$ sous-groupes distingués d'ordre N/p^{r-i} . Quel que soit le sous-groupe g de G, il existe un entier l $(0 \le l \le r)$, tel que g contient des éléments de p^l classes M et de p^l seulement et qu'il contient le même nombre d'éléments de chacune de ces classes. Si un groupe G d'ordre fini N possède au moins un sous-groupe distingué G d'ordre N/p, où p est premier, G jouit de la propriété P (mod p) par rapport à l'ensemble des éléments de l'un au moins de ses systèmes générateurs.

3. Charles Blanc (Lausanne). – Estimation de la covariance et du spectre d'une fonction aléatoire.

Considérons le problème suivant: on possède un échantillon d'une fonction aléatoire stationnaire d'ordre deux X(t) sur un intervalle fini (0,T); on demande d'estimer la covariance et le spectre de Fourier de X(t).

Ce problème semble n'avoir jamais été abordé d'une façon rigoureuse; pratiquement, l'estimation de la covariance et du spectre résulte de calculs effectués sur l'échantillon, calculs dont les résultats sont des grandeurs aléatoires dont la distribution peut être étudiée en fonction de celle de X(t). En reprenant les diverses techniques d'estimation, on constate qu'elles fournissent le plus souvent un résultat biaisé; pour la covariance, ce biais est d'autant plus grand que le spectre de X(t) présente une valeur plus élevée autour de l'origine. Cela explique les difficultés que l'on rencontre lorsque l'échantillon présente une variation appréciable à très basse fréquence. Pour l'estimation du spectre, on peut montrer qu'il y a avantage à procéder directement sans passer par la covariance; on calcule successivement

$$c_n=rac{1}{T}\int\limits_0^T X\left(t
ight) \exp\left(-rac{2\,i\,\pi\,nt}{T}
ight)\,dt$$
 et $A\left(v
ight)=2\,T\mid c_n\mid^2$ $v=rac{n}{T}\,;$

on montre que A(v) donne une estimation non biaisée du spectre de X(t); cette estimation est très sélective (c'est-à-dire peu influencée par les autres valeurs du spectre) et assez fortement dispersée. On peut montrer qu'il en est de même de l'expression que l'on aurait en remplaçant l'intégrale donnant c_n par une somme. Dès lors, on peut déterminer assez bien quelle partie du spectre peut être estimée si l'on dispose d'un échantillon de longueur T et si l'on remplace l'intégrale par une somme portant sur N valeurs équidistantes de t.

4. A. Pfluger (Zürich). – Über die Bestimmung von obern und untern Schranken für die Kapazität und Torsionssteifigkeit.

Die Torsionssteifigkeit P eines prismatischen Stabes mit dem Querschnitt A (einfachzusammenhängend) ist definiert durch

$$\frac{1}{4}P = \int \int_A (\operatorname{grad}\varphi)^2 dx dy \ (=D(\varphi)) = \int \int_A \varphi \, dx dy \ (=\overline{\varphi})$$

mit $\Delta \varphi = -1$ in A und $\varphi = 0$ am Rande. P besitzt folgende Maximum- und Minimumeigenschaft: Ist f eine stückweise glatte Funktion in A mit f = o am Rande und $\vec{v} = (p, q)$ ein stetiges und stückweise stetig differenzierbares Vektorfeld mit div $\vec{v} = -1$ in A, so ist $(f)^2/D(\overline{f}) \leq \frac{1}{4}P \leq f/A(p^2+q^2) dxdy$. Dies gestattet auf algebraische Weise für P obere und untere Schranken zu gewinnen: A sei von horizontalen und vertikalen Linien begrenzt und in kongruente Quadrate von der Seitenlänge h eingeteilt. Den Ecken dieser Figur werden in folgender Weise Zahlen zugeordnet: Den Randecken null; jeder innern Ecke das artihmetische Mittel aus den Werten ihrer vier Nachbarecken vermehrt um $\frac{1}{4}$. Mit diesen Werten e_i gilt dann $h^4 \sum e_i < \frac{1}{4} P$ (Pólya). Nun werden den Quadratflächen Zahlen zugeordnet: jeder Quadratfläche das arithmetische Mittel der Werte ihrer vier Nachbarquadrate vermehrt um $\frac{1}{4}$, wobei die Außenfläche der Figur A den Wert o hat. Mit diesen Werten q_k ist dann $1/4 P < h^4 \Sigma q_k$. Mit gleichen Zahlen e_i und q_k gibt es wesentlich bessere Schranken. Auch die Gleichungssysteme selbst lassen sich verbessern. Bemerkenswert ist aber die Existenz einer Simultanmethode (Hersch), die es gestattet, aus einem einzigen Gleichungssystem gute obere und untere Schranken zu gewinnen. Zahlenbeispiel: Wird ein Quadrat von der Seitenlänge 1 in 36 Quadrate geteilt (Symmetrie, nur 6 Unbekannte!), so liefert die Simultanmethode 0.1355 < P < 0.144. Ähnliche Methoden liefern obere und untere Schranken für die Kapazität. Die Resultate ergaben sich in Zusammenarbeit mit $J.\ Hersch$ und A. Schopf. Wesentliche Anregungen dazu gab eine Vorlesung von G. Pólya (ETH, Wintersem. 53/54) sowie eine Arbeit in den Comm. Math. Helv. (vol. 27 [1953], 346–356).

5. Sophie Piccard (Neuchâtel). — Les relations caractéristiques des bases du groupe alterné.

Nous nous sommes proposé de caractériser le groupe alterné \mathfrak{A}_n de degré $n \geq 4$ en partant de différantes bases de ce groupe. D'autre part, nous avons cherché à caractériser le groupe alterné défini comme un groupe abstrait par un couple d'éléments générateurs satisfaisant un ensemble déterminé de relations fondamentales. Nous indiquons deux tels systèmes correspondant l'un à toute valeur paire ≥ 4 et l'autre à toute valeur impaire ≥ 5 de n. Nous supposons que les éléments permutés par les substitutions de \mathfrak{A}_n sont les nombres $1, \ldots, n$.

Toute base du second ordre aussi bien du groupe alterné \mathfrak{A}_4 que de \mathfrak{A}_5 peut être caractérisée par trois relations indépendantes. Voici un système de représentants indépendants des bases du second ordre de \mathfrak{A}_4 et de \mathfrak{A}_5 avec trois relations indépendantes caractéristiques de chacune d'elles.

Groupe \mathfrak{A}_4 : $S_1=(1\ 2\ 3),\ T_1=(1\ 2\ 4),\ S_1^3=1,\ T_1^3=1,\ (T_1\ S_1)^2=1;$ $S_2=(1\ 2\ 3),\ T_2=(1\ 2)\ (3\ 4),\ S_2^3=1,\ T_2^2=1,\ (T_2\ S_2)^3=1;\ S_3=(1\ 3\ 2),$ $T_3=(1\ 2)\ (3\ 4),\ S_3^3=1,\ T_3^2=1,\ (T_3\ S_3)^3=1;\ S_4=(1\ 2\ 3),\ T_4=(1\ 4\ 2),$ $S_4^3=1,\ T_4^3=1,\ (T_2^2\ S_4)^2=1;\ S_5=(1\ 3\ 2),\ T_5=(1\ 2\ 4),\ S_5^3=1,$ $T_5^3=1,\ (T_5^2\ S_5^2)^2=1.$

Groupe \mathfrak{A}_5 : $S_1=(1\ 2\ 3\ 4\ 5),\ T_1=(1\ 2\ 3),\ S_1^5=1,\ T_1^3=1,\ (T_1\ S_1^2)^2=1;\ S_2=(1\ 2\ 3\ 4\ 5),\ T_2=(1\ 3\ 2),\ S_2^5=1,\ T_2^3=1,\ (T_2^2\ S_2^2)^2=1;\ S_3=(1\ 2\ 3\ 4\ 5),\ T_3=(1\ 2\ 4),\ S_3^5=1,\ T_3^2\ S_3\ T_3^{-1}\ S_3=1,\ T_3\ S_3^3\ T_3\ S_3^4\ T_3^{-1}\ S_3^4=1;\ S_4=(1\ 2\ 3\ 4\ 5),\ T_4=(1\ 4\ 2),\ S_4^5=1,\ T_3^3=1,\ (T_4\ S_4)^2=1;\ S_5=(1\ 2\ 3\ 4\ 5),\ T_5=(1\ 2)\ (3\ 4),\ S_5^5=1,\ T_5\ S_5\ T_5\ S_5\ T_5^{-1}\ S_5=1,\ T_5\ S_5^4\ T_5^{-1}\ S_5=1,\ T_5\ S_5^4\ T_5^{-1}\ S_5=1,\ T_5\ S_5^4=1;\ S_6=(1\ 2\ 3\ 4\ 5),\ T_6=(1\ 3)\ (2\ 4),\ S_5^5=1,\ T_6^2=1,\ (T_6\ S_6^2)^2=1;\ S_7=(1\ 2\ 3),\ T_7=(1\ 4)\ (2\ 5),\ S_7^3=1,\ T_7^2=1,\ (T_7\ S_7)^5=1,\ S_8\ T_8^4\ S_8\ T_8^4=1;\ S_9=(1\ 2\ 3\ 4\ 5),\ T_9=(1\ 4\ 5\ 3\ 2),\ S_9^5=1,\ T_9^4\ S_9\ T_9^{-1}\ S_9=1,\ S_9\ T_9^{-1}\ S_9=1,\ S_9\ T_9^{-1}\ S_9=1,\ S_{10}=(1\ 2\ 3\ 4\ 5),\ T_{10}=(1\ 3\ 4\ 2\ 5),\ S_{10}^{-1}=1,\ T_{10}^{-1}\ S_{10}\ T_{10}^{-1}\ S_{10}^{-1}=1;\ S_{11}=(1\ 2\ 3\ 4\ 5),\ T_{11}=(1\ 2\ 3\ 4\ 5),\ T_{12}=1;\ S_{12}=(1\ 2\ 3),\ T_{12}=(1\ 4\ 5),\ S_{12}^3=1,\ T_{12}^3\ S_{11}=1,\ T_{12}^{-1}\ S_{11}=1,\ T_{12}^{-1}\ S_{12}\ T_{11}\ S_{12}^2=1;\ S_{12}=(1\ 2\ 3),\ T_{12}=(1\ 4\ 5),\ S_{12}^3=1,\ T_{12}^3=1,\ T_$

Toute base du second ordre de \mathfrak{A}_{6} peut être caractérisée par 4 relations indépendantes.

L'alterné \mathfrak{A}_n peut être défini par n-2 éléments générateurs in-dépendants $b_1,\,\ldots,\,b_{n-2}$ liés par les relations $b_1^3=1,\,i=1,\,\ldots,\,n-2,\,(b_i\,b_j)^2=1,\,i\neq j,\,i,\,j=1,\,\ldots,\,n-2.$

D'autre part, quel que soit l'entier pair $n \ge 4$, l'alterné \mathfrak{A}_n peut être défini par deux éléments générateurs $c,\ d$ liés par les relations

$$egin{aligned} ext{I)} \ c^{n-1} &= 1, \ ext{II)} \ d^{rac{n}{2}} &= 1, \ ext{III)} \ (c^{-1} \, d)^3 &= 1, \ ext{IV}) \ (c^{rac{n}{2}-1} \, d^i \, c^{-rac{n}{2}+1} \, d^{-i})^2 &= 1, \ i &= 1, \ \dots, rac{n}{2}-1, \ ext{V}) \ (c^{rac{n}{2}-1} \, d^i \, c^{rac{n}{2}-1} \, d^{-i+1})^2 &= 1, \ i &= 2, \ \dots, rac{n}{2}-1. \end{aligned}$$

Pour n = 6, nous avons pu déduire la relation $(c^{-1}d)^3 = 1$ des autres. Dans V) [VI)] on n'obtient des relations indépendantes que pour i = 1,

$$\dots, \frac{n-4}{4}+1$$
 [$i=2, \dots, \frac{n-4}{4}+1$], si $\frac{n}{2}$ est pair, ou $i=1,$

$$\ldots, \frac{n-2}{4}$$
 $[i=2, \ldots, \frac{n-2}{4} + 1]$, si $\frac{n}{2}$ est impair.

^{*} Plusieurs de ces systèmes sont bien connus.

Pour n=4, les trois relations I, II et III suffisent à caractériser le groupe \mathfrak{A}_4

D'autre part, quel que soit le nombre impair n=2 $n'+1 \ge 5$, le groupe \mathfrak{A}_n peut être défini par deux éléments générateurs indépendants c et d liés par les relations fondamentales I') $c^3=1$, II') $d^{n-2}=1$, III') $(cd)^n=1$, IV') $(d^i cd^{-i} c)^2=1$, $i=1,\ldots,n'-1$.

Pour n=5, nous avons pu déduire la relation I') des autres relations de ce système.

6. Hans Künzi (Zürich). – Wertverteilung meromorpher Funktionen mit mehrfach zusammenhängendem Existenzgebiet. – Kein Manuskript erhalten.

Es haben noch gesprochen: H. Rutishauser, Zürich, und W. Senft, Dietikon.

2. Sektion für Physik

Sitzung der Schweizerischen Physikalischen Gesellschaft

Sonntag, den 26. September 1954

Präsident: Prof. Dr. P. Huber (Basel)

Sekretäre: Dr. P. Dinichert (Neuchâtel)

Dr. P. De Haller (Winterthur)

1. Ch. Haenny et M. Gailloud (Lausanne). – Méthode de mesure absolue du nombre de neutrons émis par une source RaaBe.

Une source RaaBe contenant 47,29 mC de Ra a été calibrée en valeur absolue en déterminant le nombre total de neutrons capturés par seconde dans un récipient sphérique, contenant une solution d'un sel du bore dont la concentration a été mesurée avec précision, et en divers points duquel ont été irradiées des émulsions nucléaires au bore. La fraction des neutrons diffusant à l'extérieur de la sphère a été déterminée en plongeant celle-ci et son contenu dans une solution d'un sel du manganèse, et en mesurant, à l'aide d'un compteur de verre, partiellement immergé dans cette solution, l'activité moyenne provoquée à l'équilibre. La valeur absolue trouvée pour une source préparée en 1954 par l'Union minière du Haut-Katanga, est de $R = (1,50 \pm 0,07)$ 10^7 neutrons par seconde par Curie, elle est en bon accord avec les valeurs récentes déterminées par divers expérimentateurs, utilisant des méthodes de mesure différentes de celle que nous avons mise en œuvre.

(Un mémoire détaillé paraîtra prochainement dans les Helvetica Physica Acta.)

2. R. Favre, Ch. Haenny, M^{me} M. Biasutti, A. Heym (Lausanne). – Etude de la radiation cosmique par hodoscope.

L'hodoscope dont la construction a été jalonnée de divers articles et communications (1, 2, 3, 4, 5), fonctionne depuis 3 mois à notre entière satisfaction.

Du type à anticoïncidences, il comprend à cet effet 120 compteurs de protection disposés en 4 couches supérieures et latérales tandis que 180 compteurs actifs, repérés individuellement, se répartissent en 4 bancs doubles comportant respectivement 2 couches de compteurs croisés, de manière à déterminer les coordonnées de passages des rayons. Le banc inférieur, complété de compteurs latéraux, permet la réception de rayons largement dispersés.

Les perfectionnements apportés à la technique de fabrication des compteurs Maze (4) et les précautions géométriques prises dans la conception du banc d'anticoïncidence ont permis de réduire les fuites à un taux extrêmement faible (1/60000 coïncidences environ).

La disposition particulière des compteurs donne accès aux mesures de scattering et permet la discrimination relativement aisée des événements perturbateurs inévitables.

L'espace entre chaque banc de compteurs a été ménagé pour permettre l'introduction d'écrans sélecteurs dont l'épaisseur totale peut atteindre de 50 à 80 cm selon leur poids. La partie supérieure de l'hodoscope peut recevoir $1\frac{1}{2}$ tonne de matériaux de filtrage soit 30 cm de plomb.

L'étude approfondie de divers circuits électroniques a permis la mise au point d'un dispositif de repérage individuel des compteurs caractérisé par un temps de sélection voisin de 1 μ sec qui exclut pratiquement les perturbations y relatives. Nous nous réservons de préciser, dans un article ultérieur, le détail de ces circuits.

Les mesures préliminaires effectuées jusqu'ici visaient au contrôle du bon fonctionnement de l'hodoscope tout en nous familiarisant avec les phénomènes enregistrés. La mesure que nous avons faite de la longueur d'absorption dans le plomb de la composante neutre pénétrante du rayonnement cosmique est notamment en accord avec les valeurs connues.

Les dimensions exceptionnelles de cet hodoscope, la précision du repérage et l'épaisseur des écrans sélecteurs utilisables, lui confèrent de précieuses possibilités pour l'étude de la radiation cosmique pénétrante. La fréquence et l'intérêt des événements étudiés seront accrus en poursuivant les mesures au Jungfraujoch (3500 m).

Nous saisissons cette occasion pour exprimer notre reconnaissance à la Commission suisse pour l'énergie atomique et au Fonds national suisse qui par leur appui ont largement contribué à l'accomplissement de ce travail.

Bibliographie

- (1) Apparatus for the Study of the Production and Scattering of Ionizing Penetrating Particles Generated by the Non-Ionizing Radiation. M. Degallier, Nuovo Cimento, 6, 485 (1949).
- (2) Zero Inefficiency Anticoincidence Circuit. M. Degallier, Review of Scientific Instruments, 21, 1025 (1950).
- (3) Les dispositifs électroniques d'un télescope pour l'étude de la production et de la diffusion des particules ionisantes, pénétrantes de la radiation cosmique. R. Favre, Helv. Phys. Acta, 24, 599 (1951).

- (4) Construction de compteurs Maze et leurs caractéristiques de 0° à 50° C. R. Favre et Ch. Haenny, Helv. Phys. Acta, 26, 53 (1953).
- (5) Circuits électroniques multistables et décades. R. Favre, Helv. Phys. Acta, 27, 235 (1954).

Dispositif de réduction du temps de résolution des démultiplicateurs électroniques d'impulsions

- R. Favre, Lausanne: Un article paraîtra prochainement sous ce titre dans les Helv. Phys. Acta
- 3. K. Bleuler und C. Terreaux (Zürich). Absorption von π -Mesonen durch schwere Kerne. Kein Manuskript erhalten.
- **4.** R. Renlos (Grenoble). *Interactions électromagnétiques*. Pas reçu de manuscrit.
- **5.** A. Fisch (Aarau). Bemerkungen zum Atomgewicht. Kein Manuskript erhalten.
- **6.** A. Perrier et R. Gaille (Lausanne). Mesure de l'effet Nernstvon Ettingshausen à champ démagnétisant réduit et sans rotation du gradient thermique.

L'un des auteurs (P.) a publié au cours de ces dernières années, diverses méthodes destinées à élever notablement la certitude et la précision des effets magnétogalvaniques et magnétothermoélectriques transversaux.

Dans leur principe, ces méthodes tendent toutes à *intensifier les phénomènes eux-mêmes*, réduisant ou annulant les parasites, réduisant ou supprimant complètement la nécessité de faire appel à des organes amplificateurs extérieurs.

La présente communication qui se range encore dans le même cadre est consacrée à la mesure de la force électromotrice qui apparaît dans un conducteur solide lorsque, siège d'un gradient thermique, il est soumis en outre à un champ magnétique normal à ce gradient. La f.e.m. est perpendiculaire à la fois aux deux vecteurs (effet désigné dans le titre, brièvement NE).

La technique décrite rompt catégoriquement avec celle qui est traditionnellement employée jusqu'ici:

La plus petite dimension de l'échantillon parallélépipédique est ici parallèle au gradient de température, la plus grande est dans la direction de l'effet, c'est-à-dire celle qui sépare les sondes d'observation.

Les avantages essentiels apportés par ce dispositif apparemment paradoxal sont:

- 1. L'augmentation de la tension à observer, qui peut atteindre la proportion de 1 à 10.
- 2. Le blocage de la rotation des surfaces équithermes, ou si l'on veut, du gradient thermique (élimination de l'effet Leduc-Righi). Comme conséquence par exemple, la rotation des équipotentielles peut être rapportée à cette direction pratiquement fixe.
- 3. La réduction très considérable des champs démagnétisants de forme; avantage capital avec les milieux ferromagnétiques, objets principaux des études du Laboratoire de Lausanne.
- 4. Corrélativement, la faculté d'entreprendre l'étude, encore inabordée pour ce type de phénomène de l'«effet champ», consécutif à l'effet «spontané».

La méthode a été appliquée au fer Armco et au nickel électrolytique. Ces expériences confirment les bénéfices escomptés: Les forces électromotrices ont pu être observées directement à l'aide de galvanomètres de sensibilité courante. — Les parasites sont absents ou inoffensifs. — Audelà de la saturation pratiquement atteinte (effets «spontanés»), les mesures ont pu être étendues à un intervalle de quelques milliers d'Oersted. Pour les détails, on se reportera à des publications à paraître in H.P.A.

- 7. N. Schaetti (Zürich). *Untersuchungen an Cs-Sb-Photokathoden*. Kein Manuskript erhalten.
- **8.** R. Goldschmidt (Cossonay). Les caractéristiques mécaniques des cordes métalliques tendues. Pas reçu de manuscrit.
- **9.** P. Huber und R. Budde (Basel). Analyse der Streuphasen für elastische n-C¹³-Streuung zwischen 1,92 und 3,84 Me V.

Es haben noch gesprochen: J. P. Borel und C. Manus, Lausanne; I. Brunner, I. Halter, O. Huber, R. Joly und D. Maeder, Zürich; P. Bouvier, Genève, R. Favre, Lausanne; B. Vittoz, Lausanne.

3. Sektion für Geophysik, Meteorologie und Astronomie Sitzung der Schweizerischen Gesellschaft für Geophysik, Meteorologie und Astronomie

Sonntag und Montag, den 26. und 27. September 1954

Präsident: Prof. Dr. F. Gassmann (Küsnacht, Zch.)

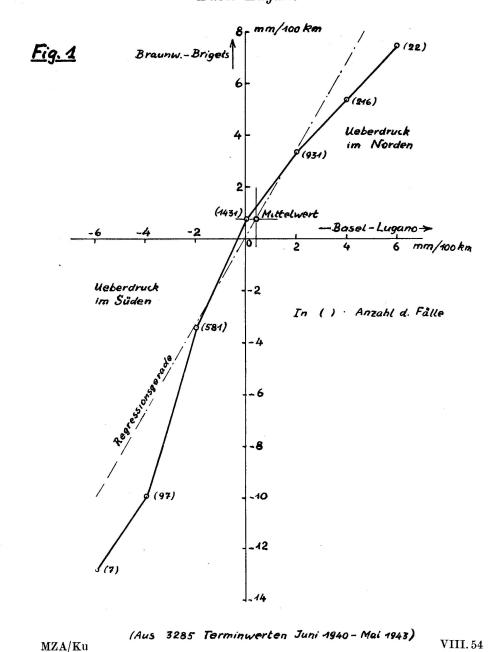
Sekretär: J. C. Thams (Locarno-Monti)

1. Walter Kuhn (Zürich). – Horizontale Luftdruckgradienten in den Alpen nach Messungen im Gebiet des Kistenpasses.

Zur Abklärung der Belüftungsverhältnisse im Tunnel der projektierten Kistenpaßstraße wurden von Juni 1940 bis Mai 1943 in Braunwald (1270 m) und Brigels (1292 m), d. h. auf beiden Seiten des nördlichen Alpenkammes, tägliche Barometerablesungen zu den üblichen Terminen (7.30 h, 13.30 h, 21.30 h) gemacht. Es liegen also von beiden Stationen $3 \times 365 \times 3 = 3285$ korrespondierende Barometerstände vor. Durch einen konstanten Zuschlag von 1,7 mm konnten die Drucke von Brigels auf die Höhe von Braunwald reduziert werden. Das resultierende horizontale Druckgefälle Braunwald-Brigels (δ) vergleichen wir nun mit dem horizontalen Druckgefälle auf der zehnmal längeren Basisstrecke Basel-Lugano (1), um zu sehen, wie der lokale Druckgradient am nördlichen Alpenkamm mit der großräumigen Druckverteilung zusammenhängt. Diese Abhängigkeit wollen wir sowohl synoptisch anhand von Einzelfällen wie auch statistisch mit Hilfe von Korrelationstafeln untersuchen. Für Korrelationszwecke teilen wir die δ -Werte in Klassen von 1 mm, die △-Werte in solche von 4 mm Breite ein. Unsere Tabelle zeigt die Häufigkeitsverteilung der zeitlich zusammengehörenden Wertepaare (Δ , δ), und zwar für das gesamte dreijährige Beobachtungsmaterial. Man erkennt eine positive Korrelation zwischen den beiden Druckgradienten, doch beträgt der Korrelationskoeffizient nur 0,61.

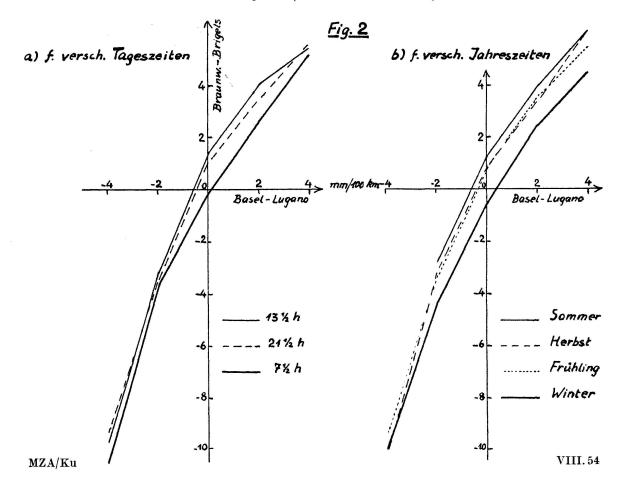
Deutlicher wird der Zusammenhang, wenn wir für die einzelnen Klassen von Δ das mittlere δ berechnen. δ erscheint dann als Funktion von Δ , wobei es sich aber nur um eine stochastische Abhängigkeit handelt. In Fig. 1, welche diese Abhängigkeit veranschaulicht, sind die Abszissen und Ordinaten im gleichen Maßstab aufgetragen, nachdem zuvor beide Druckgradienten auf eine Strecke von 100 km umgerechnet wurden. Aus der 45° übersteigenden Steilheit der Kurve erkennt man, daß der Druck-

Zusammenhang zwischen der horizontalen Druckdifferenz Braunwald-Brigels und dem gleichzeitigen Druckgefälle Basel-Lugano


		Basel–Lugano (200,7 km) Druckdifferenz in mm							
		—12	— 8	—4	0	4	8	12	Summe
	4			,					
Braunwald–Brigels (19,65 km) Druckdifferenz in mm	3				1	8	5	1	15
	2			1	33	79	50	10	173
	1			21	361	444	111	8	945
	0		4	222	783	350	45	3	1407
	-1	10	23	244	222	46	3		538
aun Dr	— 2	4	42	82	27	4	2		161
Bra	3	2	25	10	4				41
	— 4	1	3	1					5
Summe		7	97	581	1431	931	216	22	3285

Korrelationskoeffizient r = 0.61

gradient auf der Gebirgsstrecke durchschnittlich stärker ist als an der Basis. Darin kommt der Staueffekt zum Ausdruck, demzufolge die Isobaren in der Nähe des Gebirgskammes enger geschart sind als über dem flachen Lande. Im Falle des Südföhns (Überdruck im S, negative Gradienten) ist diese Gradientverstärkung erheblich größer als bei Nordföhn. Die Ursache für diese Asymmetrie braucht nicht unbedingt in einer dynamischen Wirkung des Gebirges gesucht zu werden; Unterschiede in der Lufttemperatur zwischen Nord- und Südseite können in Verbindung mit andern Erscheinungen ebensogut dafür verantwortlich sein.


Im klimatischen Mittel ist die Luft auf der Südseite der Alpen wärmer als auf der Nordseite. Dem an der Basis vorhandenen Druckgefälle überlagert sich also in der Höhe ein von S nach N gerichtetes «thermisches» Druckgefälle. Nehmen wir einmal an, bei Temperaturgleichheit wäre δ direkt proportional zu Δ . Die in Fig. 1 strichpunktiert eingezeichnete Regressionslinie geht zufällig durch den Koordinatenursprung und stellt mithin eine solche Proportionalitätsbeziehung dar. Durch den er-

Druckgradient Braunwald-Brigels in Funktion des Druckgradienten Basel-Lugano

wähnten Temperatureffekt würde nun die ganze Beziehungslinie parallel nach unten verschoben, vorausgesetzt allerdings, daß der Temperaturunterschied zwischen Nord- und Südseite vom Druckgradienten unabhängig wäre. In Wirklichkeit hängt der Temperaturunterschied infolge des Föhneffektes eng mit dem Druckgradienten zusammen: Bei Nordföhn ist die Alpensüdseite beträchtlich wärmer als die Nordseite; bei Südföhn nimmt die Temperaturdifferenz umgekehrtes Vorzeichen, aber im allgemeinen geringere Beträge an. In beiden Fällen bewirkt die Temperaturverteilung eine Abschwächung der Bodendruckunterschiede in der

Druckgradient Braunwald-Brigels in Funktion des Druckgradienten Basel-Lugano (VI. 1940-V. 1943)

Höhe. Bei ausgeglichenem Bodendruck sollte wegen der klimatischen Temperaturdifferenz am Alpenkamm ein negatives (d. h. von S nach N gerichtetes) Druckgefälle herrschen, während unsere empirische Kurve die Ordinatenachse etwas oberhalb des Nullpunktes schneidet. Daraus folgt, daß statische Druckunterschiede zur Erklärung der beobachteten Differenzen nicht ausreichen.

In Fig. 2 haben wir die Beziehungslinie δ (Δ) für die einzelnen Tagesund Jahreszeiten gesondert dargestellt. Zunächst darf festgestellt werden, daß die verschiedenen Kurven in ihrem Verlauf nicht wesentlich voneinander abweichen. Das verwendete Beobachtungsmaterial scheint also umfangreich genug zu sein, um allgemeinere Schlüsse zuzulassen. Daß die Krümmung an den Enden der Kurven nicht mit derjenigen in Fig. 1 übereinstimmt, rührt davon her, daß in Fig. 2 die extremen Werte links und rechts weggelassen werden mußten, weil auf die einzelnen Beobachtungstermine und Jahreszeiten dort zu wenig Beobachtungen entfallen. Aus dem gleichen Grunde mußte in Fig. 2b die Sommerkurve beim Punkt mit der Abszisse —2 abgebrochen werden.

Bei Südföhn sind die tages- und jahreszeitlichen Unterschiede kleiner als bei Nordföhn und bei schwachem Basisgradienten. Die 7.30-h-Kurve und die Kurve der Wintermonate (Dezember-Februar) schneiden die Ordinatenachse etwas unterhalb des Nullpunktes, wie es auf Grund der klimatischen Temperaturunterschiede zu erwarten war. Zu allen übrigen Tages- und Jahreszeiten, namentlich aber im Sommer und beim Mittagstermin, überwiegen bei verschwindendem Δ positive δ -Werte. Diese Erscheinung geht wohl auf die tagesperiodische Luftzirkulation des Alpenkörpers zurück, welche tagsüber, zumal in der wärmeren Jahreszeit bei gradientschwachen Wetterlagen, im Innern des Alpengebietes einen relativen Unterdruck erzeugt. Wir haben uns daran zu erinnern, daß Braunwald in einem nördlichen Seitental, Brigels aber im Längstal zwischen den beiden Hauptketten der Alpen und somit im Bereich dieser alpinen Depression liegt. Eine Analyse des Luftdruckganges an verschiedenen alpinen und außeralpinen Stationen bei einzelnen sommerlichen Schönwetterlagen hat diese Auffassung bestätigt. Um den angedeuteten Zusammenhängen auf die Spur zu kommen, beabsichtigen wir, Gradientuntersuchungen wie die vorliegende auch für andere Stationspaare (z.B. Bern-Sitten, Göschenen-Airolo) durchzuführen.

2. Max Schüepp (Zürich). — Die Temperaturdifferenzen zwischen verschiedenen Thermometeraufstellungen.

Im langjährigen schweizerischen meteorologischen Beobachtungsnetz werden an mehr als 90% aller Stationen Hausaufstellungen (Blechgehäuse an der NW-Wand der Häuser) für die Temperatur- und Feuchtigkeitsmessung verwendet. Daneben bestehen besonders im neuen, dreistündlich meldenden Stationsnetz englische Hütten (geschlossene Holzhütten mit Doppeljalousien) sowie an einigen Stationen sogenannte Wildsche Hütten (offene Blechhütten). Seit dem Jahre 1953 werden auf der Meteorologischen Zentralanstalt Vergleichsmessungen zwischen den verschiedenen Aufstellungsarten durchgeführt, wobei die folgenden Temperaturdifferenzen gegenüber der mit dem Aßmann-Psychrometer in 1,6 m Höhe gemessenen wahren Lufttemperatur im Freiland festgestellt wurden:

- 1. Die Hausaufstellung im Parterre an der Nordfassade der Meteorologischen Zentralanstalt zeigte 1953 keine wesentlichen systematischen Abweichungen von den Psychrometerwerten, jedoch eine starke Streuung in den Einzelmonaten (ca. $\pm 0.5^{\circ}$). Nur der Morgentermin war durchschnittlich um 0.3° zu warm, so daß im Tagesmittel eine um ca. 0.1° erhöhte Temperatur resultierte.
- 2. Die englische Hütte zeigte ebenfalls nur geringe Abweichungen, jedoch ein Nachhinken der Temperatur im Tagesgang. Morgens war sie im Sommerhalbjahr um $0,1-0,2^{\circ}$ zu kalt. Der Mittagstermin war im Durchschnitt richtig. Abends wurden dagegen bei Sonnenuntergang $0,2^{\circ}$,

bei sonnigem Wetter 0,3–0,4°, um 21.30 h im Durchschnitt noch 0,1–0,2° zu hohe Temperaturen gemessen. Das Tagesmittel wird richtig mit Abweichungen von meist weniger als 0,1°.

3. Die Wildsche Hütte wies im Sommerhalbjahr große Unterschiede zur wahren Lufttemperatur auf. Der Morgentermin war durchschnittlich 0,3° zu warm, der Mittagstermin 0,9°. An den sonnigen, windschwachen Tagen stieg der Fehler sogar auf 1,2°, in Einzelfällen über 1,5° (gefälschte Maximaltemperaturen!). Der Abendtermin um 21.30 h war dagegen richtig, das Tagesmittel somit um ca. 0,3° zu hoch.

Aus diesen Messungen ergibt sich, daß die Hausaufstellungen und die englischen Hütten etwa vergleichbare und ziemlich richtige Temperaturwerte ergeben. Zwar handelt es sich bei der Hausaufstellung um einen Einzelfall, der nicht repräsentativ zu sein braucht, doch werden die Ergebnisse durch analoge Vergleiche an neun Stationen im deutschen Beobachtungsnetz gestützt. Die Wildschen Hütten ergeben dagegen bei Aufstellung an der Sonne im Sommer zu hohe Temperaturwerte. Sie sollten daher im Laufe der nächsten Jahre auf den klimatologischen Stationen nach entsprechenden Vergleichsmessungen durch englische Hütten ersetzt werden.

3. G.A. Gensler (Kloten). – Kaltlufttropfen des Spätfrühlings 1954, im speziellen ihre Bewölkungs- und Niederschlagsstruktur.

Das Entstehen von Kaltlufttropfen ist einerseits an weltweite Verlagerungen von Kältezonen (z. B. aus Kanada oder dem Nordural), anderseits dem Vorhandensein eines Schutzes vor neuen, aus Westen hereinbrechenden Höhenzyklonen gebunden. Dieser Schutz wird sowohl durch ein Höhenhoch Irland-Schottland (dieses seinerseits durch ein mittelatlantisches Tief gebildet und geschützt) als auch durch ein finnisches Hoch (aus der reaktivierten Warmluft vor dem Kaltlufteinbruch gebildet) erreicht. Durch dieses Umflossenwerden durch Warmluft auf seiner Nordseite wird das Kältegebiet abgeschnürt, wird fast ortsfest und verzehrt langsam seine mitgebrachte Energie.

Dieses Eigenleben äußert sich auch in einer typischen Bewölkungsund Niederschlagsstruktur, die je nach dem Tropfenalter verschieden ist. Anhand einiger Dutzend Flugberichte ergab sich als *Jugendstadium*: vor der einfließenden Kaltluft herrscht Subsidenz oberhalb ca. 3000 m ü.M., böig darunter. Vor der Kaltluftstirne begrenzte, böige Gewitter; im Scheitel oberhalb 2000–3000 m Wolkenarmut, Dunst; im anschließenden Rückraum (kältester Teil) verbreitete Schichtbewölkung bis auf 6000 m mit entsprechenden Niederschlägen, oft in hufeisen- oder sichelförmiger Verteilung. Weiter hinten, im Abschnürungsraum, niedere Kumuli mit Peplopausenausbildung bei 1500–2000 m ü.M.

Im *Hauptstadium* gehen die morgendlichen dicken Schichtwolken bis zum Abend in Quellformen über. Bei weiterer Alterung und Bodenluftdruckanstieg ist morgens nur noch lockere Bewölkung vorhanden, die nachmittags, jetzt speziell im Kältezentrum, stark labil wird, da die bisher kreisförmigen Kältezentren zu teils scharfen Höhentroglagen degenerieren können, ferner in den Randzonen jetzt die Abwinde überwiegen¹. Die Grundschicht, welche vorerst nur im Niederschlag aus der Hauptschicht (Basis in 1800–2200 m ü.M. im Mittelland) wolkenerfüllt ist (Fs in 500–800 m ü.M.), nimmt nun wieder an der aktiven Wolkenbildung (Cu in 1000–1600 m ü.M.) teil. Alternd wirkt auch der Einbezug von neuen Bodenfronten, wohingegen ein Warmluftaufgleiten im Raume Riviera–Balkan/Ostalpen wenig zur Erwärmung der Kaltluft beiträgt.

Neben der Art ist auch die tägliche Niederschlagsfrequenz typisch: Regen von 03–15 h (max. 06–08 h), Schauerzeit von 16–01 h (max. 18 und 23 h) in oft 6- oder 12stündigen Perioden; die Mengen betragen 10–35 mm in 24 Stunden (im Alpenstau bis 130 mm).

Der Kaltlufttropfen ist weder ein Bjerknestief (mit Hauptbewölkung im Warmluftbereich) noch ein wandernder, von starken Winden um- und überströmter Kaltluftberg; infolge der nach oben rückwärts gerichteten Achsenneigung seiner Höhenzentren und -tröge (ca. 1:40) und seiner zeitlich und räumlich sich ändernden Vertikalströme ist seine Struktur komplex.

4. G.-A. Gensler, A. Piaget, R. Schneider (Kloten). – Essai de classification des situations météorologiques dans les Alpes; premières applications.

Le principe de la classification repose sur les différences de pressions réduites au niveau de la mer et de hauteurs de la surface de 500 mb pour deux couples de stations (Milan-Strasbourg et Munich-Lyon, dans notre cas).

En opposition, le temps par secteur dans la région étudiée est reporté, accompagné d'une caractéristique de la situation météorologique générale dans cette région. Notre division comprend trois secteurs: le nord et le sud des Alpes et les Alpes proprement dites. Les différences donnent quatre valeurs précédées du signe + ou -, selon que la pression ou la hauteur de la 500 mb à Milan ou à Munich est plus haute qu'à Strasbourg ou Lyon et vice versa.

Les différentes combinaisons possibles des quatre signes conduisent à 16 possibilités, autrement dit à 16 situations.

D'autres données secondaires ont été introduites en complément.

Les deux axes reliant les deux couples de stations forment un système de coordonnées. Chaque paire de valeurs obtenue par les différences représente un point dans le plan déterminé par ces deux axes. Nous considérons le vecteur reliant l'origine du système de coordonnées au point ainsi obtenu.

¹ H.John: Über den Aufbau und die Entwicklung von Kaltlufttropfen, Akademie-Verlag, Berlin 1953, 97 S.

Le vecteur à 500 mb représente le vent moyen, dans la région considérée, à 5500 m. L'interprétation des valeurs obtenues au sol est moins simple, car les deux circulations à ce niveau, de part et d'autre des Alpes, sont indépendantes. Le vecteur au sol nous donnera une mesure de l'échange qui a tendance à se faire au travers de la chaîne des Alpes. C'est ainsi que la direction du vecteur en altitude est importante, tandis qu'au sol c'est l'intensité du vecteur qui est primordiale.

Il est possible de relier de façon directe chacune de nos situations à la situation des grandes masses d'air froid intéressant le secteur européen. Il y a là, à notre avis, le point de départ d'une amélioration non seulement de la prévision du temps dans la région alpine, mais aussi de la connaissance de celui-ci. Les premiers résultats obtenus confirment cette possibilité.

La répartition de fréquences des situations est très variable et chaque situation présente un maximum saisonnier bien défini.

5. P.-L. MERCANTON (Lausanne). – Variation d'altitude des fronts glaciaires.

Dans un massif de relief accentué et très découpé comme celui de nos Alpes, les variations de longueur des glaciers s'accompagnent généralement d'un changement de la cote d'extrémité de la langue glaciaire. Ce changement dépend de deux facteurs principaux: l'apport des glaces au front et leur dissipation d'une part, la pente du lit au front d'autre part et sa configuration. La cote d'un glacier en retrait s'accroît; elle diminue si le glacier gagne vers l'aval. A défaut de mesures directes des variations de longueur des glaciers, ces changements d'altitudes frontales peuvent renseigner sur le régime d'un ensemble glaciaire durant un laps de temps de quelque importance.

Avec l'aide de M. Alberto de Chastonay, le soussigné a pu mener à bien la comparaison des altitudes frontales d'un nombre satisfaisant de glaciers suisses offrant des langues bien caractérisées telles que les cartes topographiques de la Suisse les présentent (Atlas Siegfried vers 1877 et Carte nationale nouvelle vers 1932). Les cotes terminales vers 1877 sont celles qu'a données Jegerlehner dans son Mémoire (Die Schneegrenze in den Gletschergebieten der Schweiz, Berne 1901). Les cotes de l'époque 1932 ont été prises sur la Nouvelle carte nationale par M. de Chastonay, soit qu'elles y fussent marquées, soit en usant des isohypses locales. Voici donc les cotes moyennes pour 165 glaciers se prêtant à la comparaison:

Epoque 1877 environ (Jegerlehner), cote moyenne	2317 m
Epoque 1932 (Carte nationale), cote moyenne	2246 m
Soit une remontée movenne des fronts de	71 m

En outre, et pour 1932, 69 autres fronts s'ajoutant aux premiers ont fourni la cote moyenne 2382 m qui pourra servir de base à d'ultérieures

comparaisons. Il va sans dire que le critère de variations glaciaires ici indiqué ne saurait se substituer à celui des mesures de longueurs directes pour une période courte et des glaciers peu nombreux. Il faut le réserver à des ensembles et des laps de temps notables.

6. RAYMOND SCHNEIDER (MZA Kloten). – Anomalies dans la baisse nocturne de température.

Avec l'aide d'un thermomètre enregistreur à 6 éléments nous avons pu étudier en détail les variations de température entre le sol et 25 m d'altitude.

Nous avons constaté que les discontinuités observées dans l'heure suivant le coucher du soleil et entre 21 h et 24 h (voir Actes S.H.S.N. 1952, p.113/114) apparaissaient successivement à tous les niveaux considérés à partir du sol. 15 à 30 minutes avant l'apparition de la première discontinuité, nous avons observé à la surface du sol une forte condensation. Celle-ci provient d'une part de la vapeur d'eau de l'atmosphère et d'autre part du sol par transpiration. Coïncidant encore avec le début de la combustion interne des plantes, cette libération d'énergie est alors suffisante pour expliquer cette anomalie. Quant à la seconde discontinuité elle correspond à l'établissement de l'isothermie entre le sol et la hauteur du thermomètre considéré.

Nous avons mesuré aussi simultanément de grandes différences de température (2 à 5°) entre des thermomètres situés à la même altitude mais placés dans des conditions différentes, un peu comme dans la nature.

Tous ces résultats nous amènent à admettre que les échanges de chaleur au voisinage du sol sont beaucoup plus conséquents que ceux admis jusqu'à maintenant et ne correspondent pas, même par nuits calmes, à ceux d'un régime laminaire.

7. Maurice Fluckiger (Lausanne). – Les éclipses de lune de 1953 et 1954. – Agrandissement de l'ombre de la terre.

Pour déterminer le rayon de la section du cône d'ombre terrestre par un plan passant par le centre de la lune, nous avons chronométré les moments des contacts entre le bord de l'ombre et les différentes formations lunaires. Le calcul a ensuite été conduit selon la méthode de Kosik. Par comparaison du rayon mesuré au rayon théorique calculé sans la présence de l'atmosphère nous en avons déduit les valeurs de l'agrandissement du cône d'ombre.

Les bonnes conditions météorologiques dont nous fûmes gratifiés en janvier 1953 et janvier 1954 nous ont permis de faire ce travail pour les deux éclipses totales.

Les résultats détaillés seront publiés dans le bulletin de la Société vaudoise des sciences naturelles.

8. Pierre-Louis Biéler (Cointrin). — Quelques constatations sur des différences de climat observées durant l'année 1953 entre Cointrin, Begnins (Vaud) et Saxon (Valais).

Nous nous sommes proposé de définir les éléments climatiques d'une région déterminée, en fonction des diverses influences météorologiques saisonnières (situations typiques, passages de perturbations, etc.) sachant que le jeu de ces éléments climatiques a une énorme importance sur le développement des cultures et des ravageurs de celles-ci.

Cet essai, demandé par la Station fédérale d'essais agricoles, sert de base à une recherche qui doit se prolonger durant les prochaines années, un climat ne pouvant être caractérisé qu'après de nombreuses années.

Nous avons donc enregistré chaque jour, durant la période de végétation de l'année 1953 (d'avril à octobre) les éléments suivants:

a) la température moyenne, calculée selon la formule

$$\frac{t\ (0730)+t\ (1330)+2\ t\ (2130)}{4}$$

- b) le maximum et le minimum de température;
- c) l'humidité relative:
- d) le nombre d'heures d'insolation;
- e) la quantité de pluie tombée durant 24 heures.

Les éléments de Cointrin étant ceux que l'on observe au poste météorologique de l'aéroport, ceux de Begnins et de Saxon sont donnés par le moyen de thermo-hygrographes, pluviomètres et héliographes placés sur le territoire de ces deux communes.

En tenant compte des diverses périodes durant lesquelles la situation météorologique reste la même (situation anticyclonique, dépressionnaire, régime du sud-ouest, régime de bise, etc.) nous constatons en comparant les éléments climatiques de nos trois stations, que le jeu de ces derniers se fait partout de la même façon. Il est en effet surprenant de constater en comparant Cointrin et Saxon que malgré la proximité des Alpes, le climat du Valais subit, à une demi-journée près, les mêmes variations que celui de Genève; ce qui prouve que ces variations, liées aux passages de perturbations se font sentir de la même manière à Saxon qu'à Cointrin. Durant les périodes stables, les amplitudes de température sont du même ordre et les moyennes journalières ne diffèrent à peine que de un ou deux degrés.

Les quantités de pluie sont à peu près les mêmes à Cointrin et à Begnins mais sont toutefois inférieures à Saxon, à l'exception de la période orageuse de juillet.

Seule, l'humidité est l'élément qui met le plus en évidence le caractère d'un *climat local*. Il est en effet curieux de constater que même si le climat de Begnins est en général plus sec que celui de Cointrin, l'humidité reste supérieure à 75 % après une période de pluie de deux ou trois jours,

plus longtemps à Begnins qu'à Cointrin (90 heures au lieu de 63). Durant cette même période, c'est-à-dire après le 9 juin, l'humidité ne reste supérieure à 75% que pendant 24 heures à Saxon.

Si le climat de Saxon semble d'autre part plus sec qu'à Cointrin, d'avril à juin, il est beaucoup plus humide d'août à octobre, malgré le fait que les quantités de pluie sont moins fortes en Valais qu'à Genève.

Toutefois, nous ne voudrions pas tirer des conclusions trop tôt, car il nous reste à distinguer dans les années à venir, entre ce qui est normal et ce qui est particulier à cette année 1953.

Nous avons donc maintenant les éléments climatiques d'une année où les températures sont restées presque constamment en dessus de la normale et durant laquelle les quantités de pluis sont nettement déficitaires. Ce sera déjà un moyen de comparaison quand nous voudrons tirer, dans quelques années, les conclusions utiles à la détermination des influences climatiques locales sur le développement des cultures et des ravageurs de celles-ci.

- **9.** E. Ambühl (Liebefeld-Bern). Bewässerungsbedürftigkeit der Schweiz, klimatologisch betrachtet. Publikation erscheint in «Schweiz. Zeitschr. für Vermessung, Kulturtechnik und Photogrammetrie».
- **10.** P. Ackermann (Payerne). Kondensationskernzählung in Payerne 1953.

Die Kondensationskernzählung in Payerne mit dem automatisch registrierenden Kernzähler von F. Verzár_ergab folgende Resultate:

- 1. Im Jahresverlauf weisen die Monate April bis Oktober bedeutend größere Kernzahlen auf als die restlichen Monate, dies im Gegensatz zu städtischen Messungen.
- 2. Es besteht ein ausgesprochen deutlicher Tagesgang der Kernzahl mit Maxima nach Sonnenauf- und -untergang.
 - 3. Die Kernzahl der Luftmassen ist von der Jahreszeit abhängig.
- 11. Max Bider (Basel). Ergebnisse eineinhalbjähriger Registrierungen der Anzahl der Kondensationskerne in Basel.

Die im Januar 1953 an der Astronomisch-Meteorologischen Anstalt in Basel begonnenen Registrierungen mit dem automatischen Kernzähler nach Verzär wurden fortgesetzt¹. Die Jahreszeitenmittel 1953 ergaben folgende Kernzahlen pro cm³: Frühling 3600, Sommer 4900, Herbst 3600 und Winter 3000, so daß sich also überraschenderweise ein Maximum im Sommer (speziell im Juni und September) ergibt (vgl. den vorstehenden

¹ M.Bider und F.Verzár, «Geofisica pura e applicata», Vol. 26, S. 127–140 (1953).

Bericht von Payerne). Der Tagesgang zeigt in allen Monaten ein Maximum zwischen 9 bis 12 Uhr und ein Minimum zur Zeit des Sonnenaufganges; besonders ausgeprägt war der Tagesgang an sonnigen Tagen. Daß zum mindesten ein Teil der Kondensationskerne den Abgasen der nördlich bis östlich des Beobachtungsortes gelegenen Stadt Basel entstammt, zeigt sich darin, daß bei nördlichen bis östlichen Winden wesentlich mehr Kerne registriert werden als bei südlichen und westlichen Winden. Vom Mai bis Oktober wurden durchschnittlich bei Windstärken über 1,6 m/s folgende Kernzahlen bei verschiedenen Windrichtungen registriert: N: 5130; NE: 5100; E: 3680; SE: 2850; S: 1630; SW: 1680; W: 2220; NW: 3460. Der Einfluß der Windgeschwindigkeit zeigt sich zunächst in einer leichten Zunahme der Kernzahlen bis zu Geschwindigkeiten von 1,4 m/s, bei stärkeren Winden (stärkere Durchmischung) nimmt dann mit zunehmender Windgeschwindigkeit die Kernzahl deutlich ab.

Sehr ausgeprägt ist eine wöchentliche Periode, besonders im Sommer, wie die folgende Tabelle zeigt:

	Sonntag	Montag	Dienstag	Mittwoch	Donnerstag	Freitag	Samstag
Sommer	3600	5100	5320	5230	5050	5140	4190
Winter	2260	2470	2570	2600	2360	2470	2630

Dieser Gang zeigt den Einfluß der Produktion der Kondensationskerne durch die Verbrennungsgase recht deutlich; im Sommer kommen fast ausschließlich industrielle Verbrennungsgase in Frage, und da am Sonntag (und z.T. auch am Samstag) der Produktionsprozeß unterbrochen ist, tritt an diesem Tage ein Minimum der Kernzahl auf; im Winter, in dem die Abgase der Heizungen an allen Tagen hinzukommen, ist naturgemäß das Minimum am Sonntag viel weniger ausgeprägt. Abgesehen von diesen lokalbedingten Einflüssen, ist aber auch die großräumige Herkunft der Luft von Bedeutung; so zeigt sich allgemein ein größerer Gehalt an Kernen bei kontinentaler als bei maritimer Luftzufuhr, wie die folgenden Zahlen von Mai bis September zeigen:

	Maritim	Kontinental
Tropische Luftzufuhr	4290	5020
Polare Luftzufuhr	3560	5010

12. F. Verzár (Physiologisches Institut Basel). – Kontinuierliche Zählung von atmosphärischen Kondensationskernen in St. Moritz.

Mit dem von uns konstruierten automatischen Kondensationskernzähler ^{1, 2} wurden in St. Moritz Bad kontinuierliche Zählungen in 15-Minuten-Perioden durchgeführt vom 5.7.–10.11.1952, 23.7.–31.10.1953, 19.4.–1.9.1954. Die Station befindet sich auf 1779 m Höhe, 50 m vom Inn entfernt, zwischen Wiesen.

¹ Archiv für Meteorologie und Geophysik 5, 372 (1953).

² Archiv für Meteorologie und Geophysik 6, 211 (1953)

Der mittlere Tagesgang wurde für jeden Monat berechnet. 1952 sind im Juli und August zwei deutliche Spitzen vorhanden, die erste um 8 Uhr, die zweite um 20 Uhr. Im September sind diese abgeflacht und im November keine Spitzen mehr zu sehen. Die absoluten Kernzahlen bewegen sich im Juli und August zwischen 1300 und 4600, im November zwischen 800 und 1600. Ähnliche Kurven wurden im Jahre 1953 gesehen. Im August 1953 waren sehr große Kernzahlen vorhanden. Im Jahre 1954 fiel auf, daß Spitzen kaum angedeutet waren und die Tageskurven viel flacher verliefen.

Die Analyse der Tageskurven an trüben und sonnigen Tagen ergibt im allgemeinen hohe Werte für sonnige und niedrige für trübe Tage. An sonnigen Tagen sind meist zwei Spitzen, an trüben nur eine oder keine zu sehen.

Die Wirkung der Windrichtung zeigt ein Überwiegen von höheren Kernzahlen bei N-NE-Windrichtung. Es kamen aber ausnahmsweise auch mit W-Wind oder mit SSE-Wind hohe Kernzahlen vor. Zur Zeit des Malojawindes war die Kernzahl im allgemeinen niedrig.

Die Resultate werden ausführlich in «Geofisica pura e applicata» mitgeteilt.

13. F. Verzár (Physiologisches Institut Basel). – Die Retention atmosphärischer Kondensationskerne in den Atemwegen.

Es wurde schon früher angegeben, daß ein großer Teil der atmosphärischen Kondensationskerne in den Atemwegen zurückgehalten wird¹. Die Resultate sind jedoch unbeweisend, weil bei Benützung des Aitken-Scholtz-Kernzählers die Ausatmungsluft bereits vor der Messung abkühlt. Wir haben die Frage mit dem automatischen Kondensationskernzähler², ³ neu untersucht. Dieser wurde hierfür so modifiziert, daß das Expansionsrohr und die Befeuchtungsanlage auf 37° C erwärmt wurden.

An drei Hunden wurden neun Versuche durchgeführt. Die Tiere hatten eine permanente Trachealkanüle und atmeten entweder durch diese oder durch die Nase über leicht bewegliche Ausatmungsventile direkt in das Zählrohr. Abwechselnd wurden Bestimmungen der Zimmerluft und der Ausatmungsluft gemacht. Von normaler Zimmerluft wurden von der Trachea aus 60,7%, von verrauchter Luft 71,1% der Kerne zurückgehalten. Von der Nase aus lagen die Werte für Zimmerluft bei 73,6%, für verrauchte Luft bei 78,6%.

Versuche an zwei Menschen ergaben im Mittel von 11 Bestimmungen bei Atmung durch Mund oder Nase eine Retention der Kondensationskerne von 70,1%.

¹ Landsberg, H., Erg. d. kosm. Physik 3, 155 (1938).

² Verzár, F., Arch. f. Meteorol. u. Geophysik 5, 372 (1953).

³ Verzár, F., u. Bitterli, H., Arch. f. Meteorol. u. Geophysik 6, 211 (1953).

Die meisten Kerne haben Durchmesser von 10⁻⁶ bis 10⁻⁸ cm. Es ist deshalb nicht anzunehmen, daß die Masse der retinierten Kondensationskerne, welche außerordentlich klein ist, von irgendwelcher Bedeutung sein kann. Dagegen ist nach unserer Annahme⁴ die Bedeutung der Kerne die, daß bei der Kondensation von Wasser atmosphärische Verunreinigungen mitgerissen werden⁵ und dabei toxische Konzentrationen in den Atemwegen erreichen können. Vermehrung der Kondensationskerne bedeutet aber auch vermehrte Wasserdampfkondensation.

Eine ausführliche Mitteilung erfolgt in Pflügers Archiv für die gesamte Physiologie.

14. W. Holl (Stuttgart). – Ein Kondensationskernzähler mit kontinuierlicher Übersättigung. – Kein Manuskript eingegangen.

 $^{^4}$ Verzár, F., Atmosphärische Kondensationskerne als physiologisch wirksame Klimafaktoren. Höhenklimaforschungen des Basler Physiologischen Institutes I, 121 (1945). Benno Schwabe, Basel.

 $^{^5}$ Verzár, F., u. Gutzwiller, M., ebda. $II,\,83$ (1948), und Helv. Physiol. Acta 4, C 15 (1946).

4. Sektion für Chemie

Sitzung der Schweizerischen Chemischen Gesellschaft

Samstag und Sonntag, den 25. und 26. September 1954

Präsident: Prof. Dr. Ch. Boissonnas (Neuchâtel)

Sekretär: Dr. R. Vuille (Neuchâtel)

1. F. Begemann, W. Buser, H.R. v. Gunten und F.G. Houtermans (Bern). – Bestimmung extremer Th/U-Verhältnisse durch Aktivitätsvergleich radioaktiver Bleiisotopen.

Für radioaktive Altersbestimmungen an U- und Th-Mineralien, insbesondere an solchen, die gewöhnliches Pb als accessorisches Pb enthalten, ist es von großer Bedeutung, das Th/U-Verhältnis mit möglichster Genauigkeit zu bestimmen. Die Korrektur für accessorisches Pb läßt sich nämlich aus dem Isotopengehalt an ²⁰⁴Pb, das auch im gewöhnlichen Pb nur zu etwa 1,5% vorhanden ist, nur mit begrenzter Genauigkeit durchführen. Es ist daher erwünscht, das Isotop ²⁰⁸Pb zur Korrektur für accessorisches Pb mit heranzuziehen. Hiefür ist es aber erforderlich, auch extrem kleine Th-Gehalte von U-Mineralien mit hinreichender Genauigkeit bestimmen zu können, da von der gemessenen Isotopenhäufigkeit des ²⁰⁸Pb die radioaktiv gebildete Menge an ThD abzuziehen ist. Der Gehalt an accessorischem Pb läßt sich mittels des ²⁰⁸Pb mit viel höherer Genauigkeit bestimmen, als das durch Korrektur mit ²⁰⁴Pb allein möglich ist.

In der vorliegenden Arbeit wurde zur Messung des Th/U-Verhältnisses die schon früher von dem einen von uns¹ vorgeschlagene und gelegentlich angewandte ThB/RaD-Methode², ³ benutzt. Diese Methode besteht in einer Analyse der zeitlichen Abfallskurve der Aktivität der Pb-Fraktion der Minerallösung. Für die Messung wurden mit Vorteil Becherzählrohre verwendet, die mit Hilfe von Standardlösungen für RaD und ThB geeicht wurden. Nach dem anfänglichen Abfall des RaB und seiner kurzlebigen Folgeprodukte, der mit etwa 60 Minuten Halbwertszeit erfolgt, ist die Aktivität während eines Zeitraumes von ca. 3–48 Stunden praktisch allein durch ThB +C +C" gegeben, da bei einer Durchführung

¹ F.G. Houtermans, Sitzungsber. Heidelberger Akad. d. Wiss. 1951, 123.

² H.v. Buttlar, Diss., Universität Göttingen 1952.

³ H.J. Wendt, Diplomarbeit, Universität Göttingen 1952.

des Dithizonverfahrens die Bi-Isotopen zurückbleiben und der Anstieg des RaE nur mit 5 Tagen Halbwertszeit erfolgt. Im Fall extrem niedriger Verhältnisse (Th/U < 10^{-3}) wurde der zu messenden Lösung inaktives Pb zugesetzt und zunächst eine erste Pb-Extraktion durchgeführt, deren Sättigungsaktivität an RaE nach der RaD-Methode den Urangehalt der Lösung mit einer Genauigkeit von etwa 1% zu bestimmen gestattet. Eine zweite Extraktion aus der gleichen Mutterlösung erlaubt dann, da ThB, nicht aber RaD, praktisch vollständig nachgebildet wurde, eine sehr genaue Bestimmung des ThB-Gehaltes der Minerallösung. Es wurde gezeigt, daß unter Verwendung von etwa 1 g Uran in der Ausgangslösung noch ein Gehalt von Th/U von 10^{-4} nachweisbar war. An einer Probe von Joachimsthaler Pechblende konnte gezeigt werden, daß in dieser das Verhältnis Th/U < $2 \cdot 10^{-4}$ ist. Eine Messung des Th/U-Verhältnisses an einem Yttrocrasit (Katanga) ergab, daß die Methode auch bei großem Th-Gehalt gut brauchbar ist.

2. W. Buser, W. Feitknecht und P. Graf (Bern). – Ionenaustauschreaktionen in anorganischen Festkörperverbindungen.

Der Isotopenaustausch an Mn-Oxyden ist in den letzten Jahren verschiedentlich untersucht worden. Es ist aber bisher nicht gelungen, zwischen den Austauscheigenschaften, der chemischen Konstitution und der Struktur der Verbindungen einfache Zusammenhänge aufzufinden.

Um die Verhältnisse möglichst eindeutig zu gestalten, wurde bei der Präparation der untersuchten Verbindungen darauf geachtet, einheitliche, chemisch und strukturell definierte Präparate herzustellen. Austauschversuche von gelösten und radioaktiv markierten Mn(II)-Ionen mit Aufschlämmungen von β -MnO₂, α -MnO₂ und Manganiten zeigten den Zusammenhang zwischen dem Austauschvermögen und der Struktur. Das kompakte Kristallgitter des β-MnO₂ schließt eine Ionenwanderung im Kristallinnern aus. Es findet nur ein geringer oberflächlicher Austausch statt. Demgegenüber besitzen a-MnO₂ und die untersuchten Manganite ein stark ausgeprägtes Austauschvermögen. a-MnO₂ besitzt eine lockere Struktur, die von Kanälen durchsetzt ist, in denen offensichtlich leicht bewegliche Kationen sitzen. Die Manganite weisen ein Doppelschichtengitter auf mit ungeordneten Zwischenschichten, die ebenfalls leicht bewegliche Kationen enthalten. Austauschfähig ist das in der Festkörperverbindung eingebaute Mn(II), während Mn(IV) am Austausch praktisch nicht teilnimmt.

Bei γ -MnO₂-Präparaten mit gleicher Struktur, aber mit verschiedenem Ordnungsgrad nahm das Austauschvermögen des Mn(II) mit zunehmendem Ordnungsgrad ab. Durch anodische Abscheidung hergestelltes Oxyd zeigte das größte, bei erhöhter Temperatur rekristallisiertes Oxyd das kleinste Austauschvermögen, während gefälltes Oxyd eine Zwischenstellung einnimmt.

Eine Sonderstellung nehmen die fehlgeordneten Manganomanganite ein, die in der Zusammensetzung von $MnO_{1.70}$ bis $MnO_{1.95}$ variieren kön-

nen. Hier nimmt auch das Mn(IV) am Austausch teil. Bei den Präparaten mit einem Oxydationsgrad über $MnO_{1,9}$ wurde sogar eine 100%ige Austauschreaktion des Mn(IV) gefunden. Oberflächenmessungen mit Gasadsorption nach der BET-Methode zeigten, daß diese Präparate aus Anhäufungen «zweidimensionaler» Kristallite bestehen. Das heißt, die Schichtdicke der Kristallite beträgt im Durchschnitt nur 2–3 Atomlagen, was die besondere Reaktionsfähigkeit erklärt. Bei den Präparaten mit einem Oxydationsgrad unter $MnO_{1,9}$ ist die Austauschreaktion des Mn(IV) unvollständig. Der austauschende Anteil nimmt mit dem Oxydationsgrad ab. Die Auswertung der Oberflächenmessung ergibt hier in Übereinstimmung mit dem röntgenographischen Befund Schichtpakete mit einer Dicke von ca. 5–10 Atomlagen.

- **3.** W. FEITKNECHT, F. BLATTER (Bern). Einlagerungsverbindungen von Nitrophenolen in Zinkhydroxyd. Kein Manuskript erhalten.
- **4.** W. Feitknecht, W. Hoppe, F. Blatter (Bern). Strukturbestimmungen von Einlagerungsverbindungen von Nitrophenolen in Zinkhydroxyd mit optischen Methoden. Kein Manuskript erhalten.
- **5.** H. Brandenberger, R. Brandenberger (Bern). Isotopenversuche über den Harnsäureabbau (3. Mitt.).

Einer der Autoren¹ hat kürzlich über die Oxydation von Harnsäure zu Oxonsäure (Allantoxansäure, I) und Allantoxaidin (II) berichtet. Mit Hilfe von ¹⁴C- und ¹⁵N-markierten Ausgangsprodukten konnte gezeigt werden, daß unsere Vorstellungen über den Reaktionsmechanismus dieses Abbaues, über die genetischen Beziehungen zwischen Harnsäure und I und II sowie über deren Struktur revidiert werden müssen. Oxydation von Harnsäure-5-14C mit alkalischem H₂O₂ hat nun die früheren Versuche mit Harnsäure-2-14C, -4-14C, -6-14C, -8-14C und -7-15N ergänzt und deren Resultat bestätigt. Die für Oxonsäure und Allantoxaidin vorgeschlagenen s-Triazin-Strukturen III (2,4-Dioxy-6-carboxy-1,3,5-triazin) und IV (2,4-Dioxy-1,3,5-triazin) wurden durch Infrarot- und Ultraviolett-Spektren belegt. Der Triazinring bildet sich aus einem offenkettigen System, welches die Harnsäurepositionen 1,2,3,4,9,8,7 in der erwähnten Reihenfolge enthält, wobei als Substituent in 4 das frühere C-Atom 5 in Form einer Carboxylgruppe steht. Solche Verbindungen sind die Allantoinsäure sowie deren allerdings nicht isolierte Oxydationsprodukte VI und VII.

Die beiden Triazine können auch durch Oxydation von Harnsäure mit Permanganat über Allantoin (V) als Zwischenstufe hergestellt werden. Sie sind dann genetisch mit den durch Peroxyd-Oxydation erhaltenen Verbindungen identisch, was auf gleiche Oxydationsmechanismen

¹ H. Brandenberger, Helv. Chim. Acta 37, 641 (1954), Biochem. et Biophys. Acta 15, 108 (1954).

hindeutet. Bildung und Weiterabbau von V verläuft ebenfalls über die vorerwähnte, kettenförmige und von der Harnsäure intakt übernommene Atomanordnung 1,2,3,4,9,8,7 mit dem früheren C-Atom 5 als Substituent in 4. Damit ist nun aber auch am Allantoin selbst bewiesen, daß bei der Bildung aus Harnsäure sowie beim weiteren Abbau der Imidazol-Ring am vormaligen C-Atom 5 aufspaltet und nicht in 4, wie man es in so manchen Lehrbüchern dargestellt sieht. Untersucht wurde auch die Cyanursäure, die sich bei der alkalischen Harnsäureoxydation bilden kann. Alle erhaltenen Präparate waren aufgebaut aus den früheren C-Atomen 2, 4 und 8. Das ist wohl vereinbar mit einer Bildung durch oxydative Decarboxylierung von III, nicht aber mit einer Entstehung aus Uroxansäure durch oxydative Decarboxylierung zu Carbonyl-diharnstoff und Ringschluß unter NH₃-Abspaltung.

6. R. Schwyzer, B. Iselin und M. Feurer (Ciba AG, Basel). – Über aktivierte Ester von Carbonsäuren.

Durch Einführung von negativen Substituenten in die Alkoholkomponente von Methylestern werden sogenannte aktivierte Ester erhalten, welche zur Acylierung von organischen Aminen verwendet werden können. Unter diesen neuartigen Acylierungsmitteln haben sich bisher am besten die Cyanmethylester, RCOOCH₂CN, bewährt. Zur Aktivierung von Carbobenzoxy-aminosäuren und -peptiden sowie anderer empfindlicher Säuren dürften diese Derivate Vorteile aufweisen gegenüber den gebräuchlichen Säurechloriden, -aziden, -anhydriden u.ä. Allgemein besitzen sie folgende Eigenschaften:

- 1. Sie sind in milder Reaktion und in sehr guten Ausbeuten zugänglich (Reaktion von Säure, Triäthylamin und Chloracetonitril);
- 2. sie sind mit verdünnten Säuren und Basen leicht von Begleitstoffen zu befreien;

- 3. sie lassen sich leicht durch Kristallisation, Destillation oder Chromatographie reinigen und in diesem Zustande auf bewahren;
- 4. sie reagieren bei Zimmertemperatur selektiv mit primären, aliphatischen Aminen, Aminosäure- und Peptid-estern.
- 7. B. ISELIN, M. FEURER und R. Schwyzer (Ciba AG, Basel). Aktivierte Carbonsäureester als Acylierungsmittel.

Eine vergleichende Untersuchung über die Geschwindigkeit der Acylierung von aliphatischen Aminen mittels aktiver Ester von Aminosäuren hat ergeben, daß die Ester des Cyanmethylalkohols und des Dicarbäthoxymethylalkohols die weitaus stärkste Aktivierung aufweisen; andere Ester, wie der Carbäthoxymethylester, Methoxymethylester und p-Nitrophenyl-methylester, zeigen eine deutlich geringere Reaktionsgeschwindigkeit.

Die Acylierung von Aminen ist auch weitgehend von der Basizität und Konstitution des Amins abhängig. Während primäre aliphatische Amine durch aktive Ester rasch bei Zimmertemperatur acyliert werden, reagieren aromatische Amine erst bei höherer Temperatur, und auch bei sekundären Aminen ist die Reaktion erschwert.

Die Verwendung von aktiven Estern für die Synthese von Peptiden ergibt sehr gute Ausbeuten, besonders wenn eine der zu verknüpfenden Aminosäuren den Glycinrest enthält. Die Reaktionszeit beträgt in diesem Falle 1–5 Stunden. Bei der Bildung einer Peptidbindung zwischen zwei komplizierteren Aminosäuren tritt eine relativ starke sterische Hinderung der Reaktion durch die Aminosäurereste auf, was eine Verlängerung der Reaktionszeit bis auf 48 Stunden erfordert.

- **8.** J. Kollonitsch, O. Fuchs, V. Gabor (Budapest). Die Erdalkaliborohydride und ihre Anwendungen in organischen Synthesen. Kein Manuskript erhalten.
- 9. A. Stoll, Th. Petrzilka, J. Rutschmann, A. Hofmann, Hs. H. Günthard (Basel). Über die Stereochemie der Lysergsäuren und Dihydrolysergsäuren. Kein Manuskript eingegangen.
- 10. Heinz Heinemann, G.A. Mills, H. Shalit und W.S. Briggs (Houdry Process Corp., Marcus Hook, Pa., USA). Kohlenwasserstoff-reaktionen mittels eines bifunktionellen Katalysators.

Die Rolle bifunktioneller Katalysatoren, Isomerisierung, Ringschließung und Dehydrierung von Paraffin- und Naphthenkohlenwasserstoffen zu fördern, wird besprochen. Derartige Katalysatoren sind zusammengesetzt aus kleinen Mengen eines Metalls, das eine Hydrier-Dehydrier-Funktion besitzt, wie Nickel oder Platin, auf einem Träger mit Säureeigenschaften, wie gewissen Tonerdestoffen, Kieselsäure-Tonerde usw.

Die Metallfunktion verleiht dem bifunktionellen Katalysator Vorzüge bei Förderung von Reaktionen, die auch durch die Säurefunktion allein katalysiert werden können, wie z.B. bei der Isomerisierung von Paraffinen. Diese Vorzüge beruhen auf der Fähigkeit der Erzeugung wenigstens kleiner Mengen von Olefinen aus gesättigten Verbindungen. Die Fähigkeit zur Bildung von Olefinen und somit von Carboniumionen durch katalytische Dehydrierung ermöglicht für den Säurekatalysator nicht nur gute Umwandlungsergebnisse, sondern auch erhöhte Selektivität. Dies beruht auf zwei Umständen, nämlich der Vermeidung hoher Temperaturen zur Bildung von Olefinen durch Wärmespaltung und der Möglichkeit, die Reaktion in Gegenwart von zugesetztem Wasserstoff auszuführen, der bei Berührung mit dem Hydrierkatalysator die Bildung äußerst wasserstoffarmer Stoffe, wie Schlamm oder Koks, verhindert.

11. A. Stoll, A. Hofmann und R. Brunner (Basel). – $\ddot{U}ber\ ein$ neues Alkaloid vom Typus der Mutterkornalkaloide.

Durch Vermittlung von Herrn Dr. J. Renz erhielten wir aus Afrika Sklerotien, die auf der tropischen Kolbenhirse Pennisetum typhoideum Rich. im Tschadgebiet gesammelt worden waren ¹. Es handelt sich um Sklerotien eines Pilzes, der sehr wahrscheinlich der Gattung Claviceps zugeordnet werden muß. Nach einem für die Extraktion der Alkaloide aus Mutterkorn üblichen Verfahren ließ sich aus 15 g Sklerotien ein Alkaloidgemisch isolieren, das bei der chromatographischen Aufteilung 24 mg eines kristallisierten Alkaloids lieferte, das in allen Eigenschaften mit dem von M. Abe ² in japanischem Grasmutterkorn aufgefundenen Agroclavin (III) übereinstimmte. Daneben erhielten wir eine kleinere Alkaloidfraktion, deren Menge für eine Identifizierung zu gering war.

Versuche, den afrikanischen Mutterkornstamm in vitro zu züchten, in der Hoffnung, daß er auch in saprophytischer Kultur namhafte Alkaloidmengen bilde, verliefen erfolgreich ³. Sowohl aus den Mycelien wie aus den Kulturfiltraten konnten Alkaloidfraktionen gewonnen werden, die sich mittels Chromatographie an Aluminiumoxyd in kristallisierte, einheitliche Komponenten zerlegen ließen. Mit absolutem Chloroform wurde Agroclavin eluiert, das schon in den Sklerotien gefunden worden war. Chloroform, das 0.5% Methanol enthielt, eluierte aus der Aluminiumoxydsäule ein Alkaloid, das wir für identisch mit Elymoclavin (II) halten, das M. Abe und Mitarbeiter ⁴ in den Sklerotien eines Claviceps-Stammes, der auf dem japanischen Gras Elymus mollis Tri. gedeiht, entdeckt haben.

¹ Herrn Dr. J. Renz sei auch an dieser Stelle für die Überlassung des Pflanzenmaterials bestens gedankt.

² Ann. Rep. of the Takeda Res. Lab. 10, 73 (1951).

³ Darüber werden wir in einer demnächst in den Helvetica Chimica Acta erscheinenden Publikation zusammen mit A. Brack und H. Kobel, welche diese Versuche durchführten, ausführlich berichten.

⁴ M. Abe, T. Yamano, Y. Kozu und M. Kusumuto, J. Agr. Chem. Soc. Jap. 25, 458 (1952).

Mit Chloroform, das 2 % Methanol enthielt, wurde schließlich ein drittes, bisher unbekanntes Alkaloid ins Filtrat gewaschen. Das neue Alkaloid, für das wir den Namen Penniclavin vorschlagen, kristallisiert aus Methanol oder Aceton in rechteckigen Blättchen, die bei 222° (korr.) unter Zersetzung schmelzen. In Pyridin zeigt es ein spez. Drehvermögen $[a]_D^{2n} = +151^\circ$. Die Werte der Elementaranalyse stimmen auf die Bruttoformel $C_{16}H_{18}O_2N_2$. Das UV-Spektrum zeigt Maxima bei 240 m μ und 315 m μ und stimmt mit demjenigen der Lysergsäure und Isolysergsäure vollkommen überein. Eine komplexe Bande im IR-Spektrum bei 2,8–2,9 μ deutet auf das Vorliegen einer primären OH- und einer NH-Gruppe hin. Bei der Glykolspaltung mit HJO₄ wurde Formaldehyd nachgewiesen, wodurch sich die Gruppierung > COHCH₂OH zu erkennen gibt. Auf Grund dieser Befunde wird für das Penniclavin die Strukturformel I vorgeschlagen, aus welcher die nahe Verwandtschaft mit dem Elymoclavin (II) und dem Agroclavin (III) ersichtlich ist.

Es haben noch gesprochen: P. Schmidt, Basel; H. Dahn, Basel; J. Solms, Zürich; E. Sury, J. Heer, E. Urech, K. Hoffmann, Basel; R. Witzinger, Basel; H. Zollinger, Basel.

5. Sektion für Geologie

Sitzung der Schweizerischen Geologischen Gesellschaft

Samstag und Sonntag, den 25. und 26. September 1954

Präsident: Prof. Dr. Ed.-Aug. Paréjas (Genève)

Sekretär: Dr. A. Bersier (Lausanne)

1. Jos. Kopp (Ebikon). - Bio-geologische Forschungen.

Die Auffassung des berühmten deutschen Arztes Hufeland, daß die geologische Beschaffenheit des Bodens einen starken Einfluß auf die Gesundheit des Menschen auszuüben scheine, ist von chinesischen Naturforschern und Architekten schon vor Jahrtausenden erkannt und bei der Auswahl der Bauplätze berücksichtigt worden. Goethe hat sich eingehend mit den biologisch wirksamen Bodenkräften beschäftigt. Experimentelle Versuche über merkwürdige Reizzonen des Bodens, welche beim sensiblen Menschen einen Muskeltonusreflex (Wünschelrutenphänomen) auslösen, hat mit zahlreichen Studenten der deutsche Geologe Prof. Joh. Walther, Halle, ausgeführt. Er stellte fest, daß Versuchspersonen über geologischen Verwerfungen oder unterirdischen Wasserläufen gesundheitliche Störungen und Nervenreizungen erlitten, die von starkem Hochgehen des Pulses und Blutdrucksteigerungen begleitet waren. Das veranlaßte ihn, den Ärzten zu empfehlen, den Schlafplatz von Patienten auf geopathische Reizstellen untersuchen zu lassen. Auf Grund der von der Erde ausgehenden Emanationen oder Wellenbewegungen, welche auf die Lebewesen einwirken, postulierte er das Vorhandensein von Standortskrankheiten.

Die Ergebnisse der Kropfforschungen von *P. Dieterle* und *J. Eugster* bestätigten diese Anschauung, ging doch aus ihnen hervor, daß die geologischen Verhältnisse des Untergrundes eine entscheidende Rolle bei der Kropfentstehung bilden. Aus dem Forschungsmaterial ergaben sich die Hauptgesetze der *Ortsgebundenheit* und der Intensitätskonstanz.

Geologische Krebsforschungen des holländischen Geologen S. W. Tromp zeigten eine bemerkenswerte Abhängigkeit der Krebshäufigkeit von den geologischen und hydrologischen Untergrundverhältnissen (erhöhte Krebsrate über jungen Seetonen und grundwasserreichen Ebenen, niedrigere Rate auf Kalk- und Lößgebiet), was mit den Beobachtungen des englischen Arztes A. Haviland übereinstimmt. In der Stadt Le Havre ergaben Messungen der elektrischen Leitfähigkeit über Schlafstätten von Krebskranken auf unterirdischen Wasserläufen eine zehn- bis hundertmal

erhöhte Ionisation der Luft, was auf Zusammenhänge zwischen geophysikalischen Bodeneinflüssen und Krebsentstehung hindeutet, dies in Übereinstimmung mit Ergebnissen der Tierversuche des Aargauer Arztes E. Jenny und der deutschen Ärzte Hartmann und Petschke sowie des Österreichers H. Beitzke. Der Münchner Physiker und Arzt J. Wüst stellte anhand zahlreicher Messungen fest, daß bei pathogenen Reizzonen eine magnetische Anomalie, eine Erhöhung der elektrischen Leitfähigkeit des Bodens und der Luft vorhanden ist, was nach weitern Forschungen über geologisch-geophysikalische Bodeneinflüsse und Krankheitsgeschehen ruft.¹

- 2. Rudolf Trümpy (Zürich). La zone de Sion-Courmayeur dans le haut Val-Ferret valaisan. Eclogae geol. Helv., Vol. 47/2 (1954).
- **3.** Paul Beck (Thun). Neue Gesichtspunkte zum Problem der übertiefenden Gletschererosion.

Ausgehend von den Fließbewegungen zweier großer Erdschlipfe erkannte der Vortragende eine Parallelität zwischen Erdschlipf und Talgletscher darin, daß beide Ablagerungen von außen nach innen stets flüssiger werden, beim Erdschlipf durch die zunehmende Durchtränkung, beim Gletscher infolge der zunehmenden Plastizität als Wirkung des höhern Eisdruckes. In beiden Fällen entsteht zwischen dem Felsboden und der konsistenten Überlagerung eine Art Siphon, in dem sich die flüssigsten Partien unter dem starken einseitigen Überdruck vom Hang resp. dem Firngebiet her, in dem Maße bewegen müssen, als am untern Ende der Weg freigegeben wird. Beim Schlipf geschieht dies plötzlich durch einen Grundbruch, beim Gletscher langsam durch das Abschmelzen. Auf jeden Fall bewirken der einseitige hydrostatische Druck von oben und derjenige der Überlagerung, daß die sich schnell oder langsam bewegenden Massen stark erosiv wirken können und auch imstande sind, das gelockerte Abtragungsmaterial talabwärts über Schwellen hinüber zu transportieren, solange ein genügender Überdruck von der Bergseite her besteht.

Beobachtungen am unteren Thunersee und im Gebiet der insubrischen Seen ergeben, daß eine Eisdicke von 600 m eine Grenze in der Wirkung der Eiserosion bedeutet, indem bei geringerer Dicke der Gletscher dank des Fließens seiner konsistenten Masse, bei größerer Mächtigkeit jedoch durch den hydrostatischen Überdruck wirkt. Zwischen beiden Arten entsteht eine Zone stark verminderter Abtragung. Die Bedeutung der 600 m-Dicke als Grenze geht klar aus der von Heß in Innsbruck experimentell festgestellten Kurve der Eisgeschwindigkeit hervor, indem letztere bei 600 m Eisdruck kräftig von der Koordinate abbiegt und den Unterschied zwischen konsistentem und mehr oder weniger verflüssigtem Gletschereis deutlich zum Ausdruck bringt. Wir dürfen somit zweierlei

¹ J. Kopp: Das Arbeitsgebiet des Bio-Geologen im Bereich der Bau- und Wohnhygiene, Gesundheit und Wohlfahrt, Nr. 8, Orell Füßli AG., Zürich 1954.

Arten von Gletschererosion unterscheiden, eine solche des konsistenten Eises bis zu 600 m Eisdicke und eine hydrostatisch erzeugte bei einseitigem Überdruck und Eismächtigkeiten von über 600 m. Die erstere erzeugt flache Wannen, die zweite kann übertiefen.

Diese neue Einsicht ermöglicht die Erklärung, daß die tiefen Thuner-, Luganer- und Langenseebecken weithin von moränenbedeckten Schottern umgeben sind, als ob es keine Glazialerosion gäbe, und unmittelbar alpenwärts die großen Seetiefen plötzlich einsetzen.

Ferner erlaubt sie, die Ursachen für das Verbleiben von Felsriegeln in den Tälern zu deuten, indem diese die hydrostatische Erosion dank der durch sie erzeugten Verminderung der Eisdicke und daherigen größern Eiskonsistenz verunmöglichen oder stark vermindern. Auch die Bildung der Trogtäler mit ihren Gehängekanten beruht wahrscheinlich auf der Wirksamkeit der beiden Gletschererosionsarten und der Abtragungsverminderung in der Übergangszone.

4. Paul Beck (Thun). – Regionale Grundlagen für die Gliederung des alpinen Quartärs.

Die vor 50 Jahren aufgestellte Gliederung des Quartärs durch Penck und Brückner in vier Eiszeiten erscheint heute weniger abgeklärt als je. Die genannte Einteilung stützt sich auf die Beobachtungen an den Stirnmoränen der verschieden alten Gletschervorstöße und der daran anschließenden fluvioglazialen Schotterfelder im Riß-Iller-Lech-Gebiet, ohne die Ergebnisse bis ins Innere der Alpen zu verfolgen. Die gegebenen Definitionen versagen aber nicht allein in den weiten Zungenbecken und im Gebirge, sondern in den Eisrandzonen selbst. Verursacht werden diese Schwierigkeiten durch das außerordentlich verschiedene Verhalten der quartären Gletscher, wie es durch die Topographie ihrer Einzugsgebiete und durch die fortwährenden Veränderungen während der Vorstöße und Rückzüge bedingt ist. Dadurch wird die Übertragung der Penck-Brückner-Chronologie erschwert und teils praktisch weitgehend verunmöglicht, was durch folgende Beispiele belegt sei.

Im klassischen Gebiet Riß-Iller-Lech erweiterte Bartl Eberl in seiner «Vollgliederung des Quartärs» die Zahl der Eiszeiten von 4 auf 14, eine Auffassung, die heute noch ausgebaut wird. Man diskutiert darüber, ob die letzte Eiszeit einheitlich, doppelt oder dreifach sei, ob gewisse Ablagerungen zu Würm oder Riß gehören. Dabei wird alles vom Standpunkt der Endmoränen und ihrer Vorländer aus beurteilt.

Das bernische Aaregebiet liefert zu diesen Fragen drei sozusagen einwandfreie Abklärungen. Die Trennung der Würmzeit in zwei Vorstöße wird durch die Münsingenschotter der Spiezer Schwankung von den innern Würmmoränen bei Bern bis ins Alpeninnere auf einer Distanz von 38 km bewiesen und überdies durch einen Elephasmolaren auch stratigraphisch begründet.

Zwischen die Moränen der letzten Vereisung und die ältern Seeablagerungen schieben sich, bis zu 50 m mächtig, die Schotter der letzten Zwischeneiszeit ein und enden 12 km vom heutigen Gamchigletscher. Sie überbrücken, ähnlich den Münsingenschottern, das große Zungenbecken von den Endmoränen bis nah an die heutigen Eiszungen.

Eine dritte Tatsache von allgemeiner Bedeutung bilden die Deltaschotter des Aaretales, die Höhen von 600 bis 630 m erreichen, von den beiden Würmmoränen diskordant bedeckt sind und selber mindestens drei eingelagerte Moränen enthalten. Als Staudamm kommen einzig die entsprechend hoch reichenden Plateauschotter rings um Bern in Frage. Diese dürften durch den letzten Gletschervorstoß während der Rißperiode entstanden sein; denn trotzdem sie im Gebiet des würmzeitlichen und rißzeitlichen Rhonegletschers liegen, bestehen sie aus Berner-Oberländer Gesteinen.

Zwischen Comer- und Langensee dehnen sich ebenfalls ungeheure Deltamassen mit Moräneneinlagerungen aus, die durch einen an der Ferrettoverwitterung erkennbaren Deckenschotterdamm bis 200 m über die heutigen Seeniveaux gestaut sind. Über ihnen lagern nicht allein Würm-, sondern stellenweise auch Rißmoränen. Da die Deckenschotter einheitlich sind, können sie vorläufig nur als Mindel betrachtet werden. Während die Olona die Schwelle so langsam durchsägte, daß sich das dortige Becken bis auf die Höhe des Schwellenrandes füllen und hernach mit Riß- und Würmmoränen bedecken konnte, durchbrach der Tessin den Wall so rasch, daß sich das dortige Becken weitgehend entleerte und der Ferrettoverwitterung der großen Interglazialzeit ausgesetzt war, wie Vonderschmitt im Regina-Elena-Stollen südlich des Langensees nachwies. Die Rißeiszeit schloß den Durchbruch neuerdings, so daß wieder mächtige Seeablagerungen entstanden, die von den Würmmoränenkränzen bedeckt werden.

Das glaziale Geschehen ist so unendlich vielseitig, daß es nicht von einer einzigen Landschaft aus erfaßt und gegliedert werden kann. Nur eine verständnisvolle Zusammenarbeit von Vertretern aller Alpengebiete kann abklären, welcher Bereich für das eine oder andere Problem von grundlegender Bedeutung und als solches allgemein anzuerkennen ist. Nach einigen Jahren dürften diese Testlandschaften das Zusammensetzspiel der allgemein brauchbaren alpinen Chronologie erlauben.

Gemeinsame Sitzung mit der Schweizerischen Mineralogisch-Petrographischen Gesellschaft.

5. Toni Hagen (Kathmandu, Nepal). – Note on the intrusions in the Nepal Himalaya.

So far six tectonic main divisions were found in Nepal: Tibetan zone (north of the Himalayas), Katmandu nappes, Hiunchuli zone, Piuthan nappes, Nawakot nappes and the zone of Pokhara.—The roots of the Katmandu nappes are forming the main range of the Himalayas. In the Katmandu area, they are overthrusted from north to south for about 40 miles and forming the Halbklippe of Katmandu. In Western Nepal,

south of Jumla, again big masses of Katmandu nappes are overthrusted. The Katmandu nappes consist of series from Silurian limestones down to uncertain age. The manyfold intrusions of granites, pegmatites and aplites, even in the southern front parts, are characteristic in these nappes. North of the Annapurna and Dhaulagiri range a vast complicated syncline with mesozoic filling is occurring (the Tibetan Border Synclinorium). Due to axial rise towards east and west, the cristalline bottom the synclinorium is occurring, thus connecting the granites of the roots of the Katmandu nappes with the Turmalin granite masses of Mustang on the Tibetan Border. The latter is towards East developing into the root of the Katmandu nappe No. 5 in the Manaslu area. So far, no prooves were found to statuate a Tertiary age of the Tibetan granites. They are rather of upper creatacious age.

In the rest of the nappes which consist of series from carboniferous to triassic age there are only small scale intrusions, as granites in the Piuthan nappes No. 2 (west of Dhorpatan), Amphibolites in the roots of the Nawakot nappes northwest of Pokhara, and granites in the Nawakot nappes Nol. 1 and 2 east of Pokhara near Khuncha. Basic intrusions were further found in the front parts of the Piuthan nappes and Nawakot nappes and Glaukophan rocks in the carboniferous series of the Tibetan zone northeast of the Manaslu.

- **6.** N. Oulianoff (Lausanne). Ecrasement sans trituration et mylonitisation des roches. Paraîtra aux Eclogae geol. Helv., Vol. 47/2 (1954).
- 7. Ernst Geiger (Hüttwilen). Gerölluntersuchungen im Rheingletschergebiet. Kein Manuskript erhalten.
- **8.** J.-P. Portmann (Neuchâtel). Etude pétrographique de quelques moraines würmiennes du glacier du Rhône.

Il est étonnant de constater qu'on a rarement eu recours aux méthodes banales de la pétrographie des sédiments dans l'étude des formations glaciaires, en bordure des Alpes. Pourtant, la nature du matériel erratique, sa texture, sa structure, sa provenance, sa distribution, son degré de diagenèse, en un mot son faciès, permettent une diagnose différentielle et donnent certainement des précisions plus grandes sur les conditions génétiques que n'en fournissent, par exemple, ses formes topographiques.

Les investigations que nous poursuivons, depuis plusieurs années, sur la pétrographie des moraines würmiennes du glacier du Rhône, en particulier dans le secteur des Lacs subjurassiens, nous ont prouvé l'intérêt des méthodes lithologiques qui, évidemment, doivent être combinées avec d'autres méthodes.

L'aspect méthodologique de nos recherches ne nous retiendra pas ici; il fera l'objet d'une publication étendue. Nous nous bornerons, pour l'instant, à mentionner les caractères que nous considérons comme particulièrement significatifs et à montrer dans quelle mesure ils sont susceptibles de contribuer à une meilleure connaissance des dépôts quaternaires et, partant, des phénomènes qui les ont engendrés.

La granulométrie, par exemple, peut être considérée comme un caractère descriptif de premier ordre, permettant des interprétations sur la genèse des dépôts. En effet, la proportion des éléments grossiers aux constituants fins exprime le faciès granulométrique et reflète les conditions génétiques. Par ailleurs, le pourcentage en fragments d'une certaine dimension rend possible la distinction de divers types granulométriques de moraines.

Un second caractère important est la nature pétrographique des constituants de toutes dimensions, ou mieux: la proportion des fragments rocheux provenant des diverses zones pétrographiques traversées par le glacier. Un troisième caractère digne d'attention est la forme des constituants et les indices morphométriques, définis récemment par Cailleux, facilitent la diagnose des agents de transport et d'accumulation.

Non seulement la forme des éléments constitutifs est intéressante mais l'orientation des galets, par exemple, est à même de fournir des indications sur le sens d'écoulement du glacier vecteur.

A leur tour les processus d'altération, de diagenèse sont susceptibles de préciser les conditions climatiques subies par les moraines depuis leur formation.

L'utilisation des critères que nous venons d'énumérer nous a permis, entre autres, de mettre en évidence la dissemblance nette entre les moraines würmiennes du glacier du Rhône déposées dans le Jura et dans le Bassin molassique. Les différences essentielles, tant dans la granulo-métrie que dans la composition pétrographique, dérivent de la nature de la roche autochtone. Ainsi, le diamètre à 50% («diamètre moyen») des moraines du Jura atteint 0,45 mm alors qu'il n'est que de 0,1 mm pour celles du Bassin molassique, si l'on ne tient compte que de la masse interstitielle, aux éléments inférieurs à 20 mm.

Nos recensements pétrographiques nous ont montré que, dans le Jura, la proportion en éléments jurassiens diminue avec l'altitude ou, plus logiquement, lorsqu'on s'approche du Bassin molassique. Certaines moraines du secteur jurassien sont typiquement «locales» dans leur nature pétrographique (75% de galets jurassiens, 9% de fragments de roches sédimentaires alpines, 15% d'éléments cristallins).

Dans le Seeland, les moraines offrent l'assortiment pétrographique moyen suivant: 37% de fragments cristallins, 27% de roches sédimentaires alpines et 25% de galets jurassiens, le reste étant constitué de roches molassiques. Ces valeurs moyennes sont confirmées par les résultats des recensements de granules et les dosages de carbonates des fractions fines.

La prise en considération de critères pétrographiques et la combinaison de plusieurs caractères nous ont permis, en outre, de définir des types de moraines (moraines de fond, moraines superficielles, moraines remaniées, lavées).

Les résultats que nous a livrés l'étude pétrographique des moraines, nous ont fourni des renseignements sur la structure et la texture des moraines fossiles. Ils constituent des termes de comparaison qui rendront possibles des corrélations, des différenciations lorsque des recherches similaires seront entreprises ailleurs.

Es haben noch gesprochen: A. Carozzi, Genève, und W. Oberholzer, Samstagern.

6. Sektion für Mineralogie und Petrographie

Sitzung der Schweizerischen Gesellschaft für Mineralogie und Petrographie

Sonntag, den 26. September 1954

Präsident: Prof. Dr. H. HUTTENLOCHER (Bern) Sekretär: Dr. Th. Hügi (Bern)

- 1. W. Nowacki und H. Bürki (Bern). Die Kristallstruktur der purinanalogen Verbindung Xanthazolmonohydrat. Die ausführliche Arbeit wird andernorts erscheinen.
- 2. W. Nowacki (Bern). Über die Anzahl verschiedener Raumgruppen. Vgl. die ausf. Arbeit in Schweiz. Min. u. Petr. Mitteilungen, Bd. 34 (1954), H. 1.
- **3.** H. HUTTENLOCHER, TH. HÜGI und W. NOWACKI (Bern). Vorläufige Untersuchungen am Bazzit. Vgl. Schweiz. Min. u. Petr. Mitteilungen Bd. 34 (1954), H. 2.
- **4.** E. Wenk (Basel). Berechnungen zu Stoffaustauschvorgängen. Erscheint in Schweiz. Min. u. Petr. Mitteilungen.
- **5.** H. HUTTENLOCHER und E. JÄGER (Bern). Zur Frage der Mineralfärbung: I. Methodisches zur Reflexionsmessung von Mineralpulvern. Erscheint andernorts.
- **6.** H. Huttenlocher und E. Jäger (Bern). Beobachtungen an basischen Plagioklasen von Anzila (Ivreazone). Erscheint andernorts.
- 7. TH. HÜGI und H. HUTTENLOCHER (Bern). Über den Goldfund im Gotthardtunnel vom Jahre 1873. Erscheint in Schweiz. Min. u. Petr. Mitteilungen Bd. 34 (1954). H. 2.

7. Sektion für Paläontologie

Sitzung der Schweizerischen Paläontologischen Gesellschaft

Sonntag, den 26. September 1954

Präsident: PD Dr. E. Kuhn (Zürich)

- 1. E. Kuhn (Zürich). Der erste Fund eines Archosauriers aus der Trias des Monte San Giorgio (Tessin)*.
- 2. F. Burri (Basel). Die Morphogenese von Sulcirhynchia valangiensis (Brachiopoda)*.
- 3. J. Hürzeler und R. Bay (Basel). Neuuntersuchung des Femur von Eppelsheim*.
- **4.** J. Hürzeler (Basel). Nachweis eines Prähomininen im europäischen Tertiär. Kein Manuskript erhalten.
 - * Erscheinen im Jahresbericht der Schweiz. Paläontologischen Gesellschaft.
- **5.** René Hantke (Zürich). Die fossilen Betulaceen-Reste aus der Oberen Süβwassermolasse von Oehningen (Südbaden).

An fossilen, auf Betulaceen bezogenen Pflanzenresten wurden bis anhin aus der Oberen Süßwassermolasse von Oehningen Vertreter folgender Gattungen erwähnt: Alnus, Betula, Carpinus, Corylus und Ostrya. Die Überprüfung eines großen Teiles der Originalstücke ergab jedoch, daß nur wenige tatsächlich dieser Familie angehören. Dagegen fanden sich in der phytopaläontologischen Sammlung der ETH zwei weitere prachtvoll erhaltene Fossilreste, die O. Heer weder erwähnte noch beschriftete. S. Djubaltowski, der sich im Sommer 1915 mit der Oehninger Pflanzensammlung beschäftigte, bestimmte sie als Rhamnus deletus.

Eingehende Herbarvergleiche haben gezeigt, daß die beiden Blattreste von sämtlichen rezenten wie fossilen Kreuzdorn-Arten deutlich abweichen; hingegen stimmen sie mit *Alnus incana* (L.) MOENCH, unserer einheimischen Grauerle, derart gut überein, daß die Zugehörigkeit

zur Gattung Alnus – insbesondere eine nahe Verwandschaft mit A.incana – außer jeden Zweifels steht.

Die nachstehende Tabelle faßt die Untersuchungsergebnisse kurz zusammen.

Nach A. Braun (in F. Unger, 1850, und E. Stizenberger, 1851), O. Heer (1856, 1859) und K. Frentzen (1926)	Nach der Neubearbeitung
Alnus Kargii A. Br. Blattrest Fruchtrest Alnus oeningensis Heer Fruchtrest Rhamnus deletus Heer¹ Blattrest Betula Weissii Heer Fruchtreste Betula Ungeri Andr. Betula ?¹ Blattreste Carpinus oeningensis Ung. Fruchtrest Corylus-Fruchthülle Ostrya oeningensis Heer Blattreste Fruchtreste Fruchtreste	Quercus Heerii A.Br. (Heer, 1856) Cyperaceen-Rest (Heer, 1856) Alnus-Fruchtrest Alnus rotundata Goepp. s. Reimann Rhus pyrrhae Ung. Betula?-Fruchtrest Betula Ungeri Andr. Populus latior A. Br. Knospenschuppe? Corylus-Fruchthülle Ulmus longifolia Ung. Knospenschuppen von Populus? latior und Lauraceen? (Schenk, 1890)

¹ Sammlungsstücke

Es haben noch gesprochen: Heh. Bräm, Embrach, und F. Lieb, Basel.

8. Sektion für Botanik

Sitzung der Schweizerischen Botanischen Gesellschaft

Sonntag, den 26. September 1954

Präsident: Prof. G. Blum (Fribourg) Sekretär: Dr. A. Gast (Arlesheim)

- 1. Alfred Rutishauser (Schaffhausen). Die Entwicklungserregung des Endosperms bei pseudogamen Ranunculusarten. Kein Manuskript eingegangen.
- 2. Fernand Chodat (Genève). Influence de la taille sur le développement de la tomate. – Pas reçu de manuscrit.
- **3.** Marguerite Henrici (Fauresmith, Südafrika). *Nitratanhäufung in Tribulus terrestris*.

Im Laufe von langjährigen Untersuchungen über den Stoffwechsel von Tribulus terrestris hat sich gezeigt, daß diese Pflanze einen außerordentlich wechselnden Nitratgehalt hat. Während Pflanzen auf alluvialem Sande oft ganz unbedeutende Werte haben, zeigen solche auf Kalkstein solche von 2–4%, also viel höhere Werte, als in der Literatur bekannt und als giftig für Tiere angenommen sind. Das ist aber nicht alles. Die Pflanzen auf alluvialem Sande können plötzlich während einiger Stunden phänomenal hohe Werte von 7–12% NO₃ aufs Trockengewicht aufweisen, die aber in kurzer Zeit wieder auf die Normalwerte absinken. Jedoch ist dies eine relativ seltene Erscheinung.

Es war möglich, durch «incipient drying» im frischen Tribulus solche hohe Nitratwerte im Experiment zu bekommen; aber auch so war es kein alltägliches Resultat. Woher hingegen dieses Nitrat stammte, konnte nicht festgestellt werden.

Tribulus selbst hat eine Reduktase, die unter antiseptischen Bedingungen (Penicillin, Streptomycin, Toluol) enorme Mengen $\mathrm{NO_3}$ bei 38° C reduziert, wobei sich das $p\mathrm{H}$ in äußerst regelmäßiger Weise von Neutral nach Sauer nach Alkalisch im Laufe von 24 Stunden verändert. Oft ist am Ende kein Nitrat oder Nitrit mehr vorhanden. Ammonia ist in keiner Phase mehr als in kleinsten Spuren vorhanden, obschon ebensolche Spuren etwa als Gas verschwinden.

Merkwürdigerweise, trotzdem Tribulus unter bestimmten meteorologischen und edaphischen Bedingungen tödlich für Schafe ist, kann der

Nitratgehalt nicht dafür verantwortlich gemacht werden, da die vergifteten Tiere kein Methämoglobin zeigen.

Der Nitratgehalt von Tribulus zeigt trotz all den Schwankungen gewisse Regelmäßigkeiten, indem er gewöhnlich am Morgen zwischen 8 und 12 Uhr kleiner ist als später am Tag oder in der Nacht. Hingegen ist es sehr schwer, ihn auf irgendeine bekannte Einheit zu beziehen. Die regelmäßigsten Tageskurven erhält man, wenn das Nitrat auf den Totalstickstoff oder das Trockengewicht von morgens 8 Uhr bezogen wird. Aber auch so verschwinden die Schwankungen nicht, sondern betragen Hunderte von Prozenten. Aus den Tageskurven geht hervor, daß Nitrat am Morgen am meisten verarbeitet wird, doch auch in der Nacht verschwindet Nitrat.

4. O. Schüepp (Basel). – Die Sproβknospe von Ginkgo.

Die innern Knospenschuppen werden gebildet durch breite nervenlose Flügel des Blattstiels mit kleinem Spreitenrudiment. Nicht seltene Übergangsformen enden in zwei Nebenblattspitzen; der Stiel des ersten Laubblattes ist schmal geflügelt. Ein Schema der Laubblattspreite weist $2^7 = 128$ fächerförmig sich ausbreitende Nerven auf. Die erste Nervengabelung erfolgt tief im Stamm; die zweite bis vierte Gabelung sind im Spreitengrund zusammengerückt, die fünfte bis siebente über die Blattfläche verteilt. Der tiefe Einschnitt des Spreitenrandes entspricht der ersten Nervengabelung; zwei äußere Einschnitte des Spreitenrandes entsprechen einer Teilung der Nervenbündel im Verhältnis 16:48=1:3.

Die Blattmetamorphose läßt sich als Ausdruck «morphologischer Gradienten» in Kurvenbildern darstellen. Die zirka fünf Kurztriebblätter zeigen fortschreitende Zunahme von Spreitenlänge und Nervenzahl, besonders starke Zunahme der Stiellänge. Der Öffnungswinkel zwischen den Randnerven mit Spitze im Spreitengrund nimmt ab von 180° gegen 100°. Die Langtriebe sind weiterwachsende Kurztriebknospen. Spreitenlänge, Nervenzahl und Blattstiellänge wachsen noch über die an Kurztrieben erreichten Werte hinaus, nehmen dann rasch, später langsamer ab bis zum Knospenschluß nach zirka zwanzig Gliedern; der Öffnungswinkel der Randnerven nimmt ab bis gegen 90° und steigt nachher wieder etwas an. Die Internodienstreckung setzt etwa mit dem dritten Glied ein.

Der Vegetationspunkt der Kurztriebe liegt dauernd in einer Scheitelgrube des Stammes. Wenn die Knospe sich als Langtrieb streckt, wird hinter dem Vegetationspunkt ein Rippenmeristem tätig; der Vegetationspunkt wird auf kegelförmigem Axenende emporgehoben; wenn nach Abschluß des Treibens das Sproßende wieder zur Winterknospe sich umbildet, so wird der Vegetationspunkt des Langtriebes wieder in eine Scheitelgrube versenkt.

Einige Zählungen an Mikrotomserien ergaben für eine Kurztriebknospe Ende April im Zentrum des Vegetationspunktes 1,9% Mitosen (5 Mitosen auf 264 Kerne), an der Peripherie des Vegetationspunktes gleichzeitig 3,5% und in jungen Blattanlagen 4,8-3,3%. Eine Knospe von Ende Juli zeigte im Zentrum des Vegetationspunktes 0,2% Mitosen

(1 auf 571 Kerne), an den Rändern 1,7%, in jungen Blattanlagen 3–5%. Langsameres Wachstum und langsamere Teilung in der eigentlichen Initialregion liefert ständig Zellmaterial, das an den Rändern der Initialzone und in den entstehenden Blattanlagen in rascheres Teilungswachstum unter Abnahme der Zellgröße übergeht.

Es werden Schemata gezeigt, welche den Übergang von der Struktur des Vegetationskegels der Gymnospermen in denjenigen der Angiospermen erläutern. Vorwiegen des antiklinen Wachstums in den Initialen ergibt den Springbrunnentypus von Microcycas, isometrisches Wachstum der Initialen den radiären Typus von Ginkgo, vorwiegend antiklines Wachstum der Initialen den Kappentypus vieler Gymnospermen, ausschließlich antiklines Wachstum der Initialen den Tunikatypus der Angiospermen.

5. Wilhelm Vischer (Basel). – Über die Entstehung neuer Arten in Reinkulturen bei der Algengattung Diplosphaera Bialos.

Im Laufe der Jahre 1952–1954 sind in Reinkulturen der Grünalgengattung Diplosphaera (Leptosireae) innerhalb eines Klones zuerst drei neue «Arten» durch Mutation entstanden. Diese Klone blieben im allgemeinen konstant; doch bildeten sich in einzelnen Kulturen, anscheinend von je einer Zelle ausgehend, wiederum neue Mutanten. Die Verschiedenheiten erstrecken sich auf Zellform (rundlich, länglich), Farbe (mehr oder weniger Chlorophyll) und Gallertbildung (Kultur mehr oder weniger zerfließend, matt, trocken). In verschiedenen Tochterklonen können ähnliche Mutanten wie in andern auftreten, andere Mutanten wurden nur je einmal beobachtet. Die Unterschiede zwischen den neu beobachteten Arten sind z.T. größer als diejenigen zwischen den bisher aus der Natur bekannten Arten der Gattung. Infolge des Fehlens der geschlechtlichen Vermehrung läßt sich die Natur der Mutationen nicht näher analysieren. Dagegen läßt sich die wirkliche Genealogie in Kultur mit aller Klarheit verfolgen: Die verwandtschaftlichen Beziehungen der neuen Arten sind in Wirklichkeit ganz andere, als aus bloßem Vergleich geschlossen werden könnte; extrem verschiedene Arten können als Geschwister aus einem, ähnliche Mutanten aus verschiedenen Klonen entstehen.

Innerhalb der Gattung Diplosphaera wurden bisher Mutationen an Klonen verschiedener Herkunft (Blauen und Arlesheim) beobachtet. Es scheint, daß sich diese Gattung in einer Periode genetischer Labilität befindet (vgl. Vischer in Verh. S.N.G., 1953, S.92; Jahresber. Schw. Ges. Vererb., 28, 1953, S.287; 8e Congrès Int. Bot., 1954, Rapports et Comm., sect. 17, p. 44).

6. Anna Maurizio (Liebefeld-Bern). – Untersuchungen über die Nektarsekretion einiger polyploider Kulturpflanzen. – Kein Manuskript erhalten.

Es haben noch gesprochen: Rudolf Christ, Basel; H. Huber, Basel.

9. Sektion für Zoologie und Entomologie

Sitzung der Schweizerischen Zoologischen Gesellschaft zusammen mit der Schweizerischen Entomologischen Gesellschaft

Sonntag, den 26. September 1954

Präsidenten: Prof. Dr. F. E. LEHMANN (Bern) und

Dr. H. Kutter (Flawil)

Sekretär: Prof. Dr. M. Lüscher (Bern)

- 1. E. Hadorn und J. Walker (Zürich). Zur Abwehrreaktion von Drosophila gegenüber der Schlupfwespe Pseudocoila bochei¹.
- 2. F. Baltzer (Bern) und P.S. Chen (Zürich). Über xenoplastischchimärische Haftfäden aus Triton- und Bombinatorgewebe¹.
- **3.** H. Huggel (Bern und Basel). Zur Physiologie des embryonalen Fischherzens. Erscheint ungekürzt in den «Helvetica Physiologica et Pharmacologica Acta», Bd. 12.
- **4.** F. E. Lehmann (Bern). Kennzeichnung regenerationshemmender Stoffe durch verschiedene Gewebereaktionen¹.
- **5.** M. LÜSCHER (Bern). Nestbau und Luftzirkulation im Nest bei der Termite Macrotermes natalensis. Erscheint ungekürzt in den «Acta Tropica».

Es hat noch gesprochen: G. Benz, Zürich.

¹ Die Referate erscheinen ungekürzt im «Jahresbericht der Schweiz. Gesellschaft für Vererbungsforschung» («Archiv der Julius-Klaus-Stiftung für Vererbungsforschung, Sozialanthropologie und Rassenhygiene»).

10. Sektion für Anthropologie und Ethnologie

Sitzung der Schweizerischen Gesellschaft für Anthropologie und Ethnologie

Sonntag, den 26. September 1954

Präsident: Prof. Dr. A. Steinmann (Zürich) Sekretär: Dr. E. Leuzinger (Zürich)

1. Peter-W. Morgenthaler et Charles-Albert Baud (Genève). – Sur le poids spécifique réel et apparent des os fossiles.

Les données de la littérature concernant le poids spécifique de l'os actuel et de l'os fossile sont apparemment contradictoires. Cela s'explique par le fait que les auteurs n'ont en général pas précisé leur définition de la densité ni la méthode qu'ils ont employée pour la déterminer. Or l'os est un corps poreux. Lorsqu'on détermine la densité d'un corps poreux en utilisant l'immersion dans un liquide, deux cas peuvent se présenter: 1. Si le liquide ne pénètre pas dans les pores, le volume mesuré est le volume «extérieur», et on obtient alors la densité apparente (DA) du corps poreux. (On peut, pour éviter toute pénétration de liquide, revêtir le fragment d'un film de gomme-laque.) 2. Si, après une évacuation complète sous vide, le liquide remplit entièrement les pores (nous avons toujours utilisé pour ceci le micropycnomètre de Mélon et Dallemagne¹), on mesure le volume réellement occupé par la substance, et on détermine la densité réelle (DR).

On peut ainsi distinguer pour l'os actuel sec et dégraissé une DA de 1,7 environ² et une DR de 2,3 environ³. Si on élimine la matière organique sans modifier la matière minérale (par ébullition dans la glycérine potassique), la DR de l'os minéralisé est de 2,9 environ³.

Au cours de la fossilisation, la quantité de la matière organique diminue progressivement, quoique de façon irrégulière⁴. L'os soupesé semble plus léger; effectivement, sa DA diminue⁵, et sa DR augmente et se rap-

 $^{^1}$ Mélon, J., et $Dallemagne,\ M.-J.:$ Bull. Soc. Géol. de Belgique, $67,\ 93-100,\ 1944.$

² Koch, J.-C.: Amer. J. Anat. 21, 2, 177–293, 1917.

³ Dallemagne, M.-J., et Mélon, J.: Bull. Soc. Chim. Biol., 27, 85–89, 1945.

⁴ Baud, C.-A., Durif, S., et Morgenthaler, P.-W.: Arch. suisses d'Anthr. gén., 19, 1, 37–52, 1954.

⁵ Cook, S.-F., et Heizer, R.-F.: Reports Univ. California Archaeol. Survey, 17, 1–24, 1952.

proche de la DR de l'os minéralisé. Dans notre série étudiée déjà antérieurement⁶, nous avons en effet observé une assez bonne concordance entre la diminution de la matière organique, l'augmentation de la DR et la diminution de la DA.

Mais les phénomènes sont complexes, et en même temps que diminue la matière organique, la substance minérale peut subir des transformations partielles qui sont alors détectées si nous examinons l'os minéralisé (transformation en fluorapatite de densité plus élevée ou en vivianite de densité plus basse que l'os minéralisé). De plus, les pores de l'os peuvent se remplir plus ou moins de substances minérales étrangères qui élèvent la DA⁷ et qui élèvent ou abaissent la DR de la fraction minérale de l'os suivant leur propre poids spécifique. Les modifications de la DR sont alors en général extrêmement légères, parce que les substances minérales les plus fréquemment rencontrées (fluorapatite, vivianite, calcite, etc.) ont une densité voisine de la DR de l'os minéralisé.

Institut d'Anthropologie, Institut d'Anatomie, Université de Genève

2. Peter W. Morgenthaler (Genève). – Bemerkungen zur Retroversion und Inklination der Tibia.

Es sollen hier der Retroversions- und der Inklinationswinkel der Tibia in ihrem Wesen näher untersucht werden, wobei in einer spätern Arbeit das technische Problem der Bestimmung dieser beiden Winkel erörtert werden soll.

Unter Inklination versteht man allgemein die Neigung des Condylus medialis in bezug auf die mechanische Knochenachse (welche die Mittelpunkte der oberen medialen und der unteren Gelenkfläche miteinander verbindet), und Martin¹ definiert den Inklinationswinkel als den Winkel, den eine auf der medialen Gelenktangente errichtete Senkrechte mit der mechanischen Achse bildet. – Komplizierter sind die Verhältnisse bei der Retroversion. Martin und Manouvrier² bezeichnen zwar einerseits als Retroversion des Tibiakopfes die Rückwärtsneigung des obersten Diaphysenabschnittes samt der Epiphyse, bestimmen sie anderseits aber zahlenmäßig durch den Winkel, den eine auf der medialen Gelenktangente errichtete Senkrechte mit der Diaphysenachse bildet. Dabei ist diese Senkrechte natürlich nicht die Achse des Tibiakopfes, und der Winkel gibt auch nicht den Grad der Rückwärtsneigung des Kopfes an. Vielmehr geben beide Winkel, Inklinations- und Retroversionswinkel, einfach zahlenmäßig die Neigung des Condylus medialis an, der eine in bezug auf die mechanische, der andere in bezug auf die Diaphysenachse. Die Differenz zwischen Retroversions- und Inklinationswinkel ist nun gleich dem Winkel, den die beiden Achsen (mechanische Achse und Diaphysen-

⁶ Morgenthaler, P.-W., et Baud, C.-A.: Bull. Soc. suisse Anthr. et Ethn., 29, 4-5, 1952/53.

⁷ Weinert, H.: Quartar, 1, 177-179, 1938.

¹ Martin, R.: Lehrbuch der Anthropologie, 2. Aufl., Jena 1928.

² Manouvrier, L.: Mém. Soc. Anthr. Paris, 2e série, 4, 219-264, 1890.

achse) miteinander bilden (= biaxialer Winkel). Mit andern Worten besagt dies, daß Martins Retroversionswinkel zusammengesetzt ist aus dem Inklinationswinkel und dem wesentlich kleineren biaxialen Winkel und folglich auch mit diesen beiden Winkeln variiert. Die wirkliche Retroversion des Tibiakopfes ist nun aber nicht unbedingt eine Funktion der Inklination seines Plateaus, d. h., bei gleichem Inklinationswinkel kann durchaus der Tibiakopf verschieden stark nach rückwärts geneigt sein. Der Grad dieser verschieden starken Rückwärtsneigung wird nun (bei gleichem Inklinationswinkel) einzig durch den biaxialen Winkel ausgedrückt. Dieser biaxiale Winkel (oder die Differenz zwischen Martins Retroversions- und Inklinationswinkel) scheint daher die Retroversion des Tibiakopfes besser zahlenmäßig zu erfassen. Zur Erläuterung diene als Beispiel ein Extremfall: eine Tibia ohne Rückwärtsneigung, aber mit einer leichten Inklination des Condylus medialis. Da in diesem Fall die beiden Achsen zusammenfallen, wird Martins Retroversionswinkel den gleichen Betrag aufweisen wie der Inklinationswinkel, und nur der biaxiale Winkel $= 0^{\circ}$ wird der Tatsache gerecht.

Institut d'Anthropologie de l'Université de Genève

3. HÉLÈNE KAUFMANN, KARL HÄGLER, JAN K. MOOR-JANKOWSKI und HANSJÜRG HUSER. – Sero-anthropologische und genetische Untersuchungen bei Walsern und Romanen des Kantons Graubünden (Frühling 1954).

Die Unterstützung des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung ermöglichte es, im Verlauf des Frühjahrs 1954 größere sero-anthropologische und genetische Untersuchungen bei Walsern und Romanen des Kantons Graubünden durchzuführen.

Unter «Walsern» versteht man bekanntlich eine bestimmte, deutschsprechende Völkergruppe, welche – wie man annimmt – im Verlaufe des 12. und 13. Jahrhunderts vom Oberwallis nach allen Richtungen hin ausgewandert ist. So findet man sie heutzutage in der Schweiz (Südseite der Walliser Alpen, Berner Oberland, Tessin, Uri, Graubünden und St. Gallen), in Italien (Piemont und Pomat), in Frankreich (Chamonix), im Vorarlberg und im Tirol.

Obschon sich die Walser so im Verlaufe der Zeit weit zerstreut haben, behielten sie doch immer ihre eigene deutsche Sprache bei, welche sich noch heute von den Dialekten der umgebenden Bevölkerung unterscheiden läßt; ebenso unterscheiden sie sich durch ihren Partikularismus von der übrigen Bevölkerung; sie erfreuten sich zum Teil einer eigenen Gerichtsbarkeit sowie anderer Privilegien. Bis auf den heutigen Tag haben sie ihre eigenen Sitten und Gebräuche sowie ihre eigene Besiedlungsform beibehalten: Die Walser bewohnen hauptsächlich die höher gelegenen Regionen der Täler; ihre Häuser sind als «Höfe» über die Talseiten zerstreut; die meisten Walser leben von der Viehzucht, was einen durch die Jahreszeiten bedingten ständigen Wechsel zwischen Niederlassung und Aufenthaltsort mit sich bringt.

Bereits von 1948 bis 1953 sind nun eine Reihe von serologischen Untersuchungen in Walserregionen durch Prof. Knoll und verschiedene Doktoranden durchgeführt worden. Diese Untersuchungen umfaßten die westlichen Walsersiedlungen des Kantons Graubünden sowie die Siedlung Bosco-Gurin im Tessin. Diese Untersuchungen ergaben, daß sich die Walser, trotz starken örtlichen Unterschieden, serologisch charakterisieren lassen durch ein Vorwiegen der Blutgruppe O und des Faktors Rh—.

Es war deshalb wünschenswert, solche Untersuchungen auch auf andere Gebiete auszudehnen, um in diesen Tälern, wo oft eine gewisse Endogamie vorkommt, die Rolle der biologischen Faktoren (Blutgruppen, Erbfaktoren, anthropologische Merkmale) einerseits und der historischen und sprachlichen Verhältnisse andererseits hervorzuheben.

Im Frühjahr 1954 wurden während der Monate April und Mai diesbezügliche Untersuchungen durchgeführt. Sie erfaßten 1. die östlichen Walsersiedlungen des Kantons Graubünden Langwies, Wiesen, Davos mit seinen Fraktionen, Klosters mit seinen Fraktionen, St. Antönien und Furna; 2. die westliche Walsersiedlung Tschappina; 3. das romanischwalserische Dorf Schmitten und 4. den romanischen Oberhalbstein.

Die zivilen und geistlichen Autoritäten sowie die Ärzte brachten uns bei unseren Untersuchungen überall ihr wohlwollendes Verständnis entgegen.

Die Arbeitsgemeinschaft bestand aus zwei Equipen von je vier Personen. Je nach den Verhältnissen arbeiteten die Equipen zusammen oder getrennt.

Die Blutentnahmen wurden durch J.K.Moor-Jankowski, Dr. med., und Hansjürg Huser, cand. med., durchgeführt, assistiert von Erwin Alder, cand. med., und Peter Zürcher, cand. med.

Die anthropologischen Messungen leiteten Karl Hägler-Zeller, Dr. phil. nat., Direktor des Bündner Naturhistorischen und Nationalparkmuseums in Chur, und Frl. Hélène Kaufmann, Dr. ès. sc., Assistentin am Anthropologischen Institut der Universität Genf. Als Schreiber amteten Frl. Maria Schneeberger, diplomierte Krankenschwester, Frl. Mirella Vasella und Hans-Dieter Volkart, stud. phil. nat. an der Universität Bern.

Prof. Dr. W. Knoll, welcher die ersten serologischen Untersuchungen bei Walsern angeregt und durchgeführt hatte, verfolgte den zweiten Teil unserer Untersuchungen an Ort und Stelle.

Im Verlaufe dieser Untersuchungen konnten rund 2400 Personen erfaßt werden. Kinder von unter einem Jahr wurden nicht untersucht. Die Vorbereitungen an Ort und Stelle wurden durch persönliche Begrüßung und Orientierung der örtlichen zivilen und geistlichen Behörden durchgeführt sowie durch Versand eines Orientierungsschreibens an die einzelnen Familien. Anschließend verfertigten die Gemeinden Familienlisten mit dem Vermerk «Walser» oder «Halbwalser» (Personen, von welchen ein Elter «Nichtwalser» ist) bzw. «Romanen» oder «Halbromanen». Es wurden nur einige wenige Nichtwalser und Nichtromanen untersucht, nämlich dann, wenn sie Mitglieder einer von uns erfaßten Familie waren. Die Leute wurden dann von den Gemeinden zu einer bestimmten Zeit an

einen bestimmten Ort aufgeboten, wo sie von uns untersucht werden konnten. Als Örtlichkeiten standen uns jeweils Schulen, Spitäler oder Restaurants zur Verfügung. Diese Organisation bedeutete eine große Zeitersparnis. Nur in vereinzelten Fällen suchten wir die Leute bei ihnen zu Hause auf.

Da wir die Leute zur Zeit der Schneeschmelze aufsuchen mußten, bevor sie noch mit ihrem Vieh nach den höher gelegenen Maiensäßen abgezogen waren, bedeutete die Dislokation unserer Equipen in den Gebirgstälern ein Problem, welches jedoch dank einem Jeep und einem Landrover meist gut gelöst werden konnte.

Die Blutentnahme erfolgte meist durch Venenpunktion. Nur bei ganz kleinen Kindern mußten wir zum Schnepper greifen. Alle Blutproben wurden auf die Faktoren der Systeme ABO (A₁, A₂, O, B, AB) MN und Rhesus hin untersucht. Die Bestimmung der Rhesusfaktoren erfolgte mit Anti-CcDE-Seren. Ein kleiner Teil der Proben wurde auch auf die Faktoren Kell und Duffy hin untersucht. Diese Bestimmungen erfolgten größtenteils im Zentrallaboratorium des Schweizerischen Roten Kreuzes in Bern unter der Leitung von Dr. A. Hässig. Ein Teil wurde auch im Blutspendezentrum des SRK von Basel (Leitung Dr. L. Holländer) und im Laboratoire d'analyses médicales et biologiques von Dr. Jean Steinmann in Genf durchgeführt.

Die Leitung der statistischen Auswertung des serologischen Materials hat Prof. Dr. S. Rosin von der Universität Bern.

Was die Anthropologie anbetrifft, so ist es möglich gewesen, bei allen Personen ab dem 7. Altersjahr folgende 8 Maße zu bestimmen: Körperhöhe, Stammhöhe, größte Kopflänge und größte Kopf breite, Jochbogenbreite und morphologische Gesichtshöhe, Nasenhöhe und Nasenbreite. Abgesehen von diesen 8 Maßen konnten noch 6 weitere Merkmale angegeben werden, nämlich: Farbe und Form der Haare, Augenfarbe, Nasenprofil, Räzel und Profil des Hinterhaupts. In Anbetracht des Zeitmangels konnten nur zirka 60 Personen von vorn und im Profil photographiert werden.

Bei dieser großangelegten Untersuchung schien es uns vorteilhaft, von der Gelegenheit zu profitieren und gleichzeitig einige genetische Merkmale zu untersuchen. Wir beschränkten uns vor allem auf Merkmale, welche seit einiger Zeit für die Chromosomenmarkierung verwendet werden, und bestimmten so folgende 8 Merkmale: Vergleich der Fingerlänge II und IV, Rechts- und Linkshändigkeit, Form des Ohrläppchens, Darwinsche Höckerchen und Spitzen, Zungenrollen (curling), Glatzenbildung, PTC-Taster sowie Farbenblindheit.

Die statistische Auswertung des anthropologischen Materials wurde R. Lang, lic. phil. nat., unter Leitung von Prof. A. Linder, directeur du Laboratoire de statistique mathématique appliquée de l'Université de Genève, anvertraut.

Die Auswertung des genetischen Materials erfolgt später.

Die einzelnen Meßblätter, welche immer im Doppel vorliegen, enthalten – abgesehen von den wissenschaftlichen Angaben – alle nötigen

Angaben über geographische, volkskundliche, historische und verwandtschaftliche Verhältnisse, so daß bei der Auswertung alle diese Faktoren berücksichtigt werden können.

Eine erste Zusammenstellung des serologischen Materials hat bereits gezeigt, daß die Faktoren des ABO- und des Rhesussystems in den verschiedenen untersuchten Orten eine sehr verschiedene Verteilung aufweisen; von einem Vorwiegen der Blutgruppe O und des Faktors Rh- in allen Orten kann jedoch nicht gesprochen werden, dies im Gegensatz zu den Resultaten der Untersuchungen in den westlichen Walsersiedlungen des Kantons Graubünden. Es ist leider noch nicht möglich, weitere Resultate unserer Untersuchungen bekanntzugeben, da die genaue Auswertung in serologischer, anthropologischer, sero-anthropologischer und genetischer Hinsicht noch nicht abgeschlossen ist.

4. Marc-R. Sauter et Daliah Pick. – Essai sur les composantes raciales d'une série d'Italiens du Nord.

Nous avons commencé le dépouillement de détail des fiches de l'enquête séro-anthropologique menée en 1944/45 sur des Italiens internés en Suisse, et dont les premiers résultats globaux ont été publiés ici-même (1945/46). Il s'agit, à partir de ce matériel, d'essayer de mettre en évidence les éléments raciaux qui forment la population du nord de l'Italie.

Nous ne donnons ici que quelques indications préliminaires, provisoires, en laissant de côté, pour le moment, les caractères de pigmentation (qui varient du reste très peu). Le premier travail a porté sur la seule série des 457 sujets de 20 à 24 ans.

En combinant 4 des caractères métriques utilisés pour les diagnoses raciales, on obtient 88 catégories dont voici les 12 premières (M = moyenne; G = grande; HB = hyperbrachy-; B = brachy-; M = mésocéphale; HL = hyperlepto-; L = leptoprosope ou -rhinien; M = mésoprosope; E = euryprosope):

	Taille	i.céph.	i. fac.	i. nas.	%		Taille	i.céph.	i. fac.	i. nas.	%
a)	\mathbf{M}	\mathbf{B}	$^{\cdot}$ L	${f L}$	8,1	g)	\mathbf{G}	\mathbf{B}	${f E}$	${f L}$	3,5
b)	\mathbf{G}	${f B}$	${f L}$	${f L}$	5,9	h)	\mathbf{G}	$_{ m HB}$	\mathbf{M}	$^{-1}$ L	3,5
c)	\mathbf{M}	\mathbf{B}	${f M}$	${f L}$	5,2	i)	\mathbf{G}	$_{ m HB}$	${f L}$	${f L}$	3,5
d)	\mathbf{G}	${f M}$	${f L}$	\mathbf{L}	4,6	k)	${f M}$	\mathbf{M}	${ m HL}$	${f L}$	3,3
e)	\mathbf{G}	\mathbf{B}	${f M}$	${f L}$	3,7	l)	\mathbf{G}	\mathbf{M}	$_{ m HL}$	${f L}$	2,8
f)	${f M}$	\mathbf{M}	${f L}$	\mathbf{L}	3,7	m)	${f M}$	\mathbf{M}	${f M}$	${f L}$	2,8

A titre comparatif, relevons que les 9 premières catégories trouvées par Schlaginhaufen (1946) sur sa série de conscrits suisses correspondent à l'ordre suivant de celles de la série italienne (numéro de la catégorie suisse et son pourcent):

$$1 (=f), 5,6\%; 2 (d), 5,3; 3 (a), 5,2; 4 (b), 4,3; 5 (l), 4,1; 6 (k), 4,1; 7 (c), 4; 8 (m), 3,1; 9 (e), 3\%.$$

Si nous admettons que certaines des catégories ainsi établies figurent le noyau représentatif des types raciaux composant la population, nous pouvons mettre en correspondance les catégories a+c (13,3%) avec la

race alpine et les catégories h+i (7%) avec la race dinarique, étant bien entendu que ces chiffres ne doivent être pris qu'à titre indicatif. Remarquons que dans la série suisse les catégories «alpines» donnent 8,3%, les «dinariques» 2,4% seulement. La pigmentation très généralement foncée de la série italienne nous fait renoncer à calculer, à l'aide des seuls critères métriques, la participation – certainement faible – de la race nordique. Quant à la race méditerranéenne, elle ne figurerait que dans une proportion de moins de 1%.

Institut d'Anthropologie de l'Université de Genève

5. O. Schlaginhaufen (Kilchberg). – Anthropologische Merkmale von schweizerischen Söhnen ausländischer Mütter. – Erscheint im 14. Jahresbericht der Schweiz. Ges. für Vererbungsforschung, Archiv der Julius-Klaus-Stiftung, Bd. 29, 1954.

Es haben noch gesprochen: D. Pfannenstiel, Basel, und P. Radin, Lugano.

11. Sektion für Medizinische Biologie

Sitzung der Schweizerischen Medizinisch-Biologischen Gesellschaft

Samstag, den 25. September 1954

Präsident: Prof. Dr. E. Martin (Genève) Sekretär: Prof. Dr. F. Koller (Zürich)

Symposium über Antibiotika

Referate

- 1. L. Ettlinger (Zürich). Wirkungsweise und biochemische Wirkungsmechanismen der Antibiotika auf das Leben der Zellen. Erscheint in extenso in der Schweiz. Med. Wochenschrift.
- 2. M. Welsch (Liège). Le problème de la résistance microbienne aux antibiotiques. Erscheint in extenso in der Schweiz. Med. Wochenschrift.

Mitteilungen

- 1. P. Rentschnick (Genève). Les accidents de superinfection à staphylocoques dorés provoqués par les antibiotiques à vaste spectre d'action. Paraîtra in extenso dans la Revue suisse de Médecine.
- 2. Jos. Kopp (Ebikon). Geologisch-geophysikalische Krebsforschungen in Holland und England.

Mit finanzieller Unterstützung der nationalen Krebsforschungsorganisationen sind in den letzten Jahren in England und Holland
Untersuchung über die geographische und geologische Verbreitung des
Krebses vorgenommen worden, welche wichtige Ergebnisse zeitigten.
Als Vorläufer solcher Studien ist der englische Arzt A. Haviland, Dozent
an der Medizinschule des St.-Thomas-Spitals in London, zu erwähnen,
der im Jahre 1868 in der Medizinischen Gesellschaft von London einen
Vortrag über «Die geographische Verteilung des Krebses in England und
Wales» hielt, der durch eine große farbige Karte illustriert wurde. Seine
von mehreren Ärzten unterstützten Ausführungen fanden jedoch heftige
Kritik und wurden darnach vollständig vergessen, obwohl sie im Lichte

der jüngsten Studien als weit vorausschauend beurteilt werden müssen. Die Schlußfolgerungen A. Havilands lauteten im wesentlichen:

- 1. Die Krebssterblichkeit scheint keine Beziehung zur Bevölkerungsdichte und zur allgemeinen Sterblichkeit zu besitzen.
- 2. In Gebieten, wo die Krebstodesrate am höchsten ist, liegt die mittlere totale Sterblichkeit unter dem Mittel.
- 3. Zonen mit hoher Krebssterblichkeit fallen mit niedrig liegenden Tongebieten zusammen.
- 4. Die höher gelegenen Gebiete, insbesondere Kalkgebiete, zeigen geringere Krebshäufigkeit.
- 5. In Flußgebieten mit hoher Krebssterblichkeit stechen Kalkrücken durch niederigere Krebshäufigkeit heraus.

Punkt 3 wurde durch die Veröffentlichungen der Ärzte A. T. Brand, H. T. Butlin und L. Webb, und A. Jackson bekräftigt.

Seit 1939 veröffentlichte *P. Stocks* mehrere Abhandlungen über die geographische Verbreitung des Krebses in England, welche sich hauptsächlich mit dem Einfluß der Wasserversorgung und der chemischen Beschaffenheit des Bodens befaßten. In London zeigte sich, daß die mit Quellwasser versorgten Stadtteile eine niedrigere Krebsrate aufwiesen als die mit Flußwasser gespieseren, was mit den jüngsten Erhebungen in Holland übereinstimmt.

Der Geograph C. D. Legon wies nach, daß in Wales die Torfböden und nassen Böden höhere Krebssterblichkeit zeigen als Gebiete mit anstehendem Fels, was er auf karzinogene Substanzen und Fehlen protektiver Substanzen zurückführte.

Auf Anregung von P. Stocks finden zurzeit in Nordwales Felduntersuchungen über den Einfluß der Umgebungsverhältnisse auf die Krebshäufigkeit statt, wobei die medizinisch-naturwissenschaftliche Arbeitsgruppe sich eingehend mit den geologischen Faktoren Wasserversorgung und chemische Bodenbeschaffenheit befaßt.

In Holland ist Ende letzten Jahres von der «Stiftung zur Förderung der psychischen Physik» ein «Erster Bericht über die geographische und geologische Verbreitung des Krebses in Holland», verfaßt vom Generalarzt J. C. Diehl und dem Geologen S. W. Tromp, herausgegeben worden, der die Resultate der vom holländischen nationalen Krebsfonds «Königin-Wilhelmina-Fond» finanziell unterstützten Forschungen zusammenfaßt.

Die umfangreichen Untersuchungen Diehls ergaben folgende Hauptresultate: Die Provinz Limburg, deren Boden vorwiegend aus lößund pliozänen Terrassenablagerungen besteht, zeigt die niedrigste Krebssterblichkeit; die höchste weist die Provinz Friesland auf, die sich aus Moränen und jungem Seeton aufbaut. Provinzen mit guten hygienischen Verhältnissen haben eine hohe Krebssterblichkeit. Im ganzen Lande zeigt die Krebssterblichkeit Unterschiede hinsichtlich der geologischen Beschaffenheit der Böden. Bei drainiertem Torfboden, Torfboden und Seeton liegt die Krebssterblichkeit über dem Landesmittel;

bei Sand, Flußton, Bachgrund, Dünensand und Lößboden ist sie darunter. Die Krebsentwicklung scheint also durch die Bodenbeschaffenheit beeinflußt zu sein, zu welcher Auffassung auch Tromp neigt. Wie in England ist die Krebssterblichkeit in Gemeinden mit Flußwasserversorgung am höchsten, wobei wohl der geringere Kalkgehalt eine Rolle spielen dürfte. Der Siliziumgehalt wirkt eher aktivierend, währenddem Mangan und Natron dagegen wirken.

S. W. Tromp, der seine Studien unabhängig von J. C. Diehl durchführte, kam zu folgenden Ergebnissen:

Böden mit großer Feuchtigkeit zeigen höhere Krebssterblichkeit als trockene Böden. Kalkreiche Tonböden, Kalkböden und Lößböden zeichnen sich durch niedrige Krebshäufigkeit aus, was die Beobachtungen von A. Haviland bestätigt. Die höhere Krebshäufigkeit auf jungen Seetonen steht wahrscheinlich mit der höheren Radioaktivität in Zusammenhang, die auf den hohen Gehalt an Schweremineralien zurückzuführen ist. Oberflächliche Ton- und Lehmablagerungen erhöhen den Radongehalt des Grundwassers.

Tromp weist auf die Bedeutung der Zonen hoher Bodenleitfähigkeit hin, auf denen bei sensiblen Menschen ein Muskel-Tonus-Reflex (Wünschelrutenphänomen) auftritt. Experimente von Jenny, Hartmann und Petschke deuten darauf hin, daß auf solchen Zonen (Reizstreifen) eine höhere Krebshäufigkeit vorhanden ist. Weitere Forschungen über diese Erfahrungen hält Tromp von großer Bedeutung für das Problem des möglichen Einflusses des Bodens auf die Krebsentstehung. Er macht ferner auf pathologische Effekte niederfrequenter Wechselströme in Eisenbetonhäusern aufmerksam, die zufolge Nervenreizung zu Schlaflosigkeit und Kopfweh führen können. Weiterhin dürfte nach den Forschungen von Frey, Schorer, Tchyevsky und anderer die elektrische Leitfähigkeit der Luft einen wichtigen bioklimatologischen Faktor bilden, der bei der Krebsfrage berücksichtigt zu werden verdient.

Zur Abklärung der Gründe der geographischen und geologischen Krebsverbreitung fordert Tromp, in Übereinstimmung mit Stocks, die Mitarbeit von Physikern, Geographen, Bodenkundlern, Geophysikern und Geologen. Er empfiehlt die Herstellung von Gemeindeplänen, Bodenkarten und geologischen Karten, in denen alle Krebsdaten einzutragen sind. Wichtig ist ferner die Ausarbeitung von Grundwasserkarten. Die Krebsverbreitung ist an Hand von Isokarzinomkarten darzustellen. Diese von einer Arbeitsgruppe durchzuführenden Krebsforschungen hält Tromp für ebenso wichtig wie die chemotherapeutischen Studien, welche bis anhin das Hauptinteresse aller größeren Krebsforschungszentren der Welt beanspruchten.

Die englischen und holländischen Forschungen über allfällige Zusammenhänge zwischen Krebsentstehung und Bodeneinflüssen verdienen als wegleitend für gleichartige Forschungen in der Schweiz erachtet zu werden. Die verdienstvollen Untersuchungen von Jenny auf diesem Gebiete, deren Resultate durch die Ergebnisse von unter veränderten physikalischen Bedingungen durchgeführten Kontrollen

keineswegs in Frage gestellt worden sind, rufen nach einer Fortsetzung durch eine medizinisch-naturwissenschaftliche Arbeitsgruppe. Auf Grund meiner persönlichen Erfahrungen über Bodenreize und Krankheitsgeschehen bin ich fest überzeugt, daß die geforderten neuartigen Krebsforschungen zu wertvollen Resultaten für die Krebsprophylaxe führen können, wobei die Einschränkung gemacht werden muß, daß die Bodenreize selbstverständlich nur bei einem Teil der Krebsfälle eine Rolle spielen können.

3. C. Kousmine et M. Strojewski (Lausanne). – Du traitement du terrain cancéreux.

Lorsqu'un malade est libéré d'une néoplasie maligne par un traitement chirurgical, radio ou chimiothérapique, il se trouve pour quelque temps en état de guérison apparente. La durée de cette «guérison» dépend de la résistance de son organisme à la cellule cancéreuse dont, dans la plupart des cas, il n'a pu être complètement débarrassé.

La prolifération des cellules cancéreuses peut être activée par un apport d'hormones – telles que l'hormone somatotrope du lobe antérieur de l'hypophyse, les hormones placentaires, la désoxycorticostérone, la thyroxine – ou de facteurs de croissance tels que l'acide folique, l'acide paraaminobenzoïque, la vitamine B_{12} , la vitamine B_{1} à hautes doses, le fer, etc.

La résistance au cancer de l'animal jeune et bien portant, porteur d'une greffe de cancer mammaire (souris blanche) peut être *abaissée* par l'injection quotidienne d'acides biliaires ou de cholestérine estérifiée. Elle peut être *augmentée* par l'injection de cérébrosides.

Chez l'homme, la résistance au cancer diminue lorsqu'il se trouve en état d'insuffisance hépatique (bilirubinémie, urobilinogénurie augmentées); elle augmente dès que la fonction hépatique est parfaite. Cela s'explique bien par le rôle que joue le foie dans le maintien 1° de l'équilibre hormonal (par la destruction régulatrice des hormones stéroïdes et de la thyroxine); 2° de la circulation entéro-hépatique normale des constituants biliaires.

Il est possible de maintenir – peut-être indéfiniment (?) – l'état de santé apparente obtenue par le traitement initial, libérateur de la lésion néoplasique première, en soumettant les malades à un régime de protection hépatique, pauvre en graisses, en cholestérine et en sel de cuisine, en leur donnant des vitamines A, B (complexe équilibré) C, ainsi que de la méthionine et des cérébrosides.

Sur onze malades observés pendant un temps suffisamment long (trois à cinq ans), les six qui se sont soumis de façon suivie et correcte au traitement n'ont pas fait de rechute. Chez les cinq autres, les rechutes ont toujours été précédées: soit d'arrêt de traitement, soit de périodes plus ou moins prolongées d'insuffisance hépatique, soit des deux. Une reprise de traitement a permis de restabiliser la situation et aucun de ces malades n'est encore décédé, alors que d'après une appréciation basée sur les

statistiques hospitalières actuelles, huit d'entre eux devraient manquer à l'appel.

Voici le tableau qui résume ces onze cas:

Tableau 1

CA	S VI	VANTS TRAITES PAR CER	EBROSI	DES -	+ REG	IME +VITAMINE	S A,B et C.	
Nom	Age	LESION	STADE	TRA	ITES		*	9
				OP;	RX	1 AN 3 AN	IS 5 ANS	
RG	49	SARCOME RETOTHELIAL	IV	+	+			15 o/o
GL	60	idem	IV	-	+			15 0/0
CHY	26	OSTEOSARCOME	İ	+	+			15 0/0
٧G	55	FIBROSARCOME	1	+	+			15 o/o
MB	50	CARCINOME SEIN	11	+	-		23 o/o	7 0/0
GL	55	idem	П	+	-		- 23 o/o	7 0/0
CM	48	idem	1	-	+		- 14 o/o 	1,5 0/0
MM	40	CARCINOME OVAIRE	ı	+	+			52 o/o
BB	54	idem	1	+	+			52 o/o
RU	61	CARCINOME RECTUM	11	+	-			55 o/o
MM	58	HODGKIN	IV	-	+		-	0 0/0

Stades: I = local, II = métast. gangl., III = localisé, inopérable, IV = généralisé o/o = espoir survie par trait. chir et RX

4. C. Kousmine et M. Strojewski (Lausanne). – Traitement prophylactique du cancer par les cérébrosides.

Tous les effets biologiques peuvent être considérés comme la conséquence finale de légers déplacements d'équilibres entre des métabolites d'action antagoniste. Si l'on admet que la prolifération néoplasique est la conséquence de l'action pathologiquement activatrice de certains métabolites sur les phénomènes prolifératifs, l'existence d'autres métabolites à action inverse, freinatrice des mêmes processus en découle logiquement. L'administration de ces métabolites à des animaux sains porteurs de greffe cancéreuse serait susceptible d'augmenter leur résistance au cancer.

Nous avons successivement recherché ces substances hypothétiques dans à peu près tous les tissus de l'organisme. Seuls les cérébrosides préparés à partir de la matière cérébrale nous ont donné jusqu'ici des résultats encourageants.

Une suspension de cérébrosides à 1% a été injectée par voie souscutanée à des souris blanches porteuses de greffe de cancer mammaire sitôt après la greffe et ceci jusqu'à la mort ou à la guérison. L'effet protecteur de ces substances ressort après 21 jours de traitement d'une part de la diminution du nombre des morts dont le pourcentage passe de 10% chez les témoins à 1,5% chez les animaux traités, d'autre part de l'augmentation du contingent d'animaux exempts de tumeurs ou porteurs de tumeurs minuscules qui passe de 6% chez les témoins à 29,5% chez les animaux traités (v. Tableau 3).

Ces résultats, quoique modestes, sont cependant bien supérieurs à ceux obtenus par nous dans les mêmes conditions d'expérimentation avec différents mitostatiques (aminoptérine, Colcémide, podophylline, etc.)

Tableau 2: Composition chimique des cérébrosides

ac. lignocérique	CH3-(CH2)7-CH2-CH2-(CH2)12-CH2- COOH
ac. cérébronique	CH3-(CH2)7-CH2-CH2-(CH2)12-CHOH-COOH
ac. nervonique	CH3-(CH2)7-CH= CH- (CH2)12-CH2- COOH
ac. hydroxynervonio	que CH3-(CH2)7-CH= CH- (CH2)12-CHOH-COOH
Sphyngomyéline	CH3-(CH2)12-CH=CH-CHOH-CHNH2-CH2OH
Galactose	СН₂ОН-СН-СНОН-СНОН-СНОН
Psychoside	CH3-(CH2)12-CH=CH-CH-CHNH2-CH2OH
	СН₂ОН-СН-СНОН-СНОН-СНОН-СНОН-СНОН-СНОН-С
Cérasine	CH3-(CH2)7-CH2-CH2-(CH2)12-CH2- C=O
	CH3-(CH2)12-CH=CH-CH-CHNH-CH2OH
CH ₂ OH	-CH-CHOH-CHOH-CHOH-CH
	0
Phrénosine	-CH2-CH2-(CH2)12-CHOH-
Nervone	-CH= CH- (CH2)12-CH2-

Tableau 3

Hydroxynervone

-CH= CH- (CH2)12-CHOH-

CANCER MAMMAIRE GREFFE A LA SOURIS BLANCHE RESULTAT 21 JOURS TRAITEMENT

9

TUMEURS 1 cm			\bigcirc	0	Ş	
	nombre souris	†	grosses	o/o moyennes	TUMEUR petites	RS minuscules et nulles
TEMOINS	68	<u>10</u>	26	30	28	<u>6</u>
CEREBROSIDES	58	<u>1,5</u>	29	21	19	29,5
COLCEMIDE (Ciba)	10	0	40	60	0	0
PEROXYDOGENES (Solomides)	9	22	22	55	0	0
FACTEUR H 11 (urinaire)	20	5	25	20.	35	15
PODOPHYLLINE	19	37	21	21	10,5	0,5

ou d'autres produits préconisés récemment contre le cancer (peroxydogènes de Solomidès, AF₂, anatoxine de Bordet, etc.)

Seul le facteur urinaire H_{11} , qui est également un produit physiologique, donne des résultats comparables aux nôtres, quoique plus modestes encore.

De ces essais il ressort que l'administration de cérébrosides seuls ne résout pas le problème de la néoplasie maligne et ne permet qu'à un nombre restreint d'animaux de réaliser les conditions métaboliques rendant la prolifération des cellules cancéreuses implantées très lente ou impossible. Cependant, le fait même que de tels animaux existent, nous fait présumer l'existence d'autres métabolites à action synergique et nous encourage à les rechercher.

Les résultats en pathologie humaine sont comparables à ceux obtenus sur l'animal. Dans les cas hautement évolutifs, l'application de la méthode de traitement, telle que Kousmine vient de la décrire, ne donne qu'un coup de frein perceptible, mais insuffisant. Par contre, dans la prophylaxie de la rechute cancéreuse, les résultats obtenus peuvent être qualifiés de très encourageants.

5. P. Vonwiller (Rheinau-Zürich). – Neue elektive Nervenfärbungen.

Seit mehr als zehn Jahren haben wir neue Nervenfärbungsmethoden ausgearbeitet, welche gegenüber den bisher üblichen gewisse Vorteile aufweisen. Die dabei verwendeten Farbstoffe sind unter sich nicht chemisch verwandt, hingegen verhalten sie sich offenbar infolge ähnlicher physikalischer Eigenschaften, vor allem bedeutenderer Teilchengröße, im Gegensatz zu den gewöhnlichen histologischen Farbstoffen untereinander ähnlich, indem sie nur sehr langsam in die Gewebe eindringen und stundenbis tagelang wirken müssen, um in eine gewisse Tiefe zu gelangen. Bisher hatten wir vornehmlich ihre Wirkung auf frisches Material untersucht, und zwar (außer bei Alizarin) unter Beimischung kleiner Alkohol- und Essigsäuremengen. Die jeweils nicht elektiv gefärbten Gewebselemente können sodann noch z. B. mit Eosin gegengefärbt werden.

In neuerer Zeit hat sich nun außerdem noch gezeigt, daß man für solche Versuche auch fixiertes Material verwenden kann und daß man auf diesem Wege, z. B. an der Netzhaut, ebenso scharfe elektive Färbungen, z.B. mit Nigrosin, erhalten kann, wie am frischen Material, aber eben mit dem großen Vorteil, daß man nunmehr auch mit den besten, für das Nervensystem bekannten Fixiergemischen (z. B. Formol-Bichromat-Essigsäure) arbeiten kann und somit eine Garantie für durchaus einwandfreie Erhaltung der histologischen Struktur erhält.

Bei Material von gleichmäßiger Struktur (z. B. Gehirnrinde) dringt das Farbstoffgemisch gleichmäßig fortschreitend in die Tiefe, je länger man färbt, desto tiefer. Oft entsteht an der Oberfläche eine totale Färbung aller Elemente und erst in einer gewissen Tiefe eine elektive Färbung. Anders ist nun das Verhalten unserer Farbstoffgemische bei regelmäßig aus aufeinander folgenden Schichten aufgebauten Organen, wie in der Netzhaut, besonders bei Färbung von der äußeren Fläche her. Nach den ersten Stunden der Einwirkung finden wir nur die Stäbchen- und Zäpfchen und die Limitans externa gefärbt, und tiefer dringt der Farbstoff zunächst nicht ein, sondern scheint längere Zeit an dieser Stelle haltzumachen und alle darunter liegenden Schichten ungefärbt zu lassen. Alsdann beginnt die Wanderung des Farbstoffgemisches von neuem, färbt jetzt die «äußeren Körner», d. h. die Kerne, Zelleiber und zentralen Fortsätze der

Sinneszellen, – aber nicht gleichmäßig alle diese Sinneszellen, sondern es entsteht zunächst eine scharfe elektive Färbung der Zäpfchenzellen mit ihrem zentralen Fortsatz, also ihrem «Axon» und dessen «Fuß». Die «Füße» der Zäpfchenzellenfortsätze schneiden mit einer queren, dunkel gefärbten Linie scharf zentralwärts ab, und zum zweiten Male scheint hier das Vordringen des Farbstoffgemisches zum Stillstand zu kommen. Dieses Verhalten findet man sowohl an der zentralen Netzhaut als auch an ihrer Peripherie, an welch letzterer auf diese Weise eine scharf elektive Färbung der sogenannten «kleinen Zäpfchen» gelingt. Färbt man weiter, so entsteht nach und nach eine Durchfärbung der ganzen Netzhaut.

Dieses ruckweise Vorrücken der Farbstoffgemische ist eine bisher unbekannte Erscheinung, die eine besondere Erklärung verlangt. Für die Tatsache, daß beim ersten Schritt die Färbung mit der Limitans externa scharf abschließt, könnte man eben die Anwesenheit dieser Grenzmembran anrufen, welche das Vorrücken des Farbstoffes eine Zeitlang verhindern könnte. Aber für die Tatsache, daß die Färbung ein zweites Mal mit den gueren, zentral liegenden Grenzen der Zäpfchenfüße wiederum stillesteht, obgleich hier keine besondere Grenzmembran vorhanden ist, muß eine besondere, andere Erklärung gesucht werden. Wahrscheinlich gilt für beide Fälle die gleiche Erklärung, nämlich, daß an diesen Stellen Strukturelemente vorhanden sind, welche die Farbstoffe ganz besonders stark adsorbieren, also im ersten Fall die Limitans externa, und im zweiten Fall die Axone der Zäpfchenzellen, ihre «Füße», und ganz besonders auch zur Erklärung des so auffallend scharfen Abschneidens der Färbung an deren zentralem Rande, Elemente, die unseres Wissens bisher noch unbekannt waren, nämlich eine auf dem Schnitt in einer Reihe angeordneten, feinsten Körnchen, die man in Analogie zu den Endkörnchen der Stäbchenaxone als Zäpfchenendkörnchen bezeichnen kann. Körperlich gedacht würde es sich also um eine aus ihnen zusammengesetzte, runde Platte handeln, welche den Innenraum des «Fußes» zentralwärts abschließt, und so die scharfe Abgrenzung der Farbstoffwirkung an dieser Stelle erklären würde. Daß die «Füße» eine äußere Membran besitzen, die sie seitlich scharfbegrenzt, ist auch schon von früheren Beobachtern bemerkt worden. Im Inneren scheint ein Fadenapparat vorhanden zu sein, und wir sahen in einzelnen Fällen feinste Fäden an diesen Endkörnchen enden. So wäre also die Struktur der «Füße» der Zäpfchenaxonen wesentlich komplizierter als dies bisher angenommen wurde.

Unsere neuen Methoden gestatten nun auch ihre Anwendung auf die morphologischen Veränderungen der Sinneszellen an pathologisch verändertem Material, das wir Herrn Kollegen Dr. Krümmel von der Universitätsaugenklinik in Münster in Westfalen verdanken. Ein solcher Fall zeigt uns die offenbar sehr widerstandsfähigen Zäpfchenendkörnchenreihen in einer sonst pathologisch stark veränderten Netzhaut bei vorderem Glaskörperabszeß noch völlig intakt, währenddem die offenbar viel weniger stabilen Stäbchenendkörnchen schon stark blasig degeneriert sind. Im Inneren dieser Zäpfchenfüße fanden wir reichlich sich viel schwächer färbende Granula, welche vielleicht vom degenerierten Faden-

apparat herstammen. Jedenfalls kann also gesagt werden, daß sich unsere Methoden auch für ein bisher kaum zugängliches Spezialgebiet: die pathologischen Veränderungen der Sinneszellenfortsätze, besonders gut eignen.

Damit dürfte der Nachweis erbracht sein, daß diese neuen Methoden sowohl am normalen als am pathologisch veränderten Netzhautmaterial neue Befunde zu Tage fördern.

ALBERT JENTZER et RICHARD WEYENETH (Genève). – Cobalt, cancer de la vessie et hibernation¹. (Résumé.)

Dans leur article, Albert Jentzer et Richard Weyeneth soulignent les conquêtes scientifiques modernes obtenues par la radioactivité artificielle. Ils ont utilisé d'une part l'or radioactif dans une tumeur ovarienne et un lympho-sarcome de l'intestin (en provoquant un ascite artificiel), et d'autre part le cobalt dans deux cancers de la vessie. Pour le premier cas, il s'agissait d'une femme de 67 ans qui, après avoir été opérée en septembre 1949 d'un cancer de la vessie, a récidivé le 5 février 1952. A cette époque les auteurs ont placé une sonde, au centre de laquelle on a localisé une source punctuelle de cobalt; 7000 r ont été détruits. Depuis cette date, donc depuis près de deux ans, la malade est guérie. Quant au second cas, il s'agissait d'un homme de 52 ans. Son état était beaucoup plus grave. Le professeur Muller, de Zurich, a bien voulu venir montrer sa méthode. Le malade a été considérablement soulagé et a eu une période de répit de plusieurs mois.

¹ Travail présenté à la 133° Session annuelle de la Société Helvétique des Sciences Naturelles, Lugano, septembre 1953.

12. Sektion für Geschichte der Medizin und der Naturwissenschaften Sitzung der Schweizerischen Gesellschaft für Geschichte der Medizin und der Naturwissenschaften

Sonntag, den 26. September 1954

Präsident: Prof. Dr. W. H. Schopfer (Bern) Sekretär: Prof. Dr. med. H. Fischer (Zürich)

- 1. B. Peyer (Zürich). Nicolaus Steno und die Begründung der Paläontologie. Kein Manuskript eingegangen.
- 2. Eduard Fueter (Wädenswil-Zürich). Jakob I Bernoulli (1654 bis 1705), seine Persönlichkeit und Begründung der Wahrscheinlichkeitsrechnung; eine Würdigung zu seinem 300. Geburtstag.

Am 27. Dezember 1654 oder am 6. Januar 1655 nach unserer Zeitrechnung erblickte Jakob I Bernoulli in Basel als einer der vier Söhne des Ratsherrn Nicolaus Bernoulli und seiner Ehefrau Margaretha Schönauer das Licht der Welt. Mit diesem Bernoulli, Stammvater der bedeutendsten Mathematiker-Dynastie der Geschichte, sollte in der Schweiz die große Epoche der exakten Wissenschaften beginnen und ein hervorragender Mathematiker der Neuzeit, der durch seltene Tiefe und Selbständigkeit des Denkens fesselt, geboren werden. Mit seinem um 13 Jahre jüngeren Bruder, Johann I Bernoulli (1667–1748), schuf er ein Lebenswerk, das an die Leistungen von Galilei, Leibniz, Newton heranreichte und auf dem Leonhard Euler (1707–1783) weiterbaute.

Von seinem Vater zur Theologie bestimmt, wandte sich Jakob I Bernoulli schon früh heimlich der Naturforschung zu («Invito patre sidera verso»). Von entscheidender Bedeutung wurde eine 1681/82 nach Holland und England durchgeführte Reise, wo er mit führenden Mathematikern und Naturforschern der Zeit zusammentraf, nachdem ihn schon vorher Basler Freunde auf die Bedeutung der cartesianischen Werke und von Malebranches «Scrutinium veritatis» aufmerksam gemacht hatten. Aus eigener Kraft drang er in die Geheimnisse des neuen Infinitesimalkalküls ein, den 1684 Leibniz in kaum verständlicher Art erstmals in den «Acta Eruditorum» vorgelegt hatte. Im Wettbewerb mit seinem Schüler, jüngeren Bruder und späteren Gegner, Johann I, förderte er seit 1690 Kennt-

nis und Anwendungen der Differential- und Integralrechnung so sehr, daß Leibniz erklärte, der neue Kalkül verdanke den Brüdern Bernoulli nicht weniger als ihm. Seine Arbeit wurde erleichtert durch die Wahl zum Professor der Mathematik 1687 an der Universität Basel. Von bleibender Bedeutung wurden seine klassischen Arbeiten über unendliche Reihen, die Bernoulli als Thesen für seine Doktoranden verwendete. Dazu kamen viele geometrische Aufgaben, von deren Lösungen ihn keine mehr als die Entdeckung der «mira spirabilis», der logarithmischen Spirale, freute. Sie wünschte er sich nach dem Vorbilde von Archimedes auf seine Grabplatte gesetzt mit der Umschrift «Eadem mutata numero resurget».

Die originellste Leistung vollbrachte Jakob I Bernoulli aber durch seine erste systematische Darstellung der Wahrscheinlichkeitsrechnung, die 1713 posthum von seinem Neffen und Mitarbeiter Nikolaus I Bernoulli unter dem Titel «Ars conjectandi» herausgegeben wurde. Obgleich im genialen vierten Teil: «Anwendung der vorausgehenden Lehre auf bürgerliche, sittliche und wirtschaftliche Verhältnisse», ein Fragment, enthält sie das grundlegende «Gesetz der großen Zahl» mit Beweis und in nuce viele moderne Anwendungen der Wahrscheinlichkeitslehre, besonders auf die Medizin, die Meteorologie und das Sozialleben. Bernoulli erlöste die Wahrscheinlichkeitstheorie durch sein ideales, rein mathematisches Streben endgültig aus der früheren Zwangsjacke der Berechnung von Glücksspielen und schuf eine neue Disziplin, die dem Altertum noch fremd gewesen war.

3. Charles Lichtenthaeler (Leysin). – Les énigmes du Pronostic d'«Hippocrate»; quelques hypothèses pour les résoudre. De la nécessité d'une telle investigation.

Contrairement à l'opinion courante, le Pronostic est un traité fort curieux. 1. Certain commentateur ancien avait cependant déjà reconnu que le contenu n'y correspond pas exactement au titre, et il aurait pu ajouter: au préambule. Titre et préambule annoncent en effet un ouvrage très général; or il n'y est question que d'affections fébriles, presque toutes aiguës. 2. Même sous cet angle plus restreint il y a des lacunes, les unes partielles, d'autres complètes, et tant dans la première partie, où les signes pronostiques sont présentés pour eux-mêmes, que dans la seconde, où ils sont énumérés dans le cadre d'une sorte de nosologie topographique. Des signes aussi fondamentaux – sub specie hippocratica, naturellement – que ceux tirés de l'ouïe, de la langue, de la voix, des règles, des hémorroïdes, ne s'y rencontrent pas; autres exemples: l'auteur parle des céphalées fébriles, des otalgies et des angines fébriles, mais non des ophtalmies fébriles, pourtant si fréquentes dans les Epidémies; les péripneumonies et les empyèmes y prennent une large place, mais rien sur la phtisie! 3. L'ordre des subdivisions n'est pas toujours judicieux (M. Deichgräber); témoin cet exposé sur les hydropisies et leurs deux points de départ, qui se trouve en plein milieu des chapitres consacrés aux signes pronostiques étudiés pour eux-mêmes (cf. énigme 2). 4. Enfin, si on confronte toutes ces imperfections avec la pureté formelle du préambule, que von Wilamowitz a si bien mise en lumière et qui réapparaît d'ailleurs, jusqu'à un certain point, dans la péroraison et même dans quelques chapitres du corps de l'ouvrage, on est encore obligé de se rendre à l'évidence que le Pronostic manque d'unité de style.

Autant de faits, autant d'énigmes. Comment les dissiper? Différentes hypothèses sont concevables, dont deux peuvent être écartées aussitôt. 1. De fait, il y a dans le Pronostic trop de preuves indéniables d'un plan de rédaction (division du corps du traité en deux parties, passage progressif, dans plusieurs chapitres de la première partie, des signes les plus favorables aux signes les plus fâcheux, énoncés du principe de congruence utilisés comme leitmotiv, renvois fréquents...) pour qu'il soit permis d'éluder les difficultés en considérant cet ouvrage comme une simple collection de notes insérée entre une introduction et une conclusion plus travaillées. 2. Et d'autre part, il renferme trop de joyaux (préambule, réflexions générales qui semblent parfaire la doctrine traditionnelle sur la base d'une expérience personnelle...) pour qu'on ait le droit d'expliquer ses défauts par la malhabileté ou par la primitivité de l'écrivain. En revanche, les trois hypothèses suivantes doivent être retenues. 1. Il n'est pas impossible qu'en dépit de son préambule l'auteur n'ait pas voulu faire un traité exhaustif, ou que le Pronostic nous soit parvenu incomplètement, et ceci donnerait au moins partiellement la clef des deux premières énigmes. 2. Il se pourrait aussi que le Pronostic nous ait été transmis altéré. 3. Mais la supposition la plus vraisemblable est que, pour une raison qui nous échappe, ce traité n'a pas été proprement achevé: le préambule et la péroraison auraient reçu leur forme définitive, tandis que pour le corps l'auteur ne serait allé que jusqu'à mi-chemin. C'est cette hypothèse en effet qui rend le mieux compte à la fois des lumières et des ombres du Pronostic, et d'ailleurs elle n'exclut pas les deux précédentes.

Mais pourquoi cette enquête? Pourquoi doit-on, et devra-t-on encore, se livrer au patient travail de prouver que les énigmes du Pronostic sont bien des énigmes et de discuter en détail les hypothèses susceptibles de les résoudre? Le scepticisme paraît avoir ici d'autant plus d'excuses qu'on n'atteindra sans doute jamais à la certitude dans cette direction de recherches. Et cependant il serait faux de la rejeter, pour trois raisons. D'abord parce que le Pronostic est un des traités les plus importants de la Collection hippocratique. Or, les énigmes soulevées n'intéressent pas seulement l'un ou l'autre de ses passages ou même de ses chapitres: elles le mettent en cause, elles le rendent problématique dans son ensemble! Et ce fait ne sera pas sans conséquence lorsqu'on reprendra l'étude de la situation du Pronostic par rapport aux autres traités dits authentiques de la Collection, aux livres I et III des Epidémies en particulier. De plus, une analyse de ce genre a l'avantage inestimable de nous obliger à considérer la médecine hippocratique d'après ses critères propres, et non suivant l'un quelconque des points de vue modernes et donc tendancieux. En l'occurrence, elle nous invite même à «corriger» Hippocrate selon Hippocrate, c'est-à-dire à nous demander comment un collègue de l'auteur du Pronostic aurait pu améliorer (terminer?) ce traité sans s'écarter pour autant de la tradition de l'Ecole de Cos. Or, faut-il répéter que la médecine d'aujourd'hui ne peut faire un utile retour à Hippocrate que si elle parvient à s'oublier elle-même avant d'interroger les textes anciens? Enfin, il suffit de lire les ouvrages classiques d'histoire de la médecine pour se rendre compte que le Pronostic baigne depuis longtemps dans une sorte de légende de perfection. Or, les énigmes rassemblées au début montrent que cette légende ne correspond pas exactement avec les faits. Le Pronostic n'a d'ailleurs rien à perdre à cette constatation, car plus on l'étudie, plus on lui trouve d'autres mérites, et alors bien réels. Dans ce cas également, il convient donc de se souvenir que l'admiration qui ne repose pas sur une connaissance approfondie court grand risque d'être gratuite.

Appendice, concernant la dernière phrase du Pronostic: «Il ne faut demander le nom d'aucune maladie qui ne soit pas inscrit dans ce traité; car toutes celles qui se jugent dans les intervalles de temps indiqués, se connaissent par les mêmes signes.» (II 191 L.)

On a soutenu que cette phrase était authentique, parce qu'elle réfutait d'avance l'objection que le Pronostic était un traité incomplet. Mais cet argument ne me convainc pas. D'abord, il faut bien voir que, même original, ce passage n'excuserait qu'une fraction des lacunes du Pronostic: celles de sa partie nosologique; on continuerait à ne pas comprendre pourquoi, dans la partie purement séméiologique, l'auteur n'a rien écrit sur l'ouïe, la langue, les règles... Mais ce n'est pas tout: si on y regarde de plus près, on s'aperçoit que la dernière phrase du Pronostic ne nous éclaire même pas sur la partie nosologique de ce traité; davantage, elle est en contradiction avec elle. Les chapitres consacrés aux signes pronostiques dans les différentes affections régionales enseignent en effet au médecin, non seulement qu'il existe des jours et des signes critiques, mais encore que pour une bonne part ces signes varient d'une affection à l'autre! Notre médecin se serait-il donné la peine de traiter séparément des céphalées, des otalgies et des angines fébriles, par exemple, si toutes ces maladies s'étaient laissé juger «par les mêmes signes»?

Avec Wilamowitz, qui malheureusement n'a pas donné ses raisons, j'estime donc que la remarque finale du Pronostic est une adjonction trompeuse de copiste.

Et Daremberg ne me fait pas changer d'avis lorsqu'il voit dans ce passage une flèche contre la nosologie cnidienne. Ce qui précède montre assez qu'il y eut également une nosologie hippocratique! Elle différait certes de celle de l'Ecole de Cnide, et plus encore de la nôtre (il serait évidemment faux de confondre nos entités morbides avec les formes morbides hippocratiques), mais c'en était une cependant. On n'a donc pas le droit de se servir de cette phrase du Pronostic comme d'un argument dans le débat «Cos contre Cnide», et ce n'est pas sur ce terrain qu'elle pourrait retrouver un sens dans le traité qu'elle conclut.

4. Hubert Erhard (Adelholzen, Oberbayern). – Das Weltbild des Poseidonios

Die Welt bestehe von Ewigkeit und sei begrenzt. Die Erde sei kleiner als mancher Himmelskörper und nur deshalb Mittelpunkt der Welt, weil sie dichter sei. Im Gegensatz zu anderen Forschern des Altertums ist für Poseidonios die Erde eine Kugel; er errechnet 34 000 km Umfang und schreibt: Wenn man vom Westen Europas aus mit Ostwind segle, müsse man Indien erreichen. Diese Notiz des Poseidonios hat Kolumbus zu seiner Reise veranlaßt. Die Entfernung des Mondes berechnet er ziemlich richtig mit 368 400 km, während er die der Sonne viel zu gering einsetzt. Ebbe und Flut führt er sehr eingehend auf die wechselnde Stellung des Mondes zurück. – Er hat die damals bekannte Welt bereist, ihre Gesteine, Pflanzen, Tiere und Menschen beschrieben; er ist der erste, der Gallier und Germanen unterschieden hat.

Im ganzen Weltall herrsche Wechselwirkung. Würde die Sonne eine andere Bahn einschlagen, ginge alles zugrunde. «Am Himmel gibt es keinen Zufall, keine Willkür, Irrtum, Täuschung, sondern nur Ordnung, Wahrheit, Vernunft, Beständigkeit.» – Man hat dem Poseidonios den Vorwurf der Astrologie und Mantik gemacht. Er vertritt im Gegenteil die Eigengesetzlichkeit, den freien Willen des Menschen. Zur Mantik schreibt er: «Auf Gott, dem Naturgesetz und der Natur beruht alle Kraft und Methode der Weissagung.» Aus der Beobachtung, welche Wirkung aus einer Ursache erfolgt sei, ließe sich bei gleicher Ursache die Zukunft voraussagen. «Das Naturgesetz ist nicht ein Schicksal im abergläubischen, sondern im natürlichen Sinne: die ewige Ursache der Dinge, durch die das Vergangene geschehen ist, das unmittelbar Bevorstehende geschieht und das Zukünftige geschehen wird.» Sowohl im Zustande der Anspannung des Geistes als auch in dem der Abspannung (im Schlafe) ist Berechnung des Künftigen leichter möglich als im gewöhnlichen Wachzustand, weil beim Wachsein die Seele an die täglichen Bedürfnisse des Körpers gebunden ist. Besonders in schwerer Krankheit sei die Seele von der Verbindung mit dem Körper losgelöst; dann erinnere sie sich des Vergangenen und schaue das Zukünftige voraus, weil sie dann «von einem ewigen Bewußtsein und einem göttlichen Geiste ganz erfüllt sei». «Wer aber diesen Grad der Verfeinerung der Säfte und Erkenntnis erreicht hat, lebt nicht mehr lange.»

5. EMIL WALTER (Zürich). – Soziologische Grundlagen der medizinischen Forschung im alten Schaffhausen. – Der erweiterte Inhalt des Vortrages wird als 12. Kapitel der Studie: «Soziale und kulturelle Grundlagen der Entwicklung der Naturwissenschaften in der alten Schweiz» (Verlag Francke AG, Bern) erscheinen.

13. Sektion für Geographie und Kartographie

Sitzung des Verbandes schweizerischer geographischer Gesellschaften

Sonntag, den 26. September 1954

Präsident: Prof. Dr. J. Gabus (Neuchâtel)

Sekretär: W. Derron (Neuchâtel)

1. Toni Hagen (Katmandu/Nepal). – Note on the rise of the Himalayas and the drainage pattern.

The remarkable behaviour of many rivers in cutting across from the Tibetan plateau through the much higher Himalayan range has caused two main theories. One of them postulates that at an early stage the Himalaya had ordinary, consequent drainage, and that in a later stage south flowing rivers were cutting back through the range capturing rivers on the Tibetan side. The alternative theory postulates the rivers had their present courses before the Himalayan range had risen up across the rivers and that the latest upwarping of the Himalayas was caused by isostatic reasons due to the effect of loading and unloading the crust of the earth by the Quaternary ice sheet and (or) by erosion of the deep valleys at the southern edge of the Tibetan plateau.

The author found that the main range of the Himalaya is exactly corresponding with the roots of the large nappes (Katmandu nappes). The roots were risen up so rapidly in a late stage to the present height, that the rivers flowing south from far north long before, hat not time to cut their riverbeds in the uprising Himalayas correspondingly. In the valley of the Kali Gandaki a large tectonic lake was formed by the dam of the rising Himalayas. The lake is proved by lake deposits and salt formations. These Quaternary formations show a remarkable northern dip of about 18° near Tetang.

All the big rivers are crossing the main range between different tectonic arcs, each group of the high mountains forming such an arc.

2. Otmar Widmer (St. Gallen). – Probleme Israel-Jordanien.

Beide Staaten sind hervorgegangen aus britischen Völkerbundsmandaten (1920). – *Transjordanien*, unter Emîr Abdullâh († 1951) aus Mekka, 1946 unabhängig, Königreich *Jordanien* genannt, nach Angliede-

rung westjordanischen Gebietes (5500 qkm), umfaßt 96 500 qkm, 1,3 Mill. Einwohner, mit Hauptstadt Ammân, mit von 12 000 auf 170 000 gestiegener Bevölkerung. Ein Problem sind die 470 000 arabischen Flüchtlinge aus Palästina, welche, in Zeltlagern durch UNO-Hilfe verpflegt, unbeschäftigt warten, auf ihre im Bürgerkrieg verlassenen Besitzungen zurückkehren zu können – ein Kriegsgefahrherd, ebenso wie der Herrschaftsanspruch auf ganz Palästina. Die Technische Hilfe der UNO in dem kargen, wenig entwicklungsfähigen Land ist kaum wirksam; der junge König Hussein ist umgeben von widerstreitenden Parteiführern, die uneinige Arabische Liga ist ein unzuverlässiger Rückhalt. – Palästina, seit Begründung des Zionismus durch Herzl († 1904) Einwanderungsziel, laut Balfour-Deklaration 1917 «Jüdische Heimstätte», erhielt 1948 die Unabhängigkeit. Der von den eingewanderten Juden geschaffene Staat Israel unter Präsident Weizmann († 1952) wurde gegen die Araber verteidigt bis zum Waffenstillstand 1949, der die Teilung des Landes und der Stadt Jerusalem brachte. Israel umfaßt 20 850 qkm, 1,67 Mill. Einwohner; Juden 89, Mohammedaner 7,5, Christen 2,5, Drusen 1%; Tel Aviv 400 000, Haifa 200 000, Neu-Jerusalem (seit 1950 Regierungssitz) 155 000 Einwohner. Der sprunghafte, moderne Aufbau in einem Gebiet des alten Orients stellt vor schwierige Probleme: Versorgung und Assimilierung der sprachlich, beruflich, sozial und politisch heterogenen, mittellosen Einwanderer, während der Mandatzeit 484 000 (aus Osteuropa 80 %), seit der Staatsgründung 718 000 (aus dem Orient 51 %, eine schwere Belastung); Ansteigen der jüdischen Bevölkerung von 24 000 (1882) auf 1,5 Mill. Die 350 000 jüdischen Berufstätigen verteilen sich wie folgt: Landwirtschaft 14,5, Industrie 22,7, Bauwesen 7,2, Handel 17,4%; die 50 000 arabischen: Landwirtschaft 50 %. Die jüdische Bevölkerung wohnt zu 71,2 % in städtischen Siedlungen; interessant sind die ländlichen Siedlungstypen, Grundlage der Staatsgründung: 28 privatwirtschaftliche Dörfer (Moschava; 2,8 % der Bevölkerung), 40 kooperative (Moschav; 1,6), 234 kooperative Arbeiterdörfer (Moschav Ovdim; 4,6), 27 teil-kollektive (Moschav schitufi; 0,3), 217 voll-kollektive (Kibbutz und Kvutza; 4,2), 71 andere (2,1%). Neueinwanderer (5,1%) leben in Übergangssiedlungen (Maabara) und Zeltlagern, die nicht geflüchteten 186 000 Araber in Städten und 102 Dörfern, sowie als Beduinen 1,2 %. Die Wüste Negev, fast die Hälfte des Landes, soll bewässert werden durch den Jarkon, falls zwischenstaatlich zu regeln durch den Jordan, unter Ersatz des dem Toten Meer entgehenden Zuflusses durch Meerwasser. Viel verspricht man sich von der Gewinnung von Pottasche, Brom, Phosphaten, Kupfer- und Eisenerzen, sowie der Erdölbohrung, der Drainage des Hule-Sumpfes, der Landesaufforstung, dem Hafenausbau am Roten Meer und der Steigerung des Exports (21 Mill. Isr. £; Agrumen 36, geschliffene Diamanten 21%), dem ein Import von 102 Mill. Isr. £ gegenübersteht. Hohe Rüstungskosten belasten den Staat, dem Mittel aus der Diaspora und den deutschen Reparationen zufließen.

3. Werner Kündig-Steiner (Zürich). – Djarbakir am obern Tigris, das Zentrum Ostanatoliens.

Der Referent analysierte anhand von zwei Dutzend Originalfarbbildern die türkische Provinzstadt Djarbakir am Tigris, die 1935 erst um 35 000, heute aber gegen 55 000 Einwohner zählt. Dieses Stadtgebilde zeichnet sich je länger, je mehr als wichtigster Mittelpunkt der völlig im Umbruch sich befindenden Osttürkei ab.

Die Lagebeziehungen Djarbakirs (dyar = Gegend, bakir = Kupfer) sind insofern vorzüglich, als dieser Platz eine gemeinsame Brücke für den N-S- und W-E-Verkehr darstellt, der die umliegenden Großräume miteinander verbindet. Djarbakir liegt in einem leicht zu besiedelnden Übergangsstreifen zwischen dem mesopotamischen Steppentiefland und dem (einst) sehr waldreichen armenischen Hochland. Hier, auf 650 m ü. M., wo die Holzflößerei an dem hiefür genügend wasserführenden Tigris beginnt, hat sich ein handwerkliches Zentrum entwickelt, das auf dem konstanten Durchgangsverkehr und dem Umlad beruht.

Djarbakir hat sich am Ostrand des flachen, längst erloschenen und stark erodierten Karadscha-Dag-Vulkanmassives (1950 m ü. M.) festgesetzt, auf einer sehr ausgeprägten Basaltdecke, die von drei Seiten her vom Tigris und einem Zuflüßchen zerschnitten wurde. Unter der Basaltdecke finden sich viele Wasseradern, die schon sehr frühe zur Bewässerungswirtschaft längs des Tigris dienten. Relativ früh besaß diese Stadt eine eigene Wasserversorgung, die aber bis heute noch nicht in alle Häuser einzudringen vermochte.

In der weitern Umgebung von Djarbakir, die klimatische Vergleiche mit dem Po-Becken zuließe, hat sich im letzten Jahrfünft eine Umformung der landwirtschaftlichen Produktion vollzogen, die nunmehr im Alltagsleben der Stadt spürbar wird. Auf dem städtischen Markt erscheinen nicht bloß die Früchte der auch in Mitteleuropa bekannten Kulturpflanzen (sowie Baumwolle, Oliven, Pistazien), sondern auch die Industrieprodukte Mitteleuropas, vorab Deutschlands.

Seit zwei Jahrtausenden wird diese Stadt von einer mächtigen, schwarzen Ringmauer umschlossen, in die erst vor wenigen Jahren eine große Bresche geschlagen wurde. In Richtung zum Bahnhof (eröffnet 1937) entsteht Neu-Djarbakir. Im Straßenkreuz zwischen den vier Stadttoren formt sich der Grundriß der orientalischen Stadt gründlich um. Keinerlei Industrie hat bis heute Fuß gefaßt: Djarbakir bleibt in erster Linie Verwaltungs- und Militärplatz.

Für den künftigen Entwicklungsgang ist bedeutsam, daß die Umgebung viele Mineralschätze birgt, wie z. B. die Chromerzlager von Guleman oder die Kupfererze von Ergani-Maden. Auch Eisenerze, Kohle und große Wasserkräfte sind in nächster Nähe vorhanden. Zudem ist in neuster Zeit Erdöl entdeckt worden (50 km östlich von D.). Die amerikanische Armee ist daran, dort eine sehr große Flugpiste anzulegen. Auch geht man beim Kurdendorf Batman an den Bau einer hochmodernen

Raffinerie. – Es braucht indes den tüchtigen Einsatz von geschulten Anatoliern, um aus der Provinzstadt Djarbakir das Zentrum Ostanatoliens zu schaffen.

4. PD W. Staub (Bern). – Über die «präglaziale» Verebnung im Quellgebiet von Rhone, Reuβ und Rhein.

Die Längstäler der Rhone, der Urseren-Reuß, des Vorderrheins wie das Bedrettotal eignen sich auch deswegen für morphologische Feststellungen, weil hier auf große Längenerstreckungen Steil- und Senkrechtstellung der Gesteinsfolgen vorherrscht, alte Abtragungsflächen und Terrassen daher leicht als solche erkannt werden können. Seit langem werden hier die Verebnungen, welche an der oberen Waldgrenze zwischen rund 2000 bis 2200 m Meereshöhe auftreten, als «präglazialer» Talboden angesprochen. In diesen sind die glazialen Trogtäler eingesenkt. Die als «präglazial» angesprochene Fläche bildet im Hintergrund einiger Täler auch die oberste Stufe der heutigen Talsohle und läßt sich von hier talauswärts mit Unterbrüchen als Terrasse oder wenigstens Gehängeleiste verfolgen. Ohne Talstufe setzt sie sich in die Seitentäler fort. Oft ist diese Terrasse als «Boden» oder «Platte» in hochgelegene Talwurzeln zu verfolgen. Mindestens vom westlichen Wallis bis in das Davoser Gebiet ist diese Abtragungsfläche ein höchst wichtiger Boden für die Alpwirtschaft. Die Herausbildung muß sehr lange Zeit in Anspruch genommen haben; sie kann nur tertiären Alters sein, und auf ihr spielte sich die älteste greif bare Entwässerung ab. Bei 2300 bis 2400 m Höhe wird diese Fläche meist von den Resten einer höheren, älteren Fläche begleitet, in welche nicht selten Karböden eingesenkt sind. In diesem Zustand der Alpen tritt die Furka als klare Wasserscheide zwischen West und Ost bereits hervor, während die Grimsel (2164 m), der Gotthard- (2091 m) und der Oberalppaß (2044 m) in dieser alten Fläche liegen. Zunächst muß das Aarmassiv die Wasserscheide zwischen Nord und Süd dargestellt haben. Mit Hilfe der Höhenschichtenkarte, welche der neuen topographischen Darstellung dieses Gebirgsteiles in 1:50 000 der Eidg. Landestopographie zugrunde liegt, läßt sich nun zeigen, daß das Aaretal und die Schöllenen als jüngere Erosionstäler in diese alte Einebnungsfläche eingefallen, also jünger sind. Die glazialen Täler weisen eine auffallende Treppenform, sowohl in der Längsrichtung wie im Querschnitt, auf. Es scheint, daß im Alter das Talstück von Gletsch (1800 m) demjenigen von Tschamut (Plan Pardatsch, 1800 m) gleichzustellen ist.

5. Werner Kuhn (Bern). – $Probleme\ der\ Vegetation\ an\ der\ Polargrenze.$

Von den 150 Mio km² Landoberfläche der Erde sind 50 Mio km² Ödland. Es zerfällt in den großen Gürtel der Trockenwüsten (breit und mehr oder weniger durchgehend auf der nördlichen, schmaler auf der südlichen Hemisphäre), die polaren Kappen der Kältewüsten, inselartige

Flecken von Hochgebirgswüste, von den Tupfen und Bändern der Zivilisationswüste ganz abgesehen. Dazwischen existieren notwendigerweise Grenzlinien, genauer Grenzsäume. An jeder Nahtstelle von Produktivland und Ödland sind viele Grenzen denkbar; denn jede einzelne Pflanzenart hat eine Trocken-, Kälte- und Höhengrenze. Geographisch besonders interessant sind die Grenzen des Ackerbaus, des Waldes, die Baumgrenze und die Grenze des pflanzlichen Lebens überhaupt. Über sie alle existiert – gerade auch von schweizerischen Forschern – eine namhafte Literatur.

Mit dem Problem der Lebensbedingungen an der Polargrenze der Vegetation und des Baumwuchses beschäftigen sich diese Ausführungen, finden wir doch nördlich des 80. Breitengrades noch 20 Gefäßpflanzen; Cerastium, Dryas und Salix überschreiten sogar den 83. Breitengrad. -Was die Temperatur betrifft, so entscheidet kaum der Jahresdurchschnitt, ebensowenig die Wintertemperaturen, kaum die Wärmesumme; ausschlaggebend sind vor allem die Sommertemperaturen, besonders die Länge der Zeitdauer mit Temperaturen über 0°. Nur so ist es erklärlich, daß sich in Werchojansk (am Kältepol der Erde) ein Laricetum findet. Der Temperaturverlauf im Jahr bekommt somit entscheidendes Gewicht. Da in den arktischen Grenzlagen oft erst März oder April der kälteste Monat ist und frühestens im Mai Temperaturen über 0° erreicht werden, beschränkt sich die extrem kurze Vegetationsperiode hier auf die Monate Juni, Juli und August. Das fast explosionsartige Erwachen kann mit Zahlen vom Aufblühen von 86 Blütenpflanzen auf Spitzbergen (Rikli) belegt werden. Dafür genießen die Pflanzen während der Vegetationszeit den immerwährenden Polartag mit fast ununterbrochener Sonnenbestrahlung und entsprechender Assimilationstätigkeit. Auf die Bedeutung der Ozeanität für das Grenzproblem hat besonders Brockmann hingewiesen: um den gleichen Effekt zu erzielen, muß die Durchschnittstemperatur bei kleinen täglichen Temperatursprüngen höher sein als bei großen. Deshalb reicht vor allem die Baumgrenze im ozeanischen Klima weniger weit nach Norden als im kontinentalen Bezirk. (Ähnlich wirken Gebirge mit großer Massenerhebung.) Dementsprechend sind des Referenten Erfahrungen aus Spitzbergen, wo im kontinentaleren Fjordinneren der üppigere Pflanzenwuchs gedeiht als an der neblig-feuchten Westküste. Allerdings spielt auch die Tatsache eine Rolle, daß mit mehr Niederschlag erhöhte Bewölkung und damit verminderte Sonnenscheindauer einhergeht. - Zum Niederschlag und in der Folge zum Wasserhaushalt der Pflanzen in der polaren Grenzregion läßt sich folgendes sagen: Die Wasserzufuhr bedingt in erster Linie die Wuchsform, welche hier eine ausgesprochene Kümmerform darstellt. Ein Grund dafür ist kaum die Temperatur: entweder gedeiht die Pflanze, oder sie gedeiht nicht mehr. Dagegen läßt sich für das Wie des Wachsens schon eher der Wind mitverantwortlich machen. Meist wird er infolge mechanischer Kraftwirkung als baum- und überhaupt pflanzenfeindlich angesehen. Anderson aber hat gezeigt, daß es hauptsächlich durch Wasserentzug auf der Windseite zu verkümmertem oder verhindertem Wachstum kommt. Die geringen Niederschlagsmengen sind bei der minimalen Verdunstung physikalisch absolut genügend; aber ein Großteil des Wassers ist physiologisch nicht verfügbar, weshalb in diesem Sinne auch die polare Kältewüste eine Form der Trockenwüste darstellt. Nicht zu verwundern deshalb die vielen Konvergenzen zu den Pflanzenformen der eigentlichen, subtropischen Trokkenwüste (Chamaephytismus, Xerophytismus).

Zusammenfassend läßt sich feststellen, daß nie ein Faktor allein für Verbreitungsgrenze und Wuchsform verantwortlich ist, auch nicht einzelne Durchschnitts- oder Extremwerte, sondern stets der gesamte Klimacharakter (Brockmann). Allerdings ist die Grenze der Polarwüste festgelegt durch die Temperatur; im Grenzsaum aber hat die Temperatur kein Primat, vielmehr entspricht die Kältewüste weitgehend einer Trokkenwüste.

Es hat noch gesprochen: H. Carol, Zürich.

14. Sektion für Vererbungsforschung Sitzung der Schweizerischen Gesellschaft für Vererbungsforschung

Montag, den 27. September 1954

Präsident: Prof. Dr. E. HADORN (Zürich)

1. H. Kappert (Berlin). – Probleme und Erfolge der modernen Pflanzenzüchtung. – Erscheint im «Archiv der Julius-Klaus-Stiftung».

Es hat noch gesprochen: F. Weber, Zürich.

15. Sektion für Logik und Philosophie

Sitzung der Schweizerischen Gesellschaft zur Pflege der Logik und Philosophie der Wissenschaften

Samstag, den 25. September 1954

Präsident: Prof. Dr. F. Gonseth (Zürich) Sekretär: Dr. M. Altwegg (Oberengstringen)

- 1. FERDINAND GONSETH (Zürich). Geometrie und Erkenntnistheorie. Kein Manuskript erhalten.
- 2. Albert Challand (Berne). Le concept d'à priori éthique ou politique subsiste-t-il devant la logique?

Aux pages 287 à 302 du volume 7 de «Dialectica», un savant auditeur du Congrès international de philosophie de Bruxelles, en 1953, a donné ce qu'il appelle lui-même une méditation sur certaines des vues exposées à ce congrès. Ce terme de méditation laisse supposer qu'il ne s'agit pas d'un simple compte rendu et que, résumant les conférences auxquelles il a assisté, notre auteur y a mis quelque peu du sien. Peu importe, après tout. La vérité est impersonnelle, pour autant qu'elle est vérité, et si nos philosophes sont de bonne foi lorsqu'ils prétendent la révéler, ce doit leur être un geste naturel que de s'effacer devant elle.

Je viens de rappeler que la vérité est impersonnelle. Une importante restriction est pourtant nécessaire sur ce point. La liberté humaine ne se heurtant à des limites autres que physiques qu'à partir du moment où l'homme vit en communauté avec d'autres hommes, aussi longtemps qu'il est seul il est et demeure fondamentalement libre. Il peut en particulier appeler vérité tout ce qu'il lui plaît, et je ne verrais pour mon compte aucun inconvénient à ce qu'un fonctionnaire postal retraité du Comtat Venaissin se prît, comme le rapportent les journaux, pour Jésus-Christ redescendu sur la terre, s'il ne prétendait exercer une pression sur les autres hommes pour leur faire partager cette vue singulière. Car c'est cela qui est défendu. Que cet homme croie tout ce qu'il voudra, mais qu'il ne nous fasse croire que ce qu'il peut nous prouver; dès le moment où il cherche à nous influencer par autre chose que des preuves, où il recourt

à la propagande, au bourrage de crâne, à la menace, à la violence, bref, aux méthodes de force de toute nature, il s'écarte du social et en frelate la norme, dont c'est l'intention de rapprocher des êtres *libres*. On a toujours agi de cette manière antisociale, dira-t-on. Je sais. Mais regardez l'histoire humaine, passée et présente, et demandez-vous si l'on a lieu de s'en féliciter.

La vérité purement individuelle, la vérité mystique, étant ainsi écartée, il reste la vérité objective, c'est-à-dire un ensemble de notions sur lesquelles les hommes se sont mis d'accord non par convention, comme dans le cas des idéologies, mais par identité de critères rationnels, ceux-ci étant communs à toutes les mécaniques cérébrales saines, dès qu'elles sont normalement exercées. Descartes assure que le bon sens est la chose du monde la mieux partagée. La validité des enchaînements logiques est universelle.

Mais si c'est cela, la vérité objective, quelle place peut-il bien rester dans son cadre pour un à priori métaphysique? Et d'abord, qu'est-ce qu'un tel à priori? Est-ce une idée innée, une sorte d'archétype? Si oui, nous sortons de la métaphysique pour entrer dans la psychologie, or c'est justement l'intention avouée de notre texte que de prévenir la dissolution de l'éthique en notions psychologiques ou sociologiques.

Ou est-ce une révélation individuelle d'en haut, toute pareille à celle par laquelle le Christ d'Avignon fut averti de sa mission, mais se répétant semblable à elle-même chez une pluralité de personnes? Si oui, nous tombons dans l'incontrôlable et l'incommunicable, sur lequel aucune méthode rigoureuse de discussion, de pensée droite, ne peut mordre, et dont aucun résultat valable ne peut sortir. C'est la glorification de l'idée délirante.

Mais, de même que le mouvement se démontre en marchant, notre auteur cherche, à l'aide d'un exemple, à nous faire accepter par un faux-fuyant une notion qui s'évanouit, comme un fantôme au lever de l'aurore, dès qu'on l'aborde de front. Cet exemple, c'est celui de l'anthropophagie. Quand nous en combattons la pratique au nom de la morale, qu'entendons-nous par là? Nous n'entendons en tout cas pas (c'est ainsi que s'exprime mon texte) que consommer de la chair humaine soit moralement bien ou mal selon ce qu'en pense l'entourage du consommateur, mais que cela est mal en soi, même si la peuplade dont le consommateur fait partie tolère, et peut-être recommande, le cannibalisme. Ce jugement éthique s'accompagne d'un sentiment de l'absolu comparable, si je comprends bien, au sentiment de l'évidence en géométrie, et c'est celui qui regarde ce sentiment comme une illusion qui doit apporter ses preuves.

Cet argument est de mauvaise foi, car c'est à la personne qui avance un fait à le prouver, non à celle qui refuse de l'accepter. Moi par exemple, qui ne conçois ni la nature ni la nécessité de l'à priori métaphysique en éthique et suis aveugle à sa soi-disant manifestation dans les faits, que pourrais-je bien avoir à démontrer? C'est bien plutôt l'affaire – et l'étymologie l'indique déjà – de celui qui se propose de m'ouvrir les yeux.

Notre moraliste quitte ailleurs encore les sentiers de la bonne foi. Ainsi lorsqu'il dit – je le citais tout à l'heure – que le jugement moral ne se réfère en tout cas pas aux idées régnantes. Car il s'y réfère bel et bien, aux yeux de l'observateur exempt de fanatisme, et les anciens déjà l'avaient parfaitement reconnu. Une anecdote que j'emprunte au Celse de Louis Rougier l'illustre assez. Celse est du deuxième siècle de notre ère, et tire lui-même son exemple d'Hérodote. Le voici:

«Un jour Darius, étant roi des Perses, appela près de lui quelques Grecs qui se trouvaient à sa cour, et leur demanda à quel prix ils consentiraient à manger leurs parents morts. Ils se récrièrent, répondant que pour rien au monde ils ne commettraient pareil forfait. Il fit ensuite approcher quelques Hindous, de ceux de la tribu des Calaties, qui ont coutume de manger leurs pères, et leur demanda, en présence des Grecs, à qui des interprètes traduisirent la question, à quel prix ils consentiraient à brûler après leur mort les corps de leurs pères. Sur quoi ils se récrièrent, le priant de ne point formuler de semblables propos.»

Nos philosophes du congrès de Bruxelles auraient en cette affaire donné raison aux Grecs contre les Hindous, au nom d'un absolu dont ils sont les seuls garants. Il y a plus d'opportunisme que de courage à s'arroger un tel rôle. L'éthique traditionnelle, quelles que soient ses nuances, se ramenant toujours à la formule: morale égale obéissance à dirigeant, les philosophes peuvent en effet compter sur la gratitude des hommes au pouvoir s'ils persuadent les populations qu'il existe un devoir formel d'obéissance inconditionnée, parce que métaphysique dans son origine.

Est-ce à dire que moi, qui rejette ces billevesées, je ne tiens pas pour universelle la prohibition de l'anthropophagie? Qu'on se rassure. L'homme étant originairement libre, et soumis à des restrictions de liberté seulement parce qu'il choisit de vivre en société, il ne saurait sacrifier à la société sa volonté de vivre (ce qui ne veut pas dire, du reste, qu'il ne se sacrifiera jamais à la société). Il n'y a ainsi société, et par conséquent morale, que là où la vie des associés est respectée. On ne peut donc les tuer pour les manger sans porter atteinte à la norme sociale universelle, permanente dans le temps et dans l'espace. Quant à les manger à la façon des Hindous Calaties, lorsqu'ils sont décédés d'avance, la répugnance qu'on pourrait y avoir est affaire de nerfs et d'ambiance plutôt que de morale. Il ne faut pas supputer de la métaphysique derrière chaque nausée.

On objectera peut-être à ma démonstration qu'elle n'est pas valable dans le cas des tribus qui ne mangent que des prisonniers de guerre. Mais entre manger un être avec lequel on vit en société et un autre être avec lequel on *pourrait* vivre en société, si seulement on laissait libre cours à l'instinct social, la différence est logiquement infime. Je m'empresse d'ajouter que cette considération condamne la guerre comme telle, et non seulement le cannibalisme, dont je puis dire, après les spectacles auxquels la race blanche nous a fait assister, qu'il en est à peine une aggravation. La clef du problème, c'est le respect de la norme sociale. Il se confond avec la volonté de bénéficier de la vie en société sans porter atteinte aux conditions d'existence de celle-ci. C'est là toute la morale, et elle n'exige aucune métaphysique.

La recherche d'un à priori de la société politique conduirait plus facilement encore à la même conclusion négative, qui du reste est déjà presque ébauchée dans «Dialectica», volume cité, pages 293 et 294.

Es haben noch gesprochen: P. Bernays, Zürich; G. Müller, Zürich; E. Specker, Zürich.

Liste alphabétique des auteurs Alphabetisches Namenregister der Autoren Indice alfabetico degli autori

	Seite		Seite
Ackermann, P	115	Favre, R	101
Ambühl, E	115	Feitknecht, W 120,	121
Padaur H	347	Feurer, M 122,	123
Badoux, H		Fisch, A	103
Baeschlin, Karl	355	Fluckiger, Maurice	113
Baltzer, F	139	Fourmarier, P	338
Baud, Charles-Albert	140	Fuchs, O	123
Bay, R.	134	Fueter, Eduard	156
Beck, Paul 127,			
Becker, F	329	Gabor, V	123
Begemann, F	119	Gaille, R	103
Biasutti, M	101	Gailloud, M	101
Bider, Max	115	Geiger, Ernst	130
Biéler, Pierre-Louis	114	Gensler, G. A 110,	111
Blanc, Charles	97	Goldschmidt, R	104
Blatter, F	121	Gonseth, F 88,	168
Bleuler, K	103	Graf, P	120
Brandenberger, H	$121 \\ 121$	Gunten, H. R. v	119
Briggs, W. S	121	Gunthard, Hs. H	123
	23		
Brockmann, H	23 124	Hadorn, E 94,	139
Brunner, R	104	Hagen, Toni 129, 133,	161
Bürki, H.	$104 \\ 132$	Hägler, Karl	142
Burri, F	134	Hantke, René	134
•		Haenny, Ch	101
Buser, W 119,	120	Heinemann, Heinz	123
Challand, Albert	168	Henrici, Marguerite	136
Chen, P. S	139	Heym, A	101
Chodat, Fernand	136	Hofmann, A 123,	124
Dünileen A II	~ C	Holl, W	118
Däniker, A. U.	56	Hoppe, W	121
Ditter H II	349	Houtermans, F. G.	119
Dütsch, H. U.	319	Huber, P.	104
Ettlinger, L	147	Huggel, H	139
Erhard Hubert	160	Hijoi Th	122

	Seite	·	Seite
Hürzeler, J	134	Pfluger, A	98
Huser, Hansjürg	142	Piaget, A	111
Huttenlocher, H	133	Piccard, Sophie 90	
ilutionionion, ili		Pick, Daliah	145
Iselin, B 122,	, 123	Portmann, A	91
		Portmann, J. P 91,	
Jäger, E	133		
Jentzer, Albert	155	Renlos, R	103
	1.05	Rentschnick, P	147
Kappert, H 94		Rutishauser, Alfred	136
Karrer, P	76	Rutschmann, J	123
Kaufmann, Hélène	142		
Kollonitsch, J	123	Sauter, Marc-R	145
Kopp, Jos		Schaetti, N.	104
Kousmine, C 150		Schlaginhaufen, O	146
Kuhn, E	134	Schneider, R	
Kuhn, Walter	105	Schopfer, W. H	88
Kuhn, Werner	164	Schüepp, Max	109
Kündig-Steiner, Werner	163	Schüepp, O	137
Künzi, Hans	100	Schwyzer, R 122,	
	190	Shalit, H	123
Lehmann, F. E.	139	Staub, W	164
Leutenegger, E.	362	Stoll, A	
Lichtenthaeler, Charles	157	Strovewski, M 150,	151
Lüscher, M	139	Terreaux, C.	103
Maret, A	95	Trümpy, Rudolf	127
Matthey, R.	88	Trumpy, Trudon	121
Maurizio, Anna	138	Uehlinger, Arthur	331
Mercanton, PL.	112	TT 111	00=
Mills, G. A	123	Veillon, E	365
Misslin-v. Salis, E	352	Verzár, F	
Moor-Jankowski, Jan K	142	Vischer, Wilhelm	138
Morgenthaler, Peter W 140	, 141	Vonwiller, P	153
6		Walker, J	13 9
Nicod, JL	46	Walter, Emil	160
Nowacki, W	133	Weber, F	94
0.1.1. 16	77	Wehrli-Frey, M	369
Oechslin, Max	11	Welsch, M	147
Oulianoff, N	130	Wenk, E.	133
Perrier, A	103	Weyeneth, Richard	155
Petrzilka, Th	123	Widmer, Otmar	161
Peyer, B		Wolfer-Bianchi, R	382
10y01, D	, 100		