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1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, den 6. September 1958

Präsident: Prof. F. Fiala (Neuchâtel)
Sekretär: Prof. E. Stiefel (Zürich)

1. Robert Zwählen (Zürich). - Ein «neues» Eigenwertproblem.
(Vgl. «Verhandlungen» der Schweiz. Naturforschenden Gesellschaft, 1949,
S. 91-92.) Der Verfasser verdankt den Anstoß zu seinen Untersuchungen
über die Diracschen Ideen Herrn Prof. Dr. E. Stiefel.

Eine Differentialgleichung
— y" + c(x) y— ),y1)

in welcher c(x) eine gegebene analytische Funktion der reellen,
unabhängigen Variablen x bedeuten möge, mit den «Randbedingungen»

+ 00

J y2(x) dx < oo 2)
00

stellt bekanntlich ein Eigenwertproblem dar. Als Definitionsbereich der
auftretenden Funktionen verwenden wir die reelle x-Achse. Man fragt
nach den sogenannten Eigenlösungen y(x), welche die Bedingungen 1)
und 2) erfüllen und nach den Eigenwerten X.

Es soll hier zunächst - ohne auf die Theorie des Hilbertschen Raumes
einzutreten - an Bekanntes von dem Eigenwertproblem von Hermite
erinnert werden.

Es liegt das Hermitesche Eigenwertproblem vor, wenn in Gleichung
1) c(x) : x2. Man findet, z. B. durch Probieren, die Lösung:

y e
3)

X& X* X*

2 2 21 y* —xe und y" — x2e — e folglich — y" -f- x2 y y,
d. h. A 1. Die Bedingung 2) ist erfüllt, weil bekanntlich

+ 00

| e .dx ]/n

Vgl. z. B. Riemann-Weber, die partiellen DG1. der Physik, Band I,
Braunschweig 1919, S. 27.
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Dirac hat bemerkt, daß die Beziehung gilt2:

d2

dx2
-f- x2

d

dx

d

dx
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dx2 + X'.2

2
d

dx
x - 4)

Die Beziehung 4) auf die Eigenlösung 3) ausgeübt, führt zu folgendem
Ergebnis :

~
d

• — x
dx

d2

dx2
+ a2 (;y' — xy) y" + x2y + 2 y —xy

y y —xy
d

• — x -

dx

3 (yr — xy)
Das heißt: y' — xy ist auch Eigenlösung; die Randbedingung 2) ist

offensichtlich erfüllt, der Eigenwert von y' — x y ist 3.

Bildet man

d

dx
(yr —xy) — x(yf — xy)

d

dx
yy

so erhält man eine weitere Lösung von 1) und 2) mit dem Eigenwert
A 5. Allgemein kann man zeigen:

d

dx
• y

ist eine Eigenlösung von 1) und 2) mit dem Eigenwert À 2n + 1.

Das Diracsche Verfahren erlaubt also, aus einer einzigen Eigenlösung

durch einfache Operationen deren unendlich viele zu errechnen.
Man erhält damit - wie man zeigen kann - alle Eigenlösungen.

* **
d de dy

Wir schreiben für (c • y) • y -J- c • einfach
dx dx dx
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dx2
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d
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dx + c
d

dx
Damit folgt
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Der Verfasser hat die Diracsche Idee ausgebaut und sich gefragt,
ob vielleicht noch andere, zu 4) analoge, Beziehungen existieren, die die
Lösung von Eigenwertproblemen in sich schließen, und ist bisher zu
folgendem Ergebnis gekommen:

Das bekannte Eigenwertproblem der Laguerreschen Polynome läßt
sich analog behandeln, ferner läßt sich zum Eigenwertproblem der
schwingenden Saite jene Operation beschreiben, welche die n-te
Eigenlösung in die {n + l)-te überführt; darüber möge bei anderer Gelegenheit

berichtet werden.
Neu dürfte auch folgendes sein :

Die Differentialgleichung

— y +

mit den « Randbedingungen»

k2

16

2y
y hy

\y (o) o

+ 00 + oo 2

J y (x)y (x) dxJ jy (x) j < co

5)

6)]

7)

besitzt für k>o, 1 > —- die Lösung

2A 1

+
k ~ 2

y x
und mit y ist auch

~ly- -xy' +
8

y

Eigenlösung. Eigenwerte sind die Zahlen
X, A + k, A + 2 k, usf. y hängt mit A und 1c zusammen durch

3
y

1 (4A2 4 A

2 \ k2 k

* * *

+

8)

9)

10)

Betrachten wir insbesondere das Eigenwertproblem, welches sich ergibt

für A =2, k 4. Man erhält y — und als alleinige Eigenlösung :

V Vx

X2

2

3 Die Beziehung liefert für das Hermitesche Problem Ax 1 und Â2 3;
es ist in Gl. 5) k 4 und y o.
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Zur Unterscheidung setzen wir
*- h

und es folgt

2/i
2 ] xj/a

Gemäß 9) ist auch die Funktion

y2 —2 |/ic • e

Eigenlösung von

X2

2
• 2 x

]/x

x2

2

x2

2

+ (2 a;2— 1) y x-e

X2

2

4 (x2 —1) • Vl

— y" +

unter Erfüllung von 6) und 7 Man erhält durch Einsetzen in Gleichung 21

d2

dx2

(a;2 — 1)

(a;2

2/i

fan erhält

— i) y-L + (x2(x2 — l)
\ é X2/

(x2— —
\ 4 x2

1—x)
x

11)

12)

yi

2 • 2 x yi — 2 «/j

*/i — 2(x2 — 1 • 2 2/x — 4a;

6 (^2 — 1) 2/!.

Der Eigenwert X2 ist also tatsächlich 6.

Analog findet man nach leichter Rechnung:
X2

~~
2

2/3 (a;4 — 4 a;2 -+- 2) • j/:a; • e (a;4 — 4 a;2 + 2) y1

und für den Eigenwert X3 erhält man 10. Das Verfahren kann nach
Belieben fortgesetzt werden.

* **

Allgemeiner findet man leicht:

1. Die Eigenwerte sind die Zahlen

K 2 + 4 (n — 1) n 1, 2, 3, 4,
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2. Es existieren die Beziehungen

d2

dx2

d2

dx2

ix* —i • — 2x— 1 + -JL\.
\ 4 a;2/ dx2 dx \ 4: x2 J.

•—2a;—- + (x* —1 + —A •

dx \ 4 a;2/

d*

dx2
+ iX2 '

\ 4 a;2/

4
dx2 dx \ 4

_JL. +(X2 M.
dx2 \ 4 a:2/

" +2»—- + /« + !+-!-)
dx2 dx \ 4 a:2/

y-
(*

13)

d2 „ d
2 x • + | x2 -f- 1

dx2 dx \ 4 :

(a;2 + l+—)•] — M •

\ 4 a:2/ dx2 \ 4 a:2/

dx2 dx \ 4 i

ix*+ 1 H—.\ 4 a:2/
14)

Aus der Beziehung 14) folgt:
Durch Bildung von

— KVn + 2 + (2 a;2 + 1) yn 15)

erhält man anstatt der aus 9) gebildeten, folgenden Eigenlösung, die
der Eigenlösung yn vorangehende Eigenlösung. Übt man 15) oft genug
auf eine bestimmte Eigenlösung aus, so bricht die Kette der Eigenlösungen

einmal ab. Die «erste» Eigenlösung yx wird somit den Beziehungen

• - .Vi 2 + (2 a;2 + 1)

genügen, woraus man auf yx schließen kann.

Zur Bestimmung von A1 kann die Beziehung dienen

d2

dx2

16)

•— 2a;— + ix* — 1 H— _^--+2a;—+ 1 +—i
dx \ 4 a:2/ dx2 dx \ 4a:2/

d2

dx2
+{X2 I j

.1 _4 + l A
\ 4 a;2/ dx* \ 4 a;2/

+ 4 17)
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Durch Ausübung von 17) auf y1 wird die linke Seite o und aus der
rechten Seite wird

(V — 4 + 4) oyx^o
X1 2 Doppellösung jlm allgemeinen Fall

3. Aus der ersten Eigenlösung 8) erhält man durch die Operation 9)
ohne die Einschränkung À — 2, k 4 weitere Eigenlösungen. Die
Eigenlösungen besitzen die Darstellung

yn (x) P„ («) 2/i (») (2/1 y von Gl. 8).

00

•Pn («) 2 a;2i

i=o
2 ^ ^ h

wobei — (i + 1 — n) k a2i4 (i + 1)
1

a2i + 2
k

folgt aus der quadratischen Gleichung:

— kX1 4- h —\ k2 o.1 \ 16 2 /
und man erhält sukzessive die Eigenlösungen durch Bildung von

yn+t^Wn ~Xyn + (— X2 + — ~W 71 1,2,3, 18)
2 \ 16 x2 4t J

bzw. :

k / &2 2 y & \
yn-x yn4- — xyn+\ — » H—~ H—) 19),

2 \ 16 ar 4 /

wobei y durch Gl. 10) gegeben ist. Wählt man y ^ -i-, so erhält man außer
8

y1 noch eine zweite «erste» Eigenlösung yx yt. Die Gesamtheit der
Eigenfunktionen ergibt sich, indem man Gl. 18) auch für yx* definiert
und damit eine Kette von Eigenfunktionen yx*, y^, y3*, erzeugt.

4. Es lassen sich unter Umständen durch Ansetzen allgemeiner
linearer Differential-Operationen, an Stelle von 18) und 19) (Ableitungen
3., 4., Ordnung) weitere Verallgemeinerungen finden, deren Eigenwerte

arithmetische Reihen 1. Ordnung bilden.

5. Im Buche von Szegö, Orthogonal Polynomials 19394, S. 371,
wird eine Verallgemeinerung des Hermiteschen Problems dargestellt,
dessen Lösungen indessen wieder mit Hilfe der Hermiteschen Orthogonalfunktionen

dargestellt werden, was für das oben durchgerechnete
Beispiel nicht gilt.

4 Colloquium Publications, American Mathematical Society, Volume XXIII.
5
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2. Ch. Blanc (Lausanne). - Etude stochastique de Verreur pour les

formules d'intégration numérique d'équations différentielles.
La lecture des ouvrages un peu récents consacrés à l'intégration

numérique d'équations différentielles fait apparaître l'abondance des
méthodes et la difficulté de les comparer quant à leur précision. On
connaît des bornes d'erreur pour quelques cas, mais elles sont en fait
presque toujours inutilisables dans des circonstances particulières
intéressantes et ne permettent certainement pas d'établir des comparaisons

concluantes.
Les concepts stochastiques appliqués déjà par l'auteur à d'autres

problèmes permettent par contre d'aborder cette étude d'une manière
très efficace. Soit une équation différentielle (1) y1 f(x, y), dont on
cherche l'intégrale y F(x) avec F(x0) y0. L'équation (1) est d'abord
linéarisée, c'est-à-dire remplacée par une équation linéaire admettant
l'intégrale y F(x) et les mêmes intégrales dans le voisinage, à des
infiniment petits d'ordre supérieur près; l'équation linéaire est

(2) y' A(x) y + F' (x) — F(x),
r)f

avec A {x) où on a remplacé y par F(x).
dy

En supposant F(x) aléatoire, stationnaire d'ordre deux, de moyenne
nulle et de covariance r(h), on peut calculer la covariance de deux
fonctionnelles linéaires de F(x) ; or, pour toutes les formules usuelles (Runge-
Kutta, Adams, Milne, par ex.), l'erreur est une fonctionnelle linéaire de
l'intégrale. Il est dès lors possible de donner explicitement la variance
de l'erreur, et même facile de la calculer si on admet une représentation
spectrale pour r(h). Pour toutes les formules, les hypothèses sur l'équation

et sur l'intégrale considérées sont les mêmes, ce qui permet les
comparaisons. Par exemple, on montre ainsi qu'en moyenne et à travail
égal, la formule de Itunge-Kutta est plus favorable que celle de Milne,
si le produit de A par le pas d'intégration est assez petit, et moins
favorable si ce produit est plus grand. Les exemples donnés par ces
auteurs permettent alors de constater combien il est prématuré de juger
de ces méthodes au vu d'un seul cas particulier.

3. B. Eckmann (Zürich). - Über Enden und Derivationen in einer
Gruppe. - Kein Manuskript erhalten.

4. Sophie Piccard (Neuchâtel). - Structure de groupes.
Pour étudier la structure d'un groupe imprimitif G±, nous avons

considéré des suites complètes de groupes associés à 6rx. Soit 1) G1} G2,

Gm une telle suite (m ^ 2) ; soit Nt l'ordre de Gt. Le groupe Gt
est NtINi+1 fois isomorphe à 6^+1, i — 1, m-1 et les groupes Gx,
G2, - •, Gm_i sont imprimitifs. A tout élément a1 de Gx on peut alors
associer une suite 2) ax, a2, am où at est l'élément de Gt qui
correspond à ax dans l'isomorphisme de G± à Gt, produit des isomorphismes
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de Gx à 6r2, de G^i à Gt,i 2, ..m. On peut définir 2(2m-l)
classes de substitutions de 6r1? dont 2m-l sont des classes paires et les
autres impaires. On dira notamment qu'une substitution ax de Gx est
de classe Cy* "'lt (1 < ix. < it < m, 1 < t < m, j o ou 1) si le nombre
v de substitutions impaires dans la suite aiu at est congru à j
modulo 2. j o pour les classes paires et j 1 pour les classes impaires.
Le groupe Gx est dit complet par rapport à la suite 1) si aucune des
classes Gy*--H n'est vide et si toutes ces classes sont distinctes.
Supposons que tel est le cas. Alors le groupe G est à base d'ordre m et le

Le nombre t est l'ordre de la classe Cy1* • • • H.

Toute substitution a de Gx est commune à m classes du premier
ordre. Soient C\^ C\^ les classes du premier ordre dont fait
partie une substitution donnée a de Gv Nous dirons que la substitution
a est du genre al9 a2,. am. La substitution a est de classe ClJ • • • h si

+ + ait o (mod 2) et elle est de classe Clf '"H dans le cas
contraire. Soit Maia%. ..a l'ensemble des substitutions de Gx qui sont
du genre ax, a2, am. On définit ainsi 2m classes M et chaque élément
de Gx fait partie d'une de ces classes et d'une seule. Le produit de deux
classes M :MaiOLi _a Mßlß%mtmß est, par définition, l'ensemble des

substitutions ab, a e Ma^ am, beMßlß%,mmß Ce produit est, à son

tour, une classe M, notamment MYxYimttYm où yi at + ßt (mod m).
Avec cette loi de composition, les classes M forment un groupe abélien
G dont tout élément, excepté la classe M0

mm m 0 appelée classe zéro, est
du second ordre. Ce groupe est à base d'ordre k < m et tout système de
k éléments indépendants constitue une base de ce groupe. La condition
nécessaire et suffisante pour que le groupe Gx soit complet par rapport à
la suite 1) c'est que, quels que soient les nombres al5 a2. .am de
l'ensemble {o, 1}, la classe Maia% ...am ne s°if Pas vide et, par suite, que
G soit d'ordre 2m.

On peut généraliser cette étude à des groupes abstraits pour
lesquels il existe un nombre premier p, tel que dans toute relation de la
forme 90 (lx, l2, ln) 1 liant des éléments lx, l2, ln de ce groupe,
la somme des exposants de ll9 ln soit o (mod p).

5. Sophie Piccard (Neuchâtel). - Quelques problèmes de la théorie
des substitutions.

Pour trouver un système de relations caractéristiques d'un groupe
d'ordre fini, il suffit de connaître une quelconque de ses bases et de
reconstituer le groupe à partir de cette base. A chaque base d'un groupe
on peut faire correspondre un système de relations caractéristiques du
groupe. Ce système n'est pas défini de façon unique et il est aussi
caractéristique de la base qui a permis de le trouver. Deux bases qui se cor-

nombre total de ses bases est <
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respondent dans un automorphisme interne ou externe du groupe satisfont

à un même ensemble de relations caractéristiques.
Soit G un groupe d'ordre fini, soit Bx —^Ax, A2,..., AB2

{A'v A'2, -d^jdeux bases de ce groupe et soit 1) <pt (Av Am) 1,

i 1, 2, r, un système de relations caractéristiques de la base B±.
Comme Bx est une base de G, chacun des éléments Ai s'obtient par
composition finie des éléments de Bx. Soit 2) Ai (Al9..., Am),

i 1,. .m. Comme B2 est aussi une base de G, chacun des éléments
de B1 peut, à son tour, s'obtenir par composition finie de A'v. Am.

Soit 3) A{ tpi (A'v.. Am). Si les égalités 3) peuvent se déduire des

égalités 2) sans faire appel à aucune autre relation entre les éléments
de G, en remplaçant dans les égalités 2), A{ par tpi(Al,..., Am), quel

que soit i — 1,. m, on obtient la relation triviale A'{ A'., i 1,

m, et, dans ce cas, on peut déduire les relations caractéristiques
de la base B2 des relations 1), en remplaçant dans celle-ci Af par
tpi(Âv. A'm), quel que soit i 1,. m.

Si l'on veut caractériser un groupe d'ordre fini de toutes les façons
possibles correspondant à ses différentes bases, il suffit de considérer
un système de représentants indépendants des bases de ce groupe et de
chercher un système de relations caractéristiques de chacune de ces
bases. Le travail peut encore être réduit lorsque le groupe possède des

automorphismes externes.
C'est ainsi que l'on peut déduire tous les systèmes de relations

caractéristiques du groupe alterné VI
6 de degré 6 à partir de quatre de ses

bases, par exemple des quatre bases (S, T) suivantes pour chacune
desquelles nous donnons un système de relations caractéristiques: 1)
S (1 2 3 4) (5 6), T (1 5 2 6) (3 4); S4 1, TS2TS2T~^S2 1,

T2ST2ST~2S 1, T^TST-^T-tS 1. 2) S (1 2 3 4 5), T
(1 2 3) (4 5 6); 85 1, S*TS*T~2S*T-2 1, TSTST~2ST-2S 1.

T2S3TS2T^S3T~2S2 1. 3) 8 (1 2 3 4 5), T (1 2 4 3 6); £5 1,

T5 1, (T2S2)2 1, TS2TST*S*T*S 1. 4) $ (1 2 3 4 5), T
(1 43 2 6); £5 1, T5 1, (TS)2 1, T*S3T2STSST2SS 1.

Dans son travail «Concerning the abstract groups of order k\ and
k\l2. .» (x), Moore avait établi, entre autres, un système de relations
caractéristiques du groupe symétrique @n (n 4) à partir de la base
S (1 2.. .n), T (12). C'est le système suivant: 1) Sn 1, 2) T2 1,

3) (TS)"-1 1, 4) (TSTS-1)3 1, 5) (TS1TS-1)2 1, I 2, 3,
n-2. Toutes les relations de ce système ne sont pas indépendantes. Il
suffit de prendre dans 5) l — 2,. n/2 (n-1/2) si n est pair (impair).
D'autre part, 4) résulte des autres relations du système indiqué quel
que soit n ^ 4.

1 Proceedings of the London Math. Society, vol. XXVII, 1897.

Es haben noch gesprochen : J. Hersch, Zürich ; A. Longhi, Lugano ;

J. Milnor, Zürich; K. Voß, Zürich.
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