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1. Section de Mathématiques

Séance de la Société suisse de Mathématiques
Samedi, le 3 septembre 1949

Président : Prof. D* CHARLES Branc (Lausanne)
‘Secrétaire : Prof. F. FiaLa (Neuchitel)

1. Ffux Fiaua (Neuchitel). — Quelques généralisations de la -
symétrisation de Steiner. .

I1 peut &tre utile et intéressant de considérer quelques transforma-
tions apparentées & la symétrisation utilisée par Steiner dans ses re-
cherches sur le probléme des isopérimétres:

1. La symétrisation partielle d’'une figure est utilisable p. ex. pour
diminuer le périmétre de certains polygones en conservant leur surface
et le nombre des cOtés.

2. La symétrisation circulaire consiste & considérer les arcs inter-
ceptés sur la figure donnée par une famille de cercles concentriques de
centre O et & faire glisser chaque arc sur le cercle qui le porte, jusqu'a
ce qu'il soit symétrique par rapport & une droite passant par O.

On démontre facilement comme dans le cas de Steiner, qui est en
fait un cas limite, que la symétrisation circulaire conserve l'aire et
diminue le périmétre de la figure considérée.

Un des avantages de ce procédé est de pouvoir étre utilisé tel quel
sur une surface a courbure constante, sphére ou plan hyperbolique et
d'y démontrer élémentairement la propriété de minimum du périmétre
du cercle.

3. Etant donné un triangle, ou plus généralement un polygone
quelconque, ou plus généralement une courbe simplement fermée, et
une droite d, on considére toutes les figures obtenues & partir de la
figure donnée par une affinité d’axe d et de direction paralléle & d;
quelle est la condition pour que la figure donnée présente le périmétre
minimum ? (Toutes les figures ont méme aire.)

Soit P, P,, ..., Py, ..., P, (Pyy, = P,) les sommets du
polygone.

En prenant la droite d comme axe des x et un axe perpendicu-
laire comme axe des y, désignons par

a, et by les composantes du vecteur P, Py 4 ,
par 1, sa longueur et par ¢, l'angle qu’il fait avec l'axe des x.
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La condition cherchée est

n

n
zj;kl_ﬁi_zo ou Zlksin2¢k=o
k

k=1 k=1
dy

Pour une courbe, en posant ds* = dx* -+ dy® et tgg = .
: X

on a pour condition

fM=o ou fsinZgods:o
ds

L’application de cette condition aux polygones réguliers fournit
le théoréme élémentaire suivant (énoncé dans le cas du triangle):

. Si 'on circonserit le rectangle ABCD au triangle équilatéral AEF,
I'aire du triangle ECF est égale 4 la somme des aires des triangles
ABE et AFD. :

2. BExo EckMANN (Ziirich). — Analytische und harmonische Diffe-
rentiale in komplexen Mannigfaltigkeiten. — Kein Manuskript erhalten.

3. SopHik Piccarp (Neuchatel). — Les divers groupes que peut
engendrer un systéme connexe et primitif de cycles du sixiéme ordre
et les bases de ces groupes.

Soit n un entier =6, soit &, le groupe symétrique d’ordre n!
dont les substitutions permutent les éléments 1, 2, ..., n. Soit S un
systéeme connexe et primitif * de cycles du sixieme ordre qui permutent
au total n éléments et soient C,, C,, ..., C les cycles du systéme S.

Lemme 1. Si un groupe transitif et primitif de substitutions des
éléments 1, 2, ..., n contient deux cycles connexes et imprimitifs indé-
pendants du sixiéme ordre, ce groupe est le symétrique & .

Lemme 2. Soient m = 2 et n = m deux entiers, soit G un groupe
transitif et primitif de substitutions de degré n, dont les substitutions
permutent les éléments 1, 2, ..., n, et qui contient un cycle C =
(c,C, ... c,) d’ordre m. Alors les transformés de C par toutes les substi-
tutions du groupe G constituent un systéme connexe et primitif de
cycles d’ordre m qui permutent les n nombres 1, 2, ..., n.

- Proposition 1. Quel que soit I'entier k = 2 et quels que soient les k
cycles du sixiéme ordre C,, C,, ..., C, qui forment un systéme connexe

1 Soit E 'ensemble des éléments permutés par les cycles du systéme S.
Le systéme S est conneze s'il n’existe aucun sous-ensemble propre de E, com-
posé de la totalité des ¢léments de certains cycles de S. Le systéme S est
primitif §’il est impossible de décomposer E en h > 2 sous-ensembles E;, E: ...,
E; du méme ordre = 2, disjoints deux & deux et tels que tout cycle de S qui
transforme au moins un élément d’'un ensemble Ei en un élément d’un en-
semble Ei transforme tout I'ensemble Ei en Ej (1 <i<h, 1 <j<h)
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et primitif S, ces k cycles engendrent soit un groupe G,,, d’ordre 120
et de degré 6, soit un groupe G,, de degré 7 et d’ordre 42, soit un
groupe G,,, d’ordre 336 et de degré 8, scit le groupe symétrique des
substitutions des éléments permutés par tous les cycles du systéme S.

Proposition 11. Le groupe G engendré par un systéme connexe et
primitif de cycles du sixieme ordre est toujours 4 base du second crdre.
Si ce groupe est d’ordre 120, il posséde au total 3420 bases et est simple-
ment isomorphe & &;; si G est d’ordrc 42, ¢’est un groupe métacyclique,
il posséde au total 504 bases et est caractérisé par les relations fonda-
mentales A® =1, B® =1, B3AB2A%* = 1; si G est d’ordre 336, il peut
étre caractérisé par les relations fondamentales As =1, (B2A?)? =
(BA)3 =1, BA®*BA5B2A5 = 1, BA*B2A3B2A2 =1 et ce groupe posqede
au total 34 776 bases.

Lemme 3. Soient m = 2 et n = m deux entiers et soient A et B deux
substitutions connexes et primitives de degré n, dont 'une B est un
cycle d’ordre m. Soit k 'ordre de A et soit E = {1, 2, ..., n} I’ensemble
des éléments permutés par A et B. Alors les k substitutions AIB A,
i=1, 2, ..., k, constituent un systéme connexe et primitif de cycles
d’ordre m qui permutent tous les éléments de ’ensemble E.

Proposition 111. Quel que soit 'entier n = 9, 1a condition nécessaire
et suffisante pour que deux substitutions A et B du groupe symétrique
©,, dont l'une B est un cycle du sixiéme ordre, constituent une base

n’
de &, c’est que A et B soient connexes et primitives.

4. SoraikE PiccarD (Neuchatel). — Les sous-groupes pﬁmitifs d’ordre
1344 du groupe alterné de degré 8.

Soit A, le groupe alterné de degré 8, dont les substitutions
permutent les éléments 1, 2, ..., n. Soit S=(1 2845617, E=
{12345678}E ={1,2,8,5}, E, ={4, 6,7, 8}Ej;;= SIE;S—,

i=1,2,8,456,j=1,8 s0it R,=014) 27 38) (56) etsmt

Rl i = SIRS Li=1,2 3 4 5, 6. Con31der0ns toutes les substitutions
de -l’une des quatre formes suivantes:

1283456178 123

(a‘1a'23‘3b13’4b4b2b3), ( &, 2

123456178 123

(al a'2 343 b2 a’4 b3 blb‘i), ( 2,3

- ou a,, a,, a, sont trois nombres quelconques de E, {al, yy gy a4} est
I'un des ensembles E; (1 <i<14) et (a, b, (a, b,) (a,b,) (a,b,) =R
ouj=1i,8i1 i< Tetj=i—T,si8 <1< 14, Ces substitutions forment
un groupe primitif, trois fois transitif, de degré 8 et d’ordre 1844, & base
du second ordre, sous-groupe de ,. Soit ,G,,,, ce groupe. En transfor-
mant ce groupe par la substitution (4 7 5 6), on obtient un second sous-
groupe primitif d’ordre 1344 de %, ,G,.,,.
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Le groupe ,G,,,, se compose de 384 substitutions du type 7?3, de
224 substitutions du type 6.2, de 224 substitutions du type 3.3, de
252 substitutions du type 4.4, de 49 substitutions du type 2.2.2.2, de
168 substitutions du type 4.2, de 42 substitutions 2.2 et de la substitu-
tion identique 1. Ce groupe peut &étre entiérement caractérisé par les
six relations. ' ‘

A7=1, B2=1, (BA®)*=1, (BA)*=1, (BA*BA?BA)2=1,
BA*BABABA*BASBASBAS=1,

relations qui sont satisfaites par la base A=(1234567), B=(13)
(4 8)de,G,,,, et qui sont caractéristiques de cette base. Si I’on répartit
les substitutions de ,G,,,, en classes de substitutions conjuguées, on
obtient onze classes qui ne se confondent pas avec les classes de substi-
tutions semblables de ,G,,,,, 'ordre de chacune de ces classes étant un
diviseur de 1344. A partir de ces classes, on détermine aisément toutes
les bases du groupe ,G,,,,. Le nombre total de ces bases est 459.648 et
elles se répartissent en 20 types2: (7,7), (7,6.2), (7,3.3), (7,4.4),
(7, 2.2.2.2), (7, 4.2), (17, 2.2), (6.2, 6.2), (6.2, 3.3), (6.2, 4.4), (6.2, 2.2.2.2),
(6.2, 4.2), (6.2, 2.2), (4.4, 4.4), (44, 3.3), (4.4, 4.2), (44, 2.2), (4.2, 4.2),
(4.2,3.3) et (4.2, 2.2.2.2). Parmi ces bases, il y a des bases de premiére
espéce et du genre 1 ainsi que des bases de seconde espéce 2.

Le groupe ,G,,,, est un groupe composé. Il a pour seul sous-groupe
invariant propre le groupe G, d’ordre 8, abélien transitif et imprimitif,
formé de sept substitutions du type 2.2.2.2 et de 1. D’autre part, le
groupe ,G,,,, compte de nombreux sous-groupes non invariants, transi-
tifs (primitifs et imprimitifs) et intransitifs.

La partie commune aux deux groupes ,G,,,,, .05, €st un sous-
groupe transitif primitif simple d’ordre 168 et de degré 8. ’

5. Max Gur (Ziirich). — Eulersche Zahlen und grofler Fermat-
scher Satz. '

Bekannt ist die Bedeutung der Bernowllischen Zahlen im ersten
Fall des groBen Fermatschen Satzes fiir einen ungeraden Primzahl-
exponenten /. Mit Riicksicht auf den engen Zusammenhang zwischen
den Bernoullischen und den Ewulerschen Zahlen kann man sich fragen,
welche Bedeutung die letzteren fiir den groBlen Fermatschen Satz

1Soient a1, a2,..., a, des entiers, tels que a1 = a» = ... = a, = 2. Nous

disons qu’une substitution A est du type ai. as. ... a, s'il est possible d’or-
donner les cycles d’ordre > 1 de A en une suite o, 0, ..., o, telle que le
cycle oi est d'ordre ai, i=1,2,..., r '

2 8i un groupe de substitution G est & base du second ordre et si A, B est
une base de ce groupe, nous disons que cette base est du type (t, t’) lorsque
I'une des substitutions A, B est du type t et lautre est du type t'. L'autre
part, nous disons que la base A, B est de premiére espéce et du genre 1 8'il
n’existe aucune substitution (faisant ou non partie de G) qui transforme A en
B et B en A et nous disons que la base A, B et de seconde espéce lorsqu’il
existe une substitution R de G, telle que RAR—! =B et que RBR—! = A.
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haben. Unter Benutzung des Reziprozititsgesetzes der I-ten Potenz-
reste im Korper der 4/-ten Einheitswurzeln, fiir welches ich eine von
der p-adik freie Formulierung gebe, kann man zeigen, dafl, wenn die
Gleichung

X2 Y2l =72 (%)

eine Losung in ganzen rationalen zu [/ teilerfremden Zahlen besitzt,
Kongruenzen von der Form

ow () - By =o0 (mod.?), w=3,5, ..., 1—2,

¢o1—1 (t) =0 (mod.?),
go’; ®-E_, ~=o0 modl), w=24..,10-1,

Y2
bestehen. Hierbei ist t = ﬁ; @n(t) und @i(t) sind gewisse ganzrational-

zahlige Polynome, B, die n-te Bernowllische und E_ die n-te Ewulersche

. -1 _.
Zahl, Die ersten ——dieser Kongruenzen wurden schon von Kummer und
' 2

-1
Mirimanoff angegeben und untersucht. Aus den zweiten *—2~— dieser

Kongruenzen kann man schliefen:

Die Gleichung (*) hat keine Losung in ganzen rationalen zu / teiler-
fremden Zahlen X, Y, Z, wenn wenigstens eine der Fulerschen Zah-
len E;_3, Ei 5, E; 7, Ei_g, E;_4; nicht durch [ teilbar ist.

Die Arbeit wird in den Commentarii Mathematici Helvetici er-
scheinen.

6. CHARLES BLanc (Lausanne). — A4 propos de la théorie des plaques -
élastiques.

Les équations de la théorie des plaques élastiques sont souvent don-
nées a priori, ou-déduites directement d’hypothéses sur le comportement
de la plaque; plus rarement, on tente de les tirer des équations des
milieux isotropes a 3 dimensions. Pour y parvenir, il faut donner une
définition de la plaque telle que son état puisse étre décrit par des
fonctions de 2 wvariables, fonctions qui satisfont, en vertu de cette
définition, & des équations aux dérivées partielles et 4 des conditions
aux limites sur les bords de la plaque.

En général, le passage des équations des milieux & 3 dimensions
a celles de la plaque est fait d'une maniére dépourvue de rigueur. En
outre, on se borne au cas trop particulier d’un milieu isotrope et homo-
géne. Or il est possible de faire le  calcul d’une facon trés générale et
pleinement rigoureuse, en transformant au préalable les équations diffé-
rentielles en équations intégrales (suivant en cela la méthode mise au
point par M. Picone et ses collaborateurs).



Choisissant ’axe Oz perpendiculaire aux faces de la plaque, on
prend pour fonctions inconnues les dérivées secondes U, V, W par rap-
port & z des composantes u, v, w du déplacement d’un point de la
plaque. On obtient ainsi des équations intégro-différentielles (inté-
grales en z, différentielles en x et y), qui se transforment en équations
différentielles en x et y si on prend pour fonctions inconnues des
moyennes de U, V et W prises dans I’épaisseur de la plaque.

La méthode s’applique facilement, méme si le milieu n’est ni iso-
trope ni homogeéne; circonstance trés favorable, les hypothéses que 1’on
fait sur la nature de la déformation (donc la définition de la plaque)
apparaissent dans le choix de fonctions qui figurent toutes sous des
signes de quadrature.

7. ROBERT ZWAHLEN (Ziirich). — Eigenwertprobleme mit zwei- oder
dreigliedrigen rationalen Rekursionsformeln zwischen den Eigenwerten.

Bei vielen Eigenwertproblemen der mathematischen Physik tritt
die Erscheinung auf, daB die Eigenwerte arithmetische Reihen erster
oder hoherer Ordnung bilden oder in anderer Weise durch einfache
Rekursionsformeln zusammenhingen (z. B. die Probleme, welche auf
trigonometrische Funktionen oder Kugelfunktionen fiihren). Es ‘wird
versucht, die Eigenwertprobleme dieser speziellen Gruppe durch einen
allgemeinen Ansatz gemeinsam zu behandeln.

Es sei im Hilbertschen Raume ein Hermitescher Operator F ge-
geben, dessen Eigenwerte A, bestimmt werden sollen. Man wisse zum
voraus, dafl die 1, die Rekursionsformel

. 2 ag )»L-H lﬁ

ln—l— : 1
2b; /111+1 An

1)

erfiillen. Dann existiert ein anderer Operator S, der den n-ten Eigen-
vektor y in den (n + 1)-ten iiberfithrt und zusammen mit F der Ver-
tauschungsrelation :
FSZleFJSFl = ZaikSFiSFk (2)
geniigt. | _
Umgekehrt: LiBt sich bei gegebenem F ein Operator S konstruie-
ren, so daf die Vertauschungsrelation (2) erfiillt ist, so gilt fiir die
Eigenwerte die Rekursionsformel (1) und fiir die Eigenvektoren die
Rekursionsformel y, 4 1 = Sy,.

Es ergibt sich damit folgende Methode zur Losung von Eigenwert-
problemen unserer Gruppe: Man sucht bei gegebenem F einen Ope-
rator S zu konstruieren, so daf die Vertauschungsrelation (2) gilt.
Kennt man dann die ersten Eigenwerte und Eigenvektoren, so folgen

alle anderen Eigenwerte und Eigenvektoren rekursiv. Die Methode 148t
sich fiir die meisten klassischen Probleme der mathematischen Physik
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durchfithren, wo der Rekursions-Operator S in vielen Fillen eine Inte-
graltransformation ist.

Es ergeben sich so bekannte Rekursionsformeln und Integraldar-
stellungen fiir die Legendreschen, Tschebyscheffschen, Hermiteschen
und Laguerreschen Eigenfunktionen. Die Methode geht auf einen Ge-
danken von Dirac zuriick, der im Falle eines Eigenwertproblems der
Quantenmechanik die Eigenvektoren in der beschriebenen Weise be-
rechnet hat.

8. WirreD KarrLan (Michigan). — Dynamische Systeme mit Unbe-
stimmtheit. — Kein Manuskript erhalten.

Ont encore parlé: H. Bieri, Bern; Heinrich Guggenheim, Bile.
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