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1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft

Samstag und Sonntag, den 26. und 27. August 1950

Präsident: Prof. Dr. A. Pflüger (Zürich)
Sekretär : Prof. Dr. F. Fiala (Neuchâtel)

1. Albert Challand (Berne). - D'une extension possible du
domaine des mathématiques appliquées.

Le chaos des actions humaines (selon l'expression récente d'une
notoriété scientifique) paraît en première analyse se ramener à un
système de manifestations individuelles plus ou moins fortuites (c'est-à-dire
dépendant de lois de probabilité), mais étroitement interdépendantes.
Malgré les vues pénétrantes de certains sociologues, ces conglomérats
ne semblent pas jusqu'ici avoir été soumis sérieusement au calcul. Le
but de l'auteur est à la fois de le faire et d'employer pour cela, au départ,
un appareil mathématique pas trop compliqué, ne présupposant que les
connaissances que possède normalement un licencié ès sciences.

Un premier problème est celui de la valeur optimum. Soit

^ — Vi + 2/2 + • • • • Vi + • • • + Vn

un résultat qui doit être le plus grand possible (note d'ensemble d'un
certain élève, par exemple). Les valeurs y{ (notes dans les différentes
branches) qui y concourent ne doivent par conséquent pas être trop
petites. Mais il peut arriver que par sa grandeur un yt exerce une
influence défavorable sur la probabilité de yi+1 par exemple (élève se
passionnant pour un sujet unique et négligeant tout le reste), de sorte qu'on
n'a pas intérêt à ce que y{ soit le plus grand possible, mais bien plutôt
à ce qu'il ait une autre valeur plus favorable qui sera définie comme la
valeur optimum. Les sportifs savent cela empiriquement (Tour de
France!), mais on construisait aussi empiriquement des flottes avant
Archimède; pourtant cela n'enlève rien à l'importance du principe
d'Archimède. Notre prétention d'aborder le problème scientifiquement
est ainsi justifiée.

Considérons le cas simplifié de deux événements fortuits yx et y2
(avec la restriction peu importante y > 0). La loi de probabilité de yx
est Pi (y), c'est-à-dire que px (y) dy est la probabilité pour que yx tombe
entre y et y -f- dy. La loi de probabilité correspondante p2 de y2 dépend
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du résultat de l'épreuve qui a donné yx et l'on écrira (yv y) dy pour
la probabilité que y2 soit compris entre y et y -f- dy. Pour fixer les idées,
on peut prendre

1 y^
Pi (y) ——et Pi )—

(i +y)2
exemple qui conduit à des calculs faciles.

Soit maintenant z y1-\-y2 et P(z)dz la probabilité correspondante.
Il vient:

y =z

P (z) dz [p1 (y)dy p2 (z — y) dz

y —0

ou encore d [P (z) dz] (y) p2 (z — y) dy dz

Pour que cette probabilité élémentaire soit maximum, il faut que
sa dérivée par rapport à y soit nulle. On trouve par cette voie la valeur
de yx qui contribue le plus efficacement à rendre z probable.

Quant à la recherche de la valeur la plus probable de z, elle exige

la solution en 2 de l'équation —— P (z) 0.
dz

La considération des espérances mathématiques conduit à d'autres
questions intéressantes.

La combinaison qui est essayée ici des problèmes de maxima et
de minima avec les problèmes de probabilités composées semble
nouvelle.

2. Erwin Bareiss (Thayngen). - Über einen verallgemeinerten
Integralsatz.

Es wird über den Basen zweier Matrixalgebren eine Funktionen-
theorie aufgebaut, für welche auch ein erster Integralsatz gilt. Dieser
Integralsatz enthält alle Integralsätze der hyperkomplexen Funktionen,
wie sie von R. Fueter aufgestellt wurden, insbesondere also auch die
der Cliffordschen Algebren, der Quaternionen und selbstverständlich den
ersten Cauchyschen Satz. Der hergeleitete Satz bildet auch den
Ausgangspunkt zur Lösung der Randwertprobleme von homogenen und
inhomogenen Systemen von partiellen Differentialgleichungen.

Durch m Grundeinheitena00••• < n-l \
o-hI I 1, 1

\ an-1 0 " " " a"-1 n~1'

denken wir uns einen m-dimensionalen Raum, den a-Raum,
aufgespannt, der durch die a-Funktionen

m—1v(2)2 vh(x°'•• • ' x-"-i) ah .xm-i)
h= 0
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in sich abgebildet wird. Neben dem a-Raum denken wir uns noch einen
e-Raum mit den Einheiten

£o-

fl 0 0\
00 0

^00 0/

• 5 £/X-l —

als w-gliedrige Matrizen. Die e-Funktionen

w (z)

n—1

2 fifcWfcO*0. • • - »«m-1)
Jc= 0

bilden den a-Raum immer auf den e-Raum ab; denn die
Multiplikationstafel lautet

n—1

ahek=2 a*k?

Wir definieren den Operator
m—1 p,

Ké= 2 (lk ~
\~^arr

Jc= 0 dxk
(A skalarer Parameter)

und nennen eine s-Funktion analytisch, falls iLw 0, und inhomogen
n— 1

analytisch, falls Lw g (g (z) ^ 9h £h) in jedem Punkt des be-
h -0

trachteten Bereiches gilt.
Der zu Mj adjungierte Operator lautet

{vM\
m—1

2 ^ ak ~
k=0 dxk

Die a-Funktion v heißt adjungiert, wenn in jedem Punkt des
Bereiches (vJU) 0 gilt.

Wie wir gesehen haben, ergibt nun

n — 1

vakw= 2 phkSh
h= 0

eine Größe aus dem s-Raum mit Phk als reelle Funktion der Variablen
xo, • • • > xm-1- Der Gaußsche Integralsatz verwandelt das Raumintegral
über dem Bereich E in ein Integral über dessen Oberfläche H

JvJ Phk vk dh
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Summation nach den Indices h und h ergibt unter Verwendung der
ursprünglichen Bezeichnungen

f • • • f f 2 ~4~ (vakw)f
J R J J k =0 dxk J H J

m,—1

mit dZ 2 akdh vk
fc= o

Wird nun die Differentiation des Integranden wirklich ausgeführt,
so erhält man nach einer Zwischenrechnung und Verwendung der
Operatorenschreibweise

Jrvj|* vdZw + Jhü P
m—1 q

\(vM)w-\-v y -—ak-w+v (Lw)
L k=0 OXk

IIo

Diese Formel kann man als den Greenschen Satz der hyperkomplexen
Funktionen bezeichnen.

Sind nun die a-Funktionen v in B adjungiert, die £-Funktionen
inhomogen analytisch und die Elemente a%k konstant, so ergibt sich1

M vdZw + v dr g — 0

Da ferner jede assoziative Algebra einer Matrixalgebra äquivalent
ist, sind also auch sämtliche Integralsätze der hyperkomplexen
Funktionen von Rud. Fueter u. a. in obiger Formel enthalten2.

3. Sophie Piccard (Neuchâtel). - Les groupes que peut engendrer
un système connexe et primitif de cycles d'ordre huit et les bases du groupe
symétrique dont l'une des substitutions est un cycle d'ordre huit.

1. Soient A= (1234567 8) et B {b-fiçbjb4&5&6&7&8) deux cycles
d'ordre huit connexes et primitifs.3 Les cas suivants peuvent se présenter.

1. A et B permutent les mêmes éléments. Alors si B est l'une des
80 substitutions AlUJA~l, où U (1 2 4 6 7 5 8 3) ou (1 2 5 4 7 8 6 3),

j= 1, 3, 5, 7, i= 1, 2, 3, 4, 5, 6, 7, 8 ou bien U (I 2 4 8 6 5 3 7),

/ 1, 3, i 1, 2,. 8, alors A et B engendrent le groupe 6r336 d'ordre
336, qui peut aussi être engendré par deux cycles connexes et primitifs
d'ordre six. Si B est 1' un des 80 cycles AlU>A~l où£7=(l 2358647)

1 Erwin Bareiß : Hyperbolische Systeme von partiellen Differentialgleichungen
mit konstanten Koeffizienten, Comm. Math. Helv. vol. 24/4.

2 Rud. Fueter: Funktionentheorie im Hyperkomplexen, Vorlesung 1948/49,
bearbeitet von E. B.

Ein vollständiges Literaturverzeichnis findet sich am Schluß der Arbeit von
Hans Georg Häfeli: Hyperkomplexe Differentiale, Comm. Math. Helv. vol. 20.

8 Voir S. Piccard: Sur les bases du groupe symétrique, Paris, Vuibert 1946,
page 8.
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ou (1 2 5 6 4 8 7 3), 7 1, 3, 5, 7, t 1, 2, 8, ou bien U (1 2 7 3

6 5 8 4), j 1, 3, i 1, 2, 8, alors A et B engendrent le groupe G336

simplement isomorphe à G336. Dans tous les autres cas, A et B engendrent
le groupe symétrique ©g.

2. B permute 7 des nombres 1,2, 8 et le nombre 9. Alors, si B
est l'une des 32 substitutions AlUJA~\ où U (2 8 4 5 7 6 3 9),?
1, 3, 5, 7, i 1, 2, 8, alors A et B engendrent le groupe G'72 d'ordre 72.

Si B est l'une des 32 substitutions AlUjA~l, où U (3 2 7 58469),
7=1, 3, 5, 7, i 1, 2, 8, alors i et 5 engendrent le groupe 6r72

simplement isomorphe à G72. Si B est l'une des 64 substitutions AlU*A~l,
où U (2 3 6 5 4 8 7 9) ou (2 7 3 5 4 6 8 9), j 1, 3, 5, 7, i 1, 2,..., 8,

alors A et 5 engendrent le groupe G432 d'ordre 432. Si B est l'une des

64 substitutions AWA-*, où U (2 4 6 5 7 3 8 9) ou (32654789),
7 1, 3, 5, 7, i 1, 2, 8, A et B engendrent le groupe G432 simplement

isomorphe à G432. Dans tous les autres cas, A et B engendrent le

groupe symétrique ©9.

3. B permute six des nombres 1,2, 8 et les deux nombres 9 et 10.

Alors si B est l'une des 112 substitutions AlWA~x, où U — (1 3 2 5 4
6 9 10), (1 3 5 2 10 7 9 4), (1 6 7 4 2 9 10 3), 7 1, 3, 5, 7, i 1, 2, 8,

ou encore £7= (1 239765 10), 7=1,3, i — 1,2,..., 8, les deux
substitutions A et B engendrent le groupe G720 d'ordre 720. Si B
est l'une des 112 substitutions, RAlWA~lR~x, où U, i et j sont les mêmes

que ci-dessus, et R — (9 10), A et B engendrent le groupe G720, simplement

isomorphe à G720. Dans tous les autres cas, A et B engendrent le

groupe symétrique ©10.

4. Les cycles A et B ont au plus cinq éléments communs. Ils
engendrent alors toujours le groupe symétrique des éléments permutés.

Soit à présent 8 un système quelconque connexe et primitif de
cycles d'ordre huit. Un tel système peut engendrer soit un groupe
d'ordre 336 et de degré huit, soit un groupe d'ordre 72 ou un groupe
d'ordre 432 et de degré 9, soit un groupe d'ordre 720 et de degré 10, soit
le groupe symétrique des substitutions de tous les éléments permutés
par les cycles du système 8.

Quel que soit l'entier n ^ 11, la condition nécessaire et suffisante
pour que deux substitutions 8, T du groupe symétrique ©n de degré n,
dont l'une est un cycle d'ordre huit constituent une base de ce groupe,
c'est qu'elles soient connexes et primitives.

4. Sophie Piccard (Neuchâtel). - Les systèmes connexes et primitifs
de cycles d'ordre neuf.

Soient i (l 2345678 9)et B deux cycles connexes et
primitifs d'ordre neuf et soient 10, 11, n les éléments (s'il y en a)
permutés par B mais non par A. Si A et B permutent les mêmes élé-
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ments, les cas suivants sont possibles. 1. B est l'un des 162 cycles
AlWA-\ i= 1, 2, 9, j=l, 2, 4, 5, 7, 8, U= (1 2 7 5 8 3 6 4 9),
(1 2 6 8 4 7 3 5 9), (1 4 8 7 5 3 2 6 9), et alors le groupe engendré
par A et B est le groupe G504 d'ordre 504 qui peut aussi être engendré
par des couples connexes de cycles d'ordre sept. Si B est l'un des 324
cycles A{WA-\ où U est l'un des six cycles (1 2 4 5 7 6 8 3 9), (1 2

564873 9), (1 2586347 9), (1 2843756 9), (1 4726
5 8 3 9), (1 5682734 9), A et B engendrent le groupe Gq512

d'ordre 1512. Si B est l'un des 486 cycles AlUL4~\ où U est l'un des
neuf cycles (1 2 3 6 8 7 4 9 5), (1 2 3 8 4 7 9 5 6), (1 2 3 7 6 9 8
4 5), (1 2 3 7 9 4 6 5 8), (1 2 3 9 6 4 5 8 7), (1 2 9 6 4 3 5 7 8),
(1 2 3 5 7 6 8 9.4), (1 2 6 8 4 3 9 5 7), (1 3 6 7 4 8 2 5 9), alors
(A, B) est le groupe 6rf512 d'ordre 1512. Si B est l'un des 486 cycles
AlB^A~l, où U est l'un des neuf cycles (1 2 3 4 6 8 5 9 7), (1 2 3 6
5 8 9 7 4), (1 2 3 7 8 4 6 9 5), (1 2 3 8 4 9 6 5 7), (1 2 3 8 9 5 4
7 6), (1 2 3 9 4 5 7 6 8), (1 2 4 7 8 5 6 9 3), (1 2 5 7 8 3 6 9 4),
(1 2 4 5 7 9 8 5 3), alors (A, B) est le groupe Gq512, d'ordre 1512.

Les groupes ér?1512, i=\, 2, 3, sont, deux à deux simplement isomorphes.
Chacun de ces groupes est à base du second ordre et possède au total
896 616 bases. Dans tous les autres cas possibles, A et B engendrent le

groupe alterné 219 de degré 9. Si w ^ 10, A et B engendrent toujours le

groupe 2t„.

Soit, à présent, 8 un système connexe et primitif de cycles d'ordre
neuf comprenant un nombre quelconque ^ 2 de cycles et soit G le

groupe engendré par tous les cycles du système 8. Trois cas et trois
seulement sont possibles. Ou bien G est un groupe d'ordre 504 et de
degré 9, simplement isomorphe à GW, ou bien G est de degré 9 et
d'ordre 1512, il est alors simplement isomorphe à Gq512, i= 1, 2, 3,

ou bien G est l'alterné des substitutions de tous les éléments permutés
par les cycles du système 8, ce qui est toujours le cas si le nombre des
éléments permutés est >> 9. On en déduit que quel que soit l'entier
n ^ 10, la condition nécessaire et suffisante pour que deux substitutions
8, T de degré n dont l'une T est un cycle d'ordre neuf constituent une
base du groupe symétrique @n, si 8 est impaire, ou du groupe alterné
21

n, si S est paire, c'est que les deux substitutions 8 et T soient connexes
et primitives.

5. Sophie Piccard (Neuehâtel). - Les classes de substitutions des

groupes imprimitifs et les bases de ces groupes.
Soit érj un groupe imprimitif de substitutions des éléments de

l'ensemble E0) |l, 2, px}. Soit Mx {E{\\ Eun ensemble
donné de systèmes d'imprimitivité de G± et soit G2 le groupe des
substitutions des éléments de l'ensemble E^ |l, 2, p2} 9ue les
substitutions du groupe Gx effectuent sur les systèmes d'imprimitivité de
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l'ensemble Mx. G2 est le premier groupe associé à Gl5 relatif à l'ensemble
Mx. Si G2 est imprimitif, soit M2 E^} un ensemble donné
de systèmes d'imprimitivité de G2 et soit G3 le premier groupe associé
à G2 relatif à l'ensemble Jf2, etc. A tout groupe imprimitif Gx on peut
ainsi faire correspondre une suite (au moins) 1) Gx, G2, Gm (m 2)
de groupes dont le dernier seul est primitif et tels que Gt est le premier
groupe associé à Gt-X relatif à un ensemble donné Mt-X de systèmes
d'imprimitivité de Gi-X, i 2, 3, m. Gt est le (i—l)e groupe associé
à Gx, relatif aux ensembles Mx, M^, i 2, m. 1) est une suite
complète associée au groupe Gx, m est sa longueur. Soit pt le degré
de Gt, i 1, 2, m. Le groupe G{ est pjpj fois isomorphe à Gj,
i — 1,2, m-1, j — i -f- 1, m. Soit 8^ une substitution quelconque
de Gx et soit 8^ la substitution de Gt qui correspond à 8^ dans l'iso-
morphisme de Gx à Gt. 2) 8^l\ 8^ est la suite complète associée
à $h), relative à la suite 1). Soient t, ix, i2, it des entiers tels que
1 ^ t m, 1 ^ ix <. i2 -<-••<. it ^ M" Nous dirons que 8^ est de
classe C1^2 ' * * H (C^1* * * * lt) si le nombre total v de substitutions
impaires dans la suite 3) 8^\ 8^*\ 8(H) est pair (impair). On définit
ainsi 2 (2m—1) classes de substitutions de Gx. Nous dirons qu'une
classe - H est paire (impaire) si i 1 (i — 2). Une classe
impaire peut être vide, mais non une classe paire. Deux classes telles que
Cl1 • • • lt et H sont dites complémentaires et comprennent
ensemble toutes les substitutions de Gx. Quelles que soient deux classes
complémentaires Cx et C2 de Glf si deux substitutions 8^ et jP^) de Gx
font partie de l'une de ces classes, leur produit e Cv et si 8^ s Cx et
Te C2, alors 8 T s C2. Il s'ensuit que si Gx contient au moins une
substitution de la classe C2, la moitié des substitutions de Gx appartient
à C2, l'autre moitié e Gx et les substitutions de Gx forment un sous-
groupe distingué de Gx.

Nous dirons que Gx est complet par rapport à la suite 1) si aucune
de ses 2m— 1 classes impaires n'est vide et si ces classes sont toutes
distinctes. Un tel groupe possède au moins 2m—1 sous-groupes distingués

distincts. Quel que soit l'entier m %. 2, il existe un groupe imprimitif
Gx auquel on peut associer une suite complète de longueur m et qui est
complet par rapport à cette suite. Un tel groupe Gx ne saurait être
engendré par moins de m substitutions, tout système de Te < m
substitutions de Gx faisant partie d'une même classe paire.

6. Louis Locher-Ernst (Winterthur). - Stetige Vermittlung der
Korrelationen.

Es sei eine Korrelation des projektiven Rn in sich gegeben; im
Falle der Korrelation in der Ebene also eine umkehrbar eindeutige und
stetige Abbildung der Punkte der Ebene auf die Geraden dieser Ebene,
bei der einer Punktreihe ein Strahlenbüschel entspricht. Wir sprechen
im folgenden nur von der ebenen Korrelation, die Formeln werden aber

9
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allgemein für den Rn gegeben. Die Korrelation kann aufgefaßt werden
als eine Abbildung der Mannigfaltigkeit der Linienelemente x * u (x der
Punkt, u die Gerade des Elementes) auf sich. Ist die Gerade u' das Bild
von x, der Punkt x' das Bild der Geraden u, so stellt die Korrelation
x * u -> x' * u' eine Berührungstransformation dar. Es stellt sich nun
das naheliegende Problem, eine einparametrige (Parameter t), im
allgemeinen stetige Transformation der x * u in die Elemente x' * u' zu
geben. Sind xl9 x2, und ul9 u2, homogene Koordinaten des Punktes
x bzw. der Geraden (Ebene, Hyperebene) u und Xl9 X2, Ul9 U2,
die Koordinaten des Elementes X * U für den Parameterwert t, so ist
also eine im allgemeinen stetige Transformation

Xi=Xi {X]_, x2, u^, u2, t)9 Ui=üi (^1, x2, U]_, u2, t) (1)

gesucht, die für t 0 das Ausgangselement x * u und etwa für t —> oo
das Endelement x' * u' liefert.

Es zeigt sich, daß man im Falle der allgemeinen Korrelation als
naturgemäße Lösung des Problems eine Transformation (1) zu nehmen
hat, die für endliche t ^ 0 keine Berührungstransformation darstellt.
Die Linienelemente eines Punktes werden hierbei übergeführt in eine
Schar von Linienelementen, deren Punkte eine Kurve C zweiter
Ordnung und deren Geraden ein Büschel zweiter Klasse bilden, das vom
Tangentenbüschel der Kurve C verschieden ist.

Im Falle der Polarität erhält man eine einparametrige Schar von
Berührungstransformationen, nämlich die Gruppe der nichteuklidischen
Dilatationen, welche die Elemente eines Punktes x in diejenigen eines
nichteuklidischen Kreises überführen, der für t —> oo in die Polare u'
von x ausartet.

Eine ausführliche Darstellung der stetigen Vermittlung der Polaritäten

findet sich im Bulletin de la Société des mathématiciens et physiciens
de la R. P. de Serbie, I, Heft 2, 1950.

Der allgemeine Fall wird behandelt in der Arbeit «Stetige Vermittlung

der Korrelationen», Monatshefte für Mathematik, 54. Bd., S. 235,
Wien 1950.

7. Hugo Hadwiger (Bern). - Zur Inhaltstheorie k-dimensionaler
Polyeder.

Unter einer Inhaltsmaßzahl verstehe man ein über der Klasse der
Polyeder A des &-dim. euklidischen Raumes eindeutig definiertes Funktional

f(A), das den nachfolgend aufgestellten Forderungen genügt:
I. f(A) f(A'), falls A und A' translationsgleich sind;

II. f (A-\-B)= f(A) + f(B), falls ein Polyeder A -f- B in die beiden
Teilpolyeder A und B zerlegt ist;

III. f(A) ^ 0;
IV.. f(E)= 1 für einen auserwählten Einheitswürfel E.

Eine auf diesen viér Postulaten aufgebaute formale Inhaltstheorie,
die in dem Sinne elementar ist, als sie geometrische Grenzbetrachtungen
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vermeidet, zeitigt das Hauptergebnis, daß es eine, aber nur eine
Inhaltsmaßzahl f(A J(A nämlich den elementaren Inhalt J(A gibt. Mit
andern Worten: Der elementare Inhalt ist das einzige translations-

invariante, addierbare, definite und normierte Polyederfunktional.
Insbesondere wird darauf hingewiesen, daß die Bewegungsinvarianz des
elementaren Inhalts sich in Verbindung mit den übrigen Grundeigenschaften

II. bis IV. aus der mit I. geforderten Translationsinvarianz ohne
Grenzbetrachtung ableiten läßt. Dies folgt in geometrisch direkter Weise
aus einem u. W. neuen Satz, wonach zwei Einheitswürfel in beliebiger
Drehlage stets translativ zerlegungsgleich sind.

Der nach dem Dehnschen Satz beim Aufbau einer Inhaltstheorie
für k 3 unvermeidliche Grenzübergang erscheint in unserem Fall als
eine kaum merkbare arithmetische Grenzbetrachtung, welche lediglich
beim Nachweis der Einzigkeit der elementaren Inhaltsmaßzahl erforderlich

wird.

8. Rosalinde Young (Wallington, Surrey). - La mode en
mathématique. - Pas reçu de manuscrit.

Es hat noch gesprochen: Jean de Siebenthal, Pully.
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