Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 128 (1948)

Vereinsnachrichten: Sektion für Mathematik

Autor: [s.n.]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1. Sektion für Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, den 5. September 1948

Präsident: Prof. Charles Blanc (Lausanne)

1. Hans P. Künzı (Zürich). — Der Satz von Fatou für die Dimension n > 2.

Verfasser beweist den Fatouschen Satz in folgender allgemeinen Form:

Satz: Wenn eine im Innern der n-dimensionalen Einheitskugel

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$

harmonische Funktion u $(x_1, x_2, \dots x_n)$ der Bedingung

$$\int_{\mathbb{R}} | \mathbf{u} (\varrho \mathbf{x}_{1}, \varrho \mathbf{x}_{2}, \dots, \varrho \mathbf{x}_{n}) | d \Omega < \mathbf{M} < \infty$$
 (1)

genügt, so existiert bei radialer Annäherung von innen an irgendeinen Punkt der Oberfläche der Grenzwert der Funktion $u(x_1, x_2, \ldots x_n)$ mit eventueller Ausnahme einer Menge vom (n-1)-dimensionalen Maße Null von Punkten auf der Kugel.

Dabei wird über die n-dimensionalen Kugeln mit dem Radius $\varrho < 1$ integriert. d Ω bedeutet das n-dim. Flächenelement auf der Kugel.

Zum Beweis des Satzes wird zuerst die Poisson-Stieltjessche Integralform für den n-dim. Raum hergeleitet, die besagt, daß sich eine harmonische Funktion $u(x_1, x_2, \ldots x_n)$ die (1) genügt, mit Hilfe des Integrals

$$u(x_1, x_2, ... x_n) = \frac{1 - r^2}{\Omega} \int_{E} \frac{d \mu(e)}{(r^2 + 1 - 2r \cos \Theta)^{n/2}}$$
 (2)

darstellen läßt, wobei sich μ (e) als volladditive Mengenfunktion beschränkter Schwankung in der Form

$$\mu (e) = \lim_{\varrho \to 1} \int_{E} u(\varrho x_{1}, \varrho x_{2}, \dots \varrho x_{n}) d \Omega$$
 (3)

ausdrücken läßt. (Hierfür werden Sätze von Radon und Helly verwendet.)

Im zweiten Teil des Beweises wird vom Lebesgueschen Theorem Gebrauch gemacht, das besagt, daß obige Mengenfunktion μ (e) fast überall endliche Derivierte $\lim_{m \to 0} \frac{\mu$ (e) besitzt und dann gezeigt, daß

für eine Funktion der Form (2) gilt:

$$\lim_{r \to 1} u(P) = \lim_{me \to 0} \frac{\mu(e)}{me}$$
 (4)

wenn P gegen den Punkt Q auf der Oberfläche strebt, in dem $\lim_{m \to 0} \frac{\mu(e)}{me} \text{ existiert.}$

2. Sophie Piccard (Neuchâtel). — Les bases du groupe \mathfrak{S}_{τ} .

Soit \mathfrak{S}_7 le groupe symétrique des substitutions des éléments 1, 2, 3, 4, 5, 6, 7. Ce groupe comprend, comme on sait, des substitutions des types

et la substitution identique, a₁a₂a₃a₄a₅a₆a₇ étant une permutation quelconque des nombres 1, 2, 3, 4, 5, 6, 7. Le groupe \mathfrak{S}_{τ} est, comme on sait, à base du second ordre. Soit S, T une base de S₇. Nous dirons que la base S, T est du type (a, b) si la substitution S est du type a et si T est du type b $(1 \le a \le 14, 1 \le b \le 14)$. Le groupe \mathfrak{S}_{τ} possède des bases de 60 types, savoir (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (2,9), (2,10), (2,11), (2,12), (2,13), (2,14), (4,1), (4,3), (4,4), (4,5), (4,6), (4,7),(4,8), (4,9), (4,10), (4,11), (4,12), (4,13), (4,14), (5,1), (5,3), (5,5), (5,6),(5,7), (5,9), (5,10), (5,11), (5,14), (7,1), (7,3), (7,6), (7,7), (7,8), (7,9),(7,10), (7,11), (7,12), (7,13), (7,14), (9,1), (9,3), (9,6), (9,9), (9,10), (9,11),(9,14), (12,1), (14,1), (14,3), (14,6), (14,10) et (14,11). Si le couple S, T de substitutions de \mathfrak{S}_7 est de l'un des onze types (1,4), (1,5), (1,7), (1,9), (1,12), (2,4), (2,7), (2,10), (3,7), (4,7), (4,11), alors les substitutions S et T sont toujours connexes et elles constituent toujours une base de S₇. Si le couple S, T est de l'un des types (2,3), (2,5), (2,6), (2,8), (2,9), (2,12), (2,13), (3,4), (3,5), (3,9), (3,14), (4,4), (4,5), (4,6), (4,8), (4,9), (4,10), (4,12),(4,13), (4,14), (5,5), (5,6), (5,7), (5,9), (5,10), (5,11), (5,14), (6,7), (6,9),(6,14), (7,7), (7,8), (7,9), (7,10), (7,11), (7,12), (7,13), (7,14), (9,9), (9,10),(9,11), (9,14), (10,14), les substitutions S et T ne sont pas toujours connexes et la condition nécessaire et suffisante pour que S, T soit une base de \mathfrak{S}_{7} , c'est que S et T soient connexes. Si le couple S, T est de l'un des deux types (1,2), (1,14), les deux substitutions S et T sont toujours connexes, mais elles ne constituent pas toujours une base de \mathfrak{S}_{7} . Enfin, si le couple S, T est de l'un des types (2,2), (2,11), (2,14), (11,14), les deux substitutions S et T ne sont pas toujours connexes et, même si elles sont connexes, elles ne constituent pas toujours une base de \mathfrak{S}_{7} . Le nombre total de base de \mathfrak{S}_{7} est 7786800, dont 7630560 sont de première espèce et 156240 sont de seconde espèce 1.

- 3. Sophie Piccard (Neuchâtel). Quelques propositions de la théorie des substitutions.
- 1. Soient S_i (i=1,2,3) trois éléments indépendants, générateurs d'un groupe G, liés par les relations fondamentales 1) $S_i^2 = 1$, i=1,2,3, et 2) $(S_i S_j)^3 = 1$, i=1,2,3, j=1,2,3, i=j. Soit G_1 le groupe engendré par S_1 et S_2 . Ce groupe est du 6^{me} ordre et il est simplement isomorphe au groupe symétrique \mathfrak{S}_3 . Tout élément du groupe G peut se mettre sous l'une des formes suivantes:

A désignant un élément quelconque du groupe G₁.

Le groupe G peut être d'ordre infini et alors les éléments $S_3S_1S_2S_1$, $S_3S_1S_2$ et $S_3S_2S_1$ sont tous trois d'ordre infini. Ou bien G est d'ordre fini N. Il est alors isomorphe au groupe \mathfrak{S}_3 . Tous les éléments de G sont alors d'ordre fini. Soit u l'ordre de $S_3S_1S_2S_1$ et soit v l'ordre de $S_3S_1S_2$ (c'est aussi l'ordre de $S_3S_2S_1$). On a alors $u \geq 2$, $v \geq 2$, u peut être un nombre quelconque ≥ 2 , le nombre v est nécessairement pair et les nombres u et v sont liés par l'une des deux relations 3) $u = \frac{v}{2}$ ou 4) $u = 3\frac{v}{2}$. Si 3) a lieu, le groupe G est d'ordre 6 u^2 et il est à base du second ordre, si $u \equiv 0 \pmod{3}$, et il est à base du 3^{me} ordre, si $u \equiv 0 \pmod{3}$. Le groupe G est d'ordre $18 \left(\frac{v}{2}\right)^2$ et il est à base du 3^{me} ordre, si on a la relation 4). Il existe des groupes de transformations, respectivement de substitutions, illustrant tous les cas théoriquement possibles.

2. Soit k un entier ≥ 2 , soit n un entier ≥ 7 et soit $T_i = (a_{i1}a_{i2}...a_{i7})$, i = 1, 2, ..., k, k cycles d'ordre 7 qui permutent, dans leur ensemble, les n nombres 1, 2, ..., n et qui constituent un système connexe. Supposons d'abord que k = 2, soit t le nombre d'éléments communs aux deux cycles T_1 et T_2 et soit G le groupe engendré par T_1 et T_2 .

¹ Voir S. Piccard: Sur les bases du groupe symétrique, I et II, Librairie Vuibert, Paris.

Si t=7, G est d'ordre 168 ou bien c'est l'alterné \mathfrak{A}_7 . Si t=6, l'ordre de G est l'un des nombres 56, 168, 1344 ou bien $G=\mathfrak{A}_8$. Si t=5, G est d'ordre 504 ou se confond avec \mathfrak{A}_9 . Enfin, si t=4, 3, 2 ou 1, $G=\mathfrak{A}_n$. Supposons maintenant que $k\geq 2$ et soit $n\geq 10$. Les substitutions T_i engendrent alors toujours le groupe \mathfrak{A}_n . D'autre part quel que soit l'entier $n\geq 10$, si S et T sont deux substitutions connexes et primitives du groupe \mathfrak{S}_n ($n\geq 10$), telles que $T=(b_1b_2b_3b_4b_5b_6b_7)$, où b_1,\ldots,b_7 sont sept nombres de la suite $1,2,\ldots,n$, S et Γ engendrent le groupe \mathfrak{S}_n , si S est de classe impaire, ou le groupe \mathfrak{A}_n . si S est de classe paire.

4. Sophie Piccard (Neuchâtel). — Sur les bases du groupe alterné.

Soit n un entier ≥ 4 , soit \mathfrak{S}_n le groupe symétrique d'ordre n!, dont les substitutions permutent les éléments 1, 2, ..., n et soit \mathfrak{A}_n le sous-groupe alterné de S_n. Il existe des couples de substitutions de \mathfrak{A}_n , générateurs de \mathfrak{A}_n . Ces couples sont les bases de \mathfrak{A}_n . Quelle que soit la base S, T de \mathfrak{A}_n et quelle que soit la substitution R ± 1 de \mathfrak{S}_n , R ne saurait être permutable aussi bien avec S qu'avec T et, s'il existe une substitution R de S_n telle que RSR⁻¹=T et que RTR⁻¹=S, alors la substitution R est du second ordre et elle est unique. Une base S, T de A, est de première espèce s'il n'existe aucune substitution R de \mathfrak{A}_n , telle que R²=1 et RSR-1=T et elle est de seconde espèce dans le cas contraire. Une base de première espèce est du genre 1 s'il n'existe aucune substitution R de S_n—𝔄_n, telle que R²=1 et que RSR⁻¹=T et elle est du genre 2 dans le cas contraire. Quel que soit l'entier $n \ge 4$, le groupe Un possède des bases de première espèce aussi bien du genre 1 que du genre 2 et des bases de seconde espèce. Le nombre total de bases de \mathfrak{A}_n est toujours un multiple de n!/2, c'est-à-dire de l'ordre du groupe \mathfrak{A}_n . Nous avons établi des critères permettant de reconnaître toutes les bases du groupe \mathfrak{A}_n pour n=4, 5, 6 et 7¹. Le groupe \mathfrak{A}_n possède en tout 48 bases. 36 de ces bases sont de première espèce (24 du genre 1 et 12 du genre 2) et 12 sont de seconde espèce. Le groupe \mathfrak{A}_{5} possède au total 1140 bases, dont 960 sont de première espèce (840 du genre 1 et 120 du genre 2) et 180 sont de seconde espèce. Le groupe $\mathfrak{A}_{\mathfrak{g}}$ possède au total 38 160 bases, dont 36 000 sont de première espèce (35 280 du genre 1 et 720 du genre 2) et 2160 sont de seconde espèce. Le groupe \mathfrak{A}_{7} possède au total 2 308 320 bases, dont 2 270 520 sont de première espèce (2 177 280 du genre 1 et 93 240 du genre 2) et 37 800 sont de seconde espèce. Une partie des propositions générales concernant les bases de \mathfrak{S}_n se généralisent à tout sous-groupe transitif et primitif G du groupe \mathfrak{S}_n , à base du second ordre. Ainsi, le nombre total de bases de G est un multiple de m ou de m/2, m désignant le nombre des substitutions du groupe \mathfrak{S}_n qui transforment le groupe G en luimême.

¹ A paraître dans Commentarii Mathematici Helvetici, 1949.

- **5.** Hugo Hadwiger (Bern). Zerlegungsgleichheit und additive Polyederfunktionale. Wird voraussichtlich im «Archiv der Mathematik », Bd. 3, erscheinen.
 - 6. Willy Scherrer (Bern). Zur Theorie der Materie.

Der Inhalt des Referates wird unter dem Titel « Gravitationstheorie und Elektrodynamik » in den « Mitteilungen der Berner Naturforschenden Gesellschaft » (1949) erscheinen.

7. Max Jeger (Olten). — Affine Zusammenhänge und Gewebe.

Von den beiden Hamburger Mathematikern Blaschke und Thomsen ging im Jahre 1927 die Anregung aus zu einem über 60 einzelne Arbeiten umfassenden Zyklus über «Topologische Fragen der Differentialgeometrie ». Gegenstand dieser Untersuchungen sind Systeme von Kurvenscharen in der Ebene und Systeme von Flächenscharen im dreidimensionalen Raum. Für diese Systeme wurde der Begriff «Gewebe » eingeführt für den Fall, daß sie gewissen, hier nicht näher umschriebenen Bedingungen genügen. Für die Praxis sind die genannten Untersuchungen insofern von Bedeutung, als die Nomographie einen Sonderfall der Gewebegeometrie ausmacht. Zur Behandlung differentialgeometrischer Fragen der Gewebegeometrie wurde ein spezieller Kalkül entwickelt, welcher gestattet, topologische Invarianten von differenzierbaren Geweben darzustellen. Es ist nun gelungen, diesen speziell den Geweben angepaßten Kalkül zu umgehen, indem gezeigt werden konnte, daß sich der differentialgeometrische Teil der Gewebegeometrie in die projektive Differentialgeometrie einordnen läßt. Zudem lassen sich in dieser Form sämtliche Aussagen auf beliebige Dimensionen verallgemeinern. Die Einordnung der Gewebegeometrie in die projektive Differentialgeometrie vollzieht sich über die sogenannten quasigeodätischen Kurvensysteme. Man versteht darunter ein 2(n-1)-parametriges Kurvensystem im Rn, das durch die geodätischen Linien eines affinen Zusammenhanges gegeben ist. Grundlegend ist die Tatsache, daß ein Gewebe aus (n+2) Hyperflächenscharen im Rⁿ ein quasigeodätisches System eindeutig bestimmt, derart, daß die Gewebehyperflächen geodätische Hyperflächen sind. Dies gestattet das Aufstellen der Bedingungen dafür, ob sich ein Gewebe eben, bzw. gradlinig machen läßt. Dabei offenbart sich die Sonderstellung der parallelisierbaren Gewebe in äußerst eleganter Form.

Es haben noch gesprochen: Walter Baum, Zürich; Albert Pfluger, Zürich; M. Rueff, Zürich; Ernst Specker, Zürich; Harry Rauch, Zürich.