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1. Section de Mathématiques
Séance de la Société suisse de Mathématiques

Samedi, le 3 septembre 1949

Président : Prof. Dr Charles Blanc (Lausanne)
Secrétaire : Prof. F. Fiala (Neuchâtel)

1. Félix Fiala (Neuchâtel). — Quelques généralisations de la
symétrisation de Steiner.

Il peut être utile et intéressant de considérer quelques transformations

apparentées à la symétrisation utilisée par Steiner dans ses
recherches sur le problème des isopérimètres:

1. La symétrisation partielle d'une figure est utilisable p. ex. pour
diminuer le périmètre de certains polygones en conservant leur surface
et le nombre des côtés.

2. La symétrisation circulaire consiste à considérer les arcs
interceptés sur la figure donnée par une famille de cercles concentriques de
centre 0 et à faire glisser chaque arc sur le cercle qui le porte, jusqu'à
ce qu'il soit symétrique par rapport à une droite passant par 0.

On démontre facilement comme dans le cas de Steiner, qui est en
fait un cas limite, que la symétrisation circulaire conserve l'aire et
diminue le périmètre de la figure considérée.

Un des avantages de ce procédé est de pouvoir être utilisé tel quel
sur une surface à courbure constante, sphère ou plan hyperbolique et
d'y démontrer élémentairement la propriété de minimum du périmètre
du cercle.

3. Etant donné un triangle, ou plus généralement un polygone
quelconque, ou plus généralement une courbe simplement fermée, et
une droite d, on considère toutes les figures obtenues à partir de la
figure donnée par une affinité d'axe d et de direction parallèle à d;
quelle est la condition pour que la figure donnée présente le périmètre
minimum? (Toutes les figures ont même aire.)

Soit P1? P2, ..Pt, ..Pn, (Pn+ 1 PJ les sommets du
polygone.

En prenant la droite d comme axe dès x et un axe perpendiculaire

comme axe des y, désignons par
ajj. et bk les composantes du vecteur Pk Pk + ±

par lk sa longueur et par <^k l'angle qu'il fait avec l'axe des x.
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La condition cherchée est
n n

ak =0 ou lk sin 2 ç>k o

k l k 1

dy
Pour une courbe, en posant ds2 dx2 -f- dy2 et tgcp

dx
on a pour condition

dx dyr dx dy f— 0 OU SI
J ds J

sin 2 <p ds o

L'appiication de cette condition aux polygones réguliers fournit
le théorème élémentaire suivant (énoncé dans le cas du triangle):

Si l'on circonscrit le rectangle ABCD au triangle équilatéral AEF,
l'aire du triangle ECF est égale à la somme des aires des triangles
ABE et AFD.

2. BenoEckmann (Zürich). — Analytische und harmonische
Differentiale in komplexen Mannigfaltigkeiten. — Kein Manuskript erhalten.

3. Sophie PiccARD (Neuchâtel). — Les divers groupes que peut
engendrer un système connexe et primitif de cycles du sixième ordre
et les hases de ces groupes.

Soit n un entier ^6, soit @n le groupe symétrique d'ordre n
dont les substitutions permutent les éléments 1, 2, n. Soit S un
système connexe et primitif 1 de cycles du sixième ordre qui permutent
au total n éléments et soient C1? C2, ..Ck les cycles du système S.

Lemme 1. Si un groupe transitif et primitif de substitutions des
éléments 1, 2,,.., n contient deux cycles connexes et imprimitifs
indépendants du sixième ordre, ce groupe est le symétrique ©n.

Lemme 2. Soient m > 2 et n m deux entiers, soit G un groupe
transitif et primitif de substitutions de degré n, dont les substitutions
permutent les éléments 1, 2, n, et qui contient un cycle C

(c1c2... cm) d'ordre m. Alors les transformés de C par toutes les
substitutions du groupe G constituent un système connexe et primitif de
cycles d'ordre m qui permutent les n nombres 1, 2, n.

Proposition 1. Quel que soit l'entier k 2 et quels que soient les k
cycles du sixième ordre C1? C2, Ck qui forment un système connexe

1 Soit E l'ensemble des éléments permutés par les cycles du système S.
Le système S est connexe s'il n'existe aucun sous-ensemble propre de E, composé

de la totalité des éléments de certains cycles de S. Le système S est
primitif s'il est impossible de décomposer E en h 2> 2 sous-ensembles Ei, E2
Eh du même ordre 2, disjoints deux à deux et tels que tout cycle de S qui
transforme au moins un élément d'un ensemble Ei en un élément d'un
ensemble Ej transforme tout l'ensemble Ei en Ej (1 <! i h, 1 <î j <T h).
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et primitif S, ces k cycles engendrent soit un groupe G120 d'ordre 120
et de degré 6, soit un groupe G42 de degré 7 et d'ordre 42, soit un
groupe G336 d'ordre 336 et de degré 8, soit le groupe symétrique des
substitutions des éléments permutés par tous les cycles du système S.

Proposition IL Le groupe G engendré par un système connexe et
primitif de cycles du sixième ordre est toujours à base du second ordre.
Si ce groupe est d'ordre 120, il possède au total 3420 bases et est simplement

isomorphe à @5; si G est d'ordre 42, c'est un groupe métacyclique,
il possède au total 504 bases et est caractérisé par les relations
fondamentales A6 1, B6 1, B3AB2A4 1; si G est d'ordre 336, il peut
être caractérisé par les relations fondamentales A6 1, (B2A2)2 1,

(BA)3 1, BA3BA5B3A5 1, BA4B2A3B2A4 1 et ce groupe possède
au total 34 776 bases.

Lemme 3. Soient m I> 2 et n î> m deux entiers et soient A et B deux
substitutions connexes et primitives de degré n, dont l'une B est un
cycle d'ordre m. Soit k l'ordre de A et soit E {l, 2, n| l'ensemble
des éléments permutés par A et B. Alors les k substitutions A{B A*,
i 1, 2, ..k, constituent un système connexe et primitif de cycles
d'ordre m qui permutent tous les éléments de l'ensemble E.

Proposition 111. Quel que soit l'entier n !> 9, la condition nécessaire
et suffisante pour que deux substitutions A et B du groupe symétrique
@n, dont l'une B est un cycle du sixième ordre, constituent une base
de @n, c'est que A et B soient connexes et primitives.

4. Sophie Piccard (Neuchâtel). — Les sous-groupes primitifs d'ordre
1344 du groupe alterné de degré 8.

Soit §t8 le groupe alterné de degré 8, dont les substitutions
permutent les éléments 1, 2, n. Soit S (1 2 3 4 5 6 7), E ~
{1, 2, 3, 4, 5, 6, 7, 8}, E, {l, 2, 3, 5), E8 {4, 6, 7, 8}Ej+i= S'EjS-«,
i 1, 2, 3, 4, 5, 6, j 1, 8, soit R1 (1 4) (2 7) (3 8) (5 6) et soit
Ri-fi^ i 1, 2, 3, 4, 5, 6. Considérons toutes les substitutions
de l'une des quatre formes suivantes:

/ 1 2 3 4 5 6 7 8 \ /12345678\
\a4 a2 a3 b1 a4 b4 b2 b3/ ' \a1 a2 a3 b4 a4 b1 b3 b2/'
/ 1 2 3 4 5 6 7 8 \ /12345678\
\&i a2 a3 b2 a4 b3 b4 b4y \^i ^2 ^3 ^3 ^4 ^2 ^4 ^1

où a1? a2, a3 sont trois nombres quelconques de E, {a1? a2, a3, a4| est
l'un des ensembles Ei (1 <; i 14) et (a4 b4) (a.2 b2) (a3 b3) (a4 b4) =R
où 3 i, si 1 i 7 et j i—7, si 8 <; i 14. Ces substitutions forment
un groupe primitif, trois fois transitif, de degré 8 et d'ordre 1344, à base
du second ordre, sous-groupe de 9t8. Soit !G1344 ce groupe. En transformant

ce groupe par la substitution (4 7 5 6), on obtient un second sous-

groupe primitif d'ordre 1344 de Sl8, 2^1344-
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Le groupe 1Gr1344 se compose de 384 substitutions du type 7 \ de
224 substitutions du type 6.2, de 224 substitutions du type 3.3, de
252 substitutions du type 4.4, de 49 substitutions du type 2.2.2.2, de
168 substitutions du type 4.2, de 42 substitutions 2.2 et de la substitution

identique 1. Ce groupe peut être entièrement caractérisé par les
six relations.

A7 l, B2 l, (BAa)4 l, (BA)6 1, (BA3BA2BA)2=1,
BA3BABABA4BA5BA6BA5 1,

relations qui sont satisfaites par la base A (1 2 3 4 5 6 7), B (1 3)
4 8) de 1G1344 et qui sont caractéristiques de cette base. Si l'on répartit

les substitutions de 1G1344 en classes de substitutions conjuguées, on
obtient onze classes qui ne se confondent pas avec les classes de
substitutions semblables de 1G1344, l'ordre de chacune de ces classes étant un
diviseur de 1344. A partir de ces classes, on détermine aisément toutes
les bases du groupe 4G1344. Le nombre total de ces bases est 459.648 et
elles se répartissent en 20 types2: (7,7), (7,6.2), (7,3.3), (7,4.4),
(7, 2.2.2.2), (7, 4.2), (7, 2.2), (6.2, 6.2), (6.2, 3.3), (6.2, 4.4), (6.2, 2.2.2.2),
(6.2, 4.2), (6.2, 2.2), (4.4, 4.4), (4.4, 3.3), (4.4, 4.2), (4.4, 2.2), (4.2, 4.2),
(4.2,3.3) et (4.2, 2.2.2.2). Parmi ces bases, il y a des bases de première
espèce et du genre 1 ainsi que des bases de seconde espèce 2.

Le groupe !G1344 est un groupe composé. Il a pour seul sous-groupe
invariant propre le groupe G8 d'ordre 8, abélien transitif et imprimitif,
formé de sept substitutions du type 2.2.2.2 et de 1. D'autre part, le
groupe jG1344 compte de nombreux sous-groupes non invariants, transitifs

(primitifs et imprimitifs) et intransitifs.
La partie commune aux deux groupes 4G1344, 2G1344 est un sous-

groupe transitif primitif simple d'ordre 168 et de degré 8.

5. Max Gut (Zürich). — Eulersehe Zahlen und großer Fermatscher

Satz.

Bekannt ist die Bedeutung der BernoidUschen Zahlen im ersten
Fall des großen Fermatschen Satzes für einen ungeraden
Primzahlexponenten l. Mit Rücksicht auf den engen Zusammenhang zwischen
den Bernoullischem. und den Euler&chen Zahlen kann man sich fragen,
welche Bedeutung die letzteren für den großen Fermatschen Satz

1 Soient ai, a2,..., ar des entiers, tels que ai a2 ar !> 2. Nous
disons qu'une substitution A est du type ai. a2. ar s'il est possible
d'ordonner les cycles d'ordre > 1 de A en une suite a±î o2, oTl telle que le
cycle ai est d'ordre ai, i 1, 2,..., r.

2 Si ùn groupe de substitution G est à basie du second ordre et si A, B est
une base de ce groupe, nous disons que cette base est du type (L t') lorsque
l'une des substitutions A, B est du type t et l'autre est du type t'. L'autre
part, nous disons que la base A, B est de première espèce et du genre 1 s'il
n'existe aucune substitution (faisant ou non partie de G) qui transforme A en
B et B en A et nous disons que la base A, B et de seconde espèce lorsqu'il
existe une substitution R de G, telle que R A R—1 B et que R B R—1 A.
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haben. Unter Benutzung des Reziprozitätsgesetzes der £-ten Potenzreste

im Körper der 4Z-ten Einheitswurzeln, für welches ich eine von
der p-adik freie Formulierung gebe, kann man zeigen, daß, wenn die
Gleichung

X2* + Y21 Z21 (*)

eine Lösung in ganzen rationalen zu l teilerfremden Zahlen besitzt,
Kongruenzen von der Form

<pw (t) Bi_w o (mod. Z), w 3, 5, I—2,

(pi-i (t) EE o (mod. Z),

9>*w 0) • Ej_i_w S o (mod. w 2, 4, ..1,
Y8

bestehen. Hierbei ist t ; q?n(t) und ^>J(t) sind gewisse ganzrational-

zahlige Polynome, Bn die n-te Bernoidli&che und En die n-te .Forsche

Zahl. Die ersten —— dieser Kongruenzen wurden schon von Kummer und
2

Mirimanoff angegeben und untersucht. Aus den zweiten —— dieser
2

Kongruenzen kann man schließen:
Die Gleichung (*) hat keine Lösung in ganzen rationalen zu l

teilerfremden Zahlen X, Y, Z, wenn wenigstens eine der Eulerschen Zahlen

Ej—3, Ez—5, Ez_7 E^ 9, Ej_lt nicht durch l teilbar ist.
Die Arbeit wird in den Commentarii Mathematici Helvetici

erscheinen.

6. Charles Blanc (Lausanne). — A propos de la théorie des plaques
élastiques.

Les équations de la théorie des plaques élastiques sont souvent
données a priori, ou "déduites directement d'hypothèses sur le comportement
de la plaque; plus rarement, on tente de les tirer des équations des
milieux isotropes à 3 dimensions. Pour y parvenir, il faut donner une
définition de la plaque telle que son état puisse être décrit par des
fonctions de 2 variables, fonctions qui satisfont, en vertu de cette
définition, à des équations aux dérivées partielles et à des conditions
aux limites sur les bords de la plaque.

En général, le passage des équations des milieux à 3 dimensions
à celles de la plaque est fait d'une manière dépourvue de rigueur. En
outre, on se borne au cas trop particulier d'un milieu isotrope et homogène.

Or il est possible de faire le calcul d'une façon très générale et
pleinement rigoureuse, en transformant au préalable les équations
différentielles en équations intégrales (suivant en cela la méthode mise au
point par M. Picone et ses collaborateurs).
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Choisissant l'axe Oz perpendiculaire aux faces de la plaque, on
prend pour fonctions inconnues les dérivées secondes U, Y, W par
rapport à z des composantes u, v, w du déplacement d'un point de la
plaque. On obtient ainsi des équations intégro-différentielles
(intégrales en z, différentielles en x et y), qui se transforment en équations
différentielles en x et y si on prend pour fonctions inconnues des

moyennes de U, Y et W prises dans l'épaisseur de la plaque.
La méthode s'applique facilement, même si le milieu n'est ni

isotrope ni homogène; circonstance très favorable, les hypothèses que l'on
fait sur la nature de la déformation (donc la définition de la plaque)
apparaissent dans le choix de fonctions qui figurent toutes sous des

signes de quadrature.

7. Robert Zwahlen (Zürich). — Eigenwertproblème mit zwei- oder
dreigliedrigen rationalen Rekursionsformeln zwischen den Eigenwerten.

Bei vielen Eigenwertproblemen der mathematischen Physik tritt
die Erscheinung auf, daß die Eigenwerte arithmetische Reihen erster
oder höherer Ordnung bilden oder in anderer 'Weise durch einfache
Rekursionsformeln zusammenhängen (z. B. die Probleme, welche auf
trigonometrische Funktionen oder Kugelfunktionen führen). Es wird
versucht, die Eigenwertprobleme dieser speziellen Gruppe durch einen
allgemeinen Ansatz gemeinsam zu behandeln.

Es sei im Hilbertschen Räume ein Hermitescher Operator F
gegeben, dessen Eigenwerte Xn bestimmt werden sollen. Man wisse zum
voraus, daß die Xn die Rekursionsformel

2
% aik ^n-j-1

An+ — ; — (1)
27bji X}B _j_i An

erfüllen. Dann existiert ein anderer Operator S, der den n-ten
Eigenvektor y in den (n + l)-ten überführt und zusammen mit F der Ver-
tauschungsrelation

FS^bj^SF1 Z^ikSF{SFk (2)

genügt.
Umgekehrt: Läßt sich bei gegebenem F ein Operator S konstruieren,

so daß die Yertauschungsrelation (2) erfüllt ist, so gilt für die
Eigenwerte die Rekursionsformel (1) und für die Eigenvektoren die
Rekursionsformel yn + i Syn.

Es ergibt sich damit folgende Methode zur Lösung von Eigenwertproblemen

unserer Gruppe: Man sucht bei gegebenem F einen
Operator S zu konstruieren, so daß die Yertauschungsrelation (2) gilt.
Kennt man dann die ersten Eigenwerte und Eigenvektoren, so folgen
alle anderen Eigenwerte und Eigenvektoren rekursiv. Die Methode läßt
sich für die meisten klassischen Probleme der mathematischen Physik
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durchführen, wo der Rekursions-Operator S in vielen Fällen eine
Integraltransformation ist.

Es ergeben sich so bekannte Rekursionsformeln und Integraldarstellungen

für die Legendreschen, Tschebyscheffschen, Hermiteschen
und Laguerreschen Eigenfunktionen. Die Methode geht auf einen
Gedanken von Dirac zurück, der im Falle eines Eigenwertproblems der
Quantenmechanik die Eigenvektoren in der beschriebenen Weise
berechnet hat.

8. Wilfred Kaplan (Michigan). — Dynamische Systeme mit
Unbestimmtheit. — Kein Manuskript erhalten.

Ont encore parlé: H. Bieri, Bern; Heinrich Guggenheim, Bale.
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