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1. Sektion fiir Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, den 6. September 1953

Prasident: Prof. F. Fiara (Neuchétel)
Sekretir: Prof. E. STIEFEL (Ziirich)

1. RoBERT ZWAHLEN (Ziirich). — Ein «neuesy Higenwertproblem.
(Vgl. «Verhandlungen» der Schweiz. Naturforschenden Gesellschaft, 1949,
S.91-92.) Der Verfasser verdankt den Anstofl zu seinen Untersuchungen
iitber die Diracschen Ideen Herrn Prof. Dr. E. Stiefel.

Eine Differentialgleichung

—y" +e@y =72 1)
in welcher c(x) eine gegebene analytische Funktion der reellen, unab-
hingigen Variablen x bedeuten moge, mit den «Randbedingungens

+ o

f y¥(x) dw < 00 | 2)
stellt bekanntlich ein Eigenwertproblem dar. Als Definitionsbereich der
auftretenden Funktionen verwenden wir die reelle xz-Achse. Man fragt
nach den sogenannten Eigenlosungen y(x), welche die Bedingungen 1)
und 2) erfiillen und nach den Eigenwerten A.

Es soll hier zunéchst — ohne auf die Theorie des Hilbertschen Raumes
einzutreten — an Bekanntes von dem Eigenwertproblem von Hermite
erinnert werden.

Es liegt das Hermitesche Eigenwertproblem vor, wenn in Gleichung
1) ¢(x) — «2. Man findet, z. B. durch Probieren, die Losung:

xz
- 1 3)
y=e 2
x2 x2 x2
1y = —ze 2 und y" = x% 2 —e 2 , folglich —y" + 22y =y,
d. h. 2 = 1. Die Bedingung 2) ist erfiillt, weil bekanntlich
-+ o
— 2 —
f e Co.dx = ]/n
—o00

Vgl. z. B. Riemann-Weber, die partiellen DGL. der Physik, Band I, Braun-
schweig 1919, S. 27.
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Dirac hat bemerkt, da3 die Beziehung gilt?2:

@ .. |2 119 . @,
_dx2‘+x dx I dx 7 _dx2 T

e
= 2| ——zx- 4)
dx

Die Beziehung 4) auf die Eigenlosung 3) ausgeiibt, fithrt zu folgendem
Ergebnis:

d? d ]
[—_- + 2 '](y’—xy) =[—--——x° [——y” +x2y]+2[y’—xy]

dx? dx
d o
= [*--—x-Jy+2 y’—wy]
dx ]
=3 (y —y)

Das heilit: y' — zy ist auch Eigenlosung; die Randbedingung 2) ist
offensichtlich erfiillt, der Eigenwert von y' — z y ist 3.

Bildet man

Ly —ay) —aly — o) —| 2
— (Y —zxy) — —y) =|— " —ux-
de Y y z\Y Y Iz x| Yy,
so erhdlt man eine weitere Losung von 1) und 2) mit dem Eigenwert
A = 5. Allgemein kann man zeigen:

4 n
dx N Y

ist eine Figenlosung von 1) und 2) mit dem Eigenwert 4 = 2n 4 1.

Das Diracsche Verfahren erlaubt also, aus einer einzigen Eigen-
l6sung durch einfache Operationen deren unendlich viele zu errechnen.
Man erhilt damit — wie man zeigen kann — alle Eigenlosungen.

* %k
*

c dy .
*y + ¢+ — einfach
dx

d
2 Wir schreiben fiir — (¢ y) = —
) dx dx

d dc d .
;x_ ¢ = E c+ec —d"x— Damit folgt
l:— . ._i_xz-] [i'—x]z__ - '+£vd2 '+2i'+7€2“'d“—x3'
dx? dx dax® dax? dx dx

d d? d? d? d
lib—._x.j' I:____ .+x2.j|:___—A—.+ .+x2__~.+2x._x3-

x
dx? dx
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Der Verfasser hat die Diracsche Idee ausgebaut und sich gefragt,
ob vielleicht noch andere, zu 4) analoge, Beziehungen existieren, die die
Losung von Eigenwertproblemen in sich schliefen, und ist bisher zu
folgendem KErgebnis gekommen:

Das bekannte Eigenwertproblem der Laguerreschen Polynome 148t
sich analog behandeln, ferner lafit sich zum Kigenwertproblem der
schwingenden Saite jene Operation beschreiben, welche die n-te Eigen-
I6sung in die (n -+ 1)-te iiberfiithrt; dariiber mége bei anderer Gelegen-
heit berichtet werden.

Neu diirfte auch folgendes sein:
Die Differentialgleichung

—y”+[ﬁx2—ﬁ}y=ly 5)
16 x?
mit den « Randbedingungen»
[y =0 6]
+ o + o0 2
fy(x)y—(x_)dx:f/y(x)// dx < 00 7)

k
besitzt fir k > o, A > 2 die Losung

22 1
22 &% 8)
y==x e
und mit y ist auch
_ly_kxy’_l_[ﬁxz_ﬁily 9)
2 8 4

Eigenlosung. Eigenwerte sind die Zahlen
A A+k A+ 2k, usf. y hiéngt mit A und k4 zusammen durch
2 4 : ~
y:_i 44 ___i_}_i) 3 10)
2 \ k2 k 4

* *
sk

Betrachten wir insbesondere das Eigenwertproblem, welches sich ergibt
1
fir A = 2, k = 4. Man erhilt y = — und als alleinige Eigenlosung:
8

ax2
y:]/x.e 2

3 Die Beziehung liefert fiir das Hermitesche Problem A; = 1 und 4, = 3;
esist in GL. 5) k¥ = 4 und y = o.
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Zur Unterscheidung setzen wir

y=49 r=hn
und es folgt
€2
\ —
x

oy —afz e

GemiB 9) ist auch die Funktion

/

Yy, =

x? 22 x?
e ST STy
Ypg = —2 |/ x-e — 2 [l/x-e ] + (222—1) ‘/x-e
—4(@—1)-y, 11)
Eigenlosung von
g (xz__ ) — 2 12)
1 22 Y Y

unter Erfiillung von 6) und 7). Man erhélt durch Einsetzen in Gleichung 21)

2

@Dyt (== ) @Dy

da? @
= (22 — 1) [— yi" + (932_ 4x2)y1] —2-2z-y' —2y
1
=@ 12—t ()2
2x

=6 (2* — 1) y.
Der Eigenwert 4, ist also tatsdchlich 6.

Analog findet man nach leichter Rechnung:

x2

y3:(x4—4x2—f—2)-l/;:—-e 2 = (x*—4a22 4+ 2) y,

und fiir den Eigenwert A, erhélt man 10. Das Verfahren kann nach
Belieben fortgesetzt werden.

Allgemeiner findet man leicht:
1. Die Eigenwerte sind die Zahlen
I =2 +4(n—1) n=1,234,.....
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2. Es existieren die Beziehungen

. _
[_ d .+(x2__ ! )] [ﬂ._2x1.+(x2_1+ 1 )
dx? 4 x2 dx? dx 4 22 ) |

d? , 1 dz d 1]
. . _ . R P 2 ]
[ dx? T (x 4x2) J |:dx2 Lk dx + (x T 4:9:2)

d? d 1 a? 1 l
. T D 2 11 . oz 2 .
[dxz e dx —}—(x + +4x2) ] { dx? —}—(x 4x2)

daz d 1
4 —'+2x—-+(x2+1+ ) 14)
da? dx 4 22
Aus der Beziehung 14) folgt:
Durch Bildung von
— Y + 22y, + 222+ 1)y, 15)

erhdlt man anstatt der aus 9) gebildeten, folgenden Eigenlosung, die
der Eigenlosung y, vorangehende Eigenlosung. Ubt man 15) oft genug
auf eine bestimmte Eigenlosung aus, so bricht die Kette der Eigenlosun-
gen einmal ab. Die «erste» Eigenlosung y; wird somit den Beziehungen

1
— yl” +(x2 — 4—2—) Y, = 21y1

x
— My 22y + 222+ 1)y, =0 16)

geniigen, woraus man auf y, schlieflen kann.

Zur Bestimmung von A; kann die Beziehung dienen

d? d 1 d? d 1
e Q. 2__ ] 4+—"1}- — et Q- 24 14+—1) .
[dmz xdx +(m ‘+4x2) } [dx2 * xdx +(x i +4x2) ]

2 1 2 2 1
:I:___“._I_(x&__ ).]_4[— d ,_|_(x2_ ).]_'_4 17)
dax? 4 22 dx? 4 x2




— 65 —

Durch Ausiibung von 17) auf y; wird die linke Seite = o und aus der
rechten Seite wird

A2 —4h +H =0 y#o0
Ay = 2 Doppellssung (Im allgemeinen Fall 4, — %)
3. Aus der ersten Eigenlosung 8) erhalt man durch die Operation 9)
ohne die Einschrinkung 4 = 2, k = 4 weitere Eigenlosungen. Die Eigen-
l6sungen besitzen die Darstellung

Yn (@) = P, (%) y; (x) (y; =y von Gl. 8).

Pn (x) = QAg; xzi
-

27 _
wobei — (¢ +1—mn) - kay,, =4 (i + 1)%ﬁa2i+2
A, folgt aus der quadratischen Gleichung:

S 7
2 ka4 (-— +—) k2 =o.
! ' 16 2

und man erhélt sukzessive die Eigenlésungen durch Bildung von

ko, R 2y  k
1= — g+ »«xu————;) . =123 18
Ynt1 Yy 9 Y (16 .’132 Y )

bzw.:

k k2 2y k
M VA I
el =Y T —2Ya —x2+——+—> n 19),
Yn—1 Yy 2 Yy (16 2 1 Y )

wobei y durch Gl.10) gegeben ist. Wahlt man o -4 i, so erhalt man auller
8

y; noch eine zweite «erste» Eigenlosung y, *=£ y,. Die Gesamtheit der
Eigenfunktionen ergibt sich, indem man Gl. 18) auch fiir y,* definiert
und damit eine Kette von Eigenfunktionen y,*, y,*, y3*, . .. erzeugt.

4. Es lassen sich unter Umstdnden durch Ansetzen allgemeiner
linearer Differential-Operationen, an Stelle von 18) und 19) (Ableitungen
3., 4., ... Ordnung) weitere Verallgemeinerungen finden, deren Eigen-
werte arithmetische Reihen 1. Ordnung bilden.

5. Im Buche von Szegd, Orthogonal Polynomials 19394, S. 371,
wird eine Verallgemeinerung des Hermiteschen Problems dargestellt,
dessen Losungen indessen wieder mit Hilfe der Hermiteschen Orthogonal-
funktionen dargestellt werden, was fir das oben durchgerechnete
Beispiel nicht gilt.

¢ Colloquium Publications, American Mathematical Society, Volume XXIIT.

5



2. CH. Braxc (Lausanne). — Htude stochastique de Uerreur pour les
Jormules d’intégration numérique d’équations différentielles.

La lecture des ouvrages un peu récents consacrés & l'intégration
numérique d’équations différentielles fait apparaitre ’abondance des
méthodes et la difficulté de les comparer quant & leur précision. On
connait des bornes d’erreur pour quelques cas, mais elles sont en fait
presque toujours inutilisables dans des circonstances particuliéres in-
téressantes et ne permettent certainement pas d’établir des comparai-
sons concluantes.

Les concepts stochastiques appliqués déja par l'auteur & d’autres
problemes permettent par contre d’aborder cette étude d’une maniére
trés efficace. Soit une équation différentielle (1) ¥’ = f(x, y), dont on
cherche l'intégrale y = F(x) avec F(x,) = y,. I.’équation (1) est d’abord
linéarisée, c’est-a-dire remplacée par une équation linéaire admettant
Pintégrale y = F(x) et les mémes intégrales dans le voisinage, a des
infiniment petits d’ordre supérieur pres; ’équation linéaire est

(2) y = Alx) y + F' (x) — A(x) F(x),
_

avec A(x) e ou on a remplacé y par F(x).
Yy

En supposant F(x) aléatoire, stationnaire d’ordre deux, de moyenne
nulle et de covariance r(h), on peut calculer la covariance de deux fonc-
tionnelles linéaires de F(x); or, pour toutes les formules usuelles (Runge-
Kutta, Adams, Milne, par ex.), ’erreur est une fonctionnelle linéaire de
Pintégrale. Il est dés lors possible de donner explicitement la variance
de P'erreur, et méme facile de la calculer si on admet une représentation
spectrale pour r(k). Pour toutes les formules, les hypothéses sur 1’équa-
tion et sur l'intégrale considérées sont les mémes, ce qui permet les
comparaisons. Par exemple, on montre ainsi qu’en moyenne et & travail
égal, la formule de Runge-Kutta est plus favorable que celle de Milne,
si le produit de A par le pas d’intégration est assez petit, et moins
favorable si ce produit est plus grand. Les exemples donnés par ces
auteurs permettent alors de constater combien il est prématuré de juger
de ces méthodes au vu d’un seul cas particulier.

3. B. EckMANN (Ziirich). — Uber Enden und Derivationen in einer
Gruppe. — Kein Manuskript erhalten.

4. SorHIE PiccarDp (Neuchitel). — Structure de groupes.

Pour étudier la structure d’un groupe imprimitif G4, nous avons
considéré des suites complétes de groupes associés a G4. Soit 1) Gy, G,
..., G, une telle suite (m = 2); soit N; I’ordre de G;. Le groupe G
est N;/N;,, fois isomorphe & G;.{, 1 =1, ..., m-1 et les groupes G,
Gy, ..., %y 1 sont imprimitifs. A tout élément a, de G, on peut alors
associer une suite 2) a,, a,, ..., a, ou a; est ’élément de G; qui cor-
respond & @, dans I'isomorphisme de ¢; & @;, produit des isomorphismes
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de G, 4 Gy, ...,de G134 @Q;,i =2, ..., m. On peut définir 2(2™-1)
classes de substitutions de ¢f;, dont 2™-1 sont des classes paires et les
autres impaires. On dira notamment qu’une substitution a, de G est
de classe O % (1 < ¢;... <4, <m,1 <t <m, j=ooul)silenombre
v de substitutions impaires dans la suite a;, @;, ...,aq; est congru & j
modulo 2. j = o pour les classes paires et j = 1 pour les classes impaires.
Le groupe G, est dit complet par rapport & la suite 1) si aucune des
classes 0;’:1732"'% n’est vide et si toutes ces classes sont distinctes. Sup-
posons que tel est le cas. Alors le groupe G est & base d’ordre m et le
N,\™ (2m-1) (2m—2)...(2m—2m-1),
)
Le nombre ¢ est I'ordre de la classe Cisia--- 4.
Toute substitution ¢ de G est commune a m classes du premier

nombre total de ses bases est < ( :
m!

ordre. Soient O}, CZ, ..., Oy les classes du premier ordre dont fait

partie une substitution donnée a de ;. Nous dirons que la substitution
a est du genre ay, a,,..., a,. La substitution a est de classe C? - ¥ si

a, + ... +a;, = o (mod 2) et elle est de classe C% - % dans le cas
contraire. Soit M,,q,.. .4, ’ensemble des substitutions de G; qui sont

du genre a,, ds, ..., &,. On définit ainsi 2™ classes M et chaque élément
de @, fait partie d’'une de ces classes et d’une seule. Le produit de deux
classes M : M Mpg, ..., €st, par définition, ’ensemble des

Qas ... Ay
substitutions ab, a e Moy, .. . 4, beMpp . 5 Ce produit est, a son
tour, une classe M, notamment M, , ., ou y;= a; 4 f; (mod m).

Avec cette loi de composition, les classes M forment un groupe abélien
G dont tout élément, excepté la classe M,  , appelée classe zéro, est
du second ordre. Ce groupe est a base d’ordre k£ < m et tout systéme de
k éléments indépendants constitue une base de ce groupe. La condition
nécessaire et suffisante pour que le groupe G soit complet par rapport &
la suite 1) c’est que, quels que soient les nombres o, a5. . ., a,, de 'en-
semble {o, 1}, la classe M,,, ... o, ne soit pas vide et, par suite, que
@ soit d’ordre 2™.

On peut généraliser cette étude & des groupes abstraits pour les-
quels il existe un nombre premier p, tel que dans toute relation de la
forme ¢ (I3, I,, ..., 1,) = 1 liant des éléments [,, I,, ..., [, de ce groupe,
la somme des exposants de [, ..., [, soit = o (mod p).

5. SopHIE P1ccArD (Neuchétel). — Quelques problémes de la théorie
des substitutions.

Pour trouver un systéme de relations caractéristiques d’un groupe
d’ordre fini, il suffit de connaitre une quelconque de ses bases et de re-
constituer le groupe & partir de cette base. A chaque base d’un groupe
on peut faire correspondre un systéme de relations caractéristiques du
groupe. Ce systéme n’est pas défini de fagon unique et il est aussi carac-
téristique de la base qui a permis de le trouver. Deux bases qui se cor-
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respondent dans un automorphisme interne ou externe du groupe satis-
font & un méme ensemble de relations caractéristiques.

Soit G un groupe d’ordre fini, soit B, ={ 4y, 4,,..., 4.}, B, =
{Av Az, - A;n}deux bases de ce groupe et soit 1) ¢; (44, ..., 4,,) =1,
v =1, 2, , 7, un systéme de relations caractéristiques de la base B;.
Comme B est une base de G, chacun des éléments A s’obtient par

composition finie des éléments de B;. Soit 2) 4, = &, (4,,..., 4,),
¢ = 1,..., m. Comme B, est aussi une base de G, chacun des eléments
de B, peut, & son tour, s’obtenir par composition finie de 4,..., 4, .

Soit 3) A; = ; (4,..., 4,,). Si les égalités 3) peuvent se déduire des
égalités 2) sans faire appel & aucune autre relation entre les éléments
de G, en remplacant dans les égalités 2), A; par v;(4,,..., 4,,), quel
que soit ¢ = 1,..., m, on obtient la relation triviale A; == A;, 1 = 1,

.., m, et, dans ce cas, on peut déduire les relations caractéristiques
de la base B, des relations 1), en remplagant dans celle-ci A4; par
pi(dy,. .., 4,), quel que soit ¢ = 1,..., m.

Si 'on veut caractériser un groupe d’ordre fini de toutes les fagons
possibles correspondant a ses différentes bases, il suffit de considérer
un systéme de représentants indépendants des bases de ce groupe et de
chercher un systéme de relations caractéristiques de chacune de ces
bases. Le travail peut encore étre réduit lorsque le groupe posséde des
automorphismes externes.

C’est ainsi que 1’on peut déduire tous les systémes de relations carac-
téristiques du groupe alterné Vg de degré 6 a partir de quatre de ses
bases, par exemple des quatre bases (S, 7') suivantes pour chacune des-
quelles nous donnons un systéme de relations caractéristiques: 1)
S =(1234)(56), T = (1526)34); S* =1, TS2TST35 =1
T28728T-28 = 1, T3837'ST837T-38 = 1.2) 8 = (12345), T =
(123)(456); S5 = 1, ST8T284T-2 = 1, TSTST2S8T28 = 1.
T2837 8271837282 = 1.3) § = (12345), T =(12436); 85 =1
T5 = 1, (T?28%)?2 = 1, TS2TST*S37T4S = 1. 4) 8 =(12345), T =
(14326); 8> =1, T° =1, (TS8)? = 1, T*S3T28T3ST?S® = 1.

Dans son travail «Concerning the abstract groups of order k! and
k!/2...» (1), Moore avait établi, entre autres, un systeme de relations
caractéristiques du groupe symétrique &, (rn = 4) a partir de la base
S = (12...n), T=(12). Cest le systéme suivant: 1) §» =1, 2) T? =1,
3) (T'S)*1 = 1, 4) (TSTS1)p® =1, 5) (T'S'TS"2 =1,1=2,3, ...,
n—2. Toutes les relations de ce systéme ne sont pas indépendantes. Il
suffit de prendre dans 5) I = 2,..., n/2 (n—1/2) sin est pair (impair).
D’autre part, 4) résulte des autres relations du systéme indiqué quel
que soit n > 4.

1 Proceedmgs of the London Math. Society, vol. XXVTII, 1897.

Es haben noch gesprochen: J. Hersch, Zumch A. Longhi, Lugano;
J. Milnor, Ziirich; K. VoB, Ziirich.
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