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1. Sektion für Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, den 5. September 1948

Präsident: Prof. Charles Blanc (Lausanne)

1. Hans P. Künzi (Zürich). — Der Satz von Fatou für die Dimension

n> 2.

Verfasser beweist den Fatouschen Satz in folgender allgemeinen
Form:

Satz: Wenn eine im Innern der n-dimensionalen Einheitskugel

x2 -f x2 + + x2 1
1

1

2
1 1

n

harmonische Funktion u (x1, x2, xn) der Bedingung

/ ] u (ßXj, 0X2, qxd) j d < M < OO (1)

genügt, so existiert bei radialer Annäherung von innen an irgendeinen
Punkt der Oberfläche der Grenzwert der Funktion u (x19 x2, xn)
mit eventueller Ausnahme einer Menge vom (n—l)-dimensionalen Maße
Null von Punkten auf der Kugel.

Dabei wird über die n-dimensionalen Kugeln mit dem Radius 9 < 1

integriert, dû bedeutet das n-dim. Flächenelement auf der Kugel.
Zum Beweis des Satzes wird zuerst die Poisson-Stieltjessche

Integralform für den n-dim. Raum hergeleitet, die besagt, daß sich eine
harmonische Funktion u (xv x2, xn) die (1) genügt, mit Hilfe des
Integrals

/ »-I —r2 f du(e)u (x x x j / (2)n Q e (r2 -j- 1 — 2r cos ©)n/2

darstellen läßt, wobei sich (e) als volladditive Mengenfunktion
beschränkter Schwankung in der Form

lim rIX(e)J U (qxv ox2, gxa) d ü (3)

ausdrücken läßt. (Hierfür werden Sätze von Radon und Helly
verwendet.)
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Im zweiten Teil des Beweises wird vom Lebesgueschen Theorem
Gebrauch gemacht, das besagt, daß obige Mengenfunktion ß (e) fast

überall endliche Derivierte
lim ^ — besitzt und dann gezeigt, daß

me —y 0 me

für eine Funktion der Form (2) gilt:

li,n,„(P)= "m
(4)

r —> 1 me —0 me

wenn P gegen den Punkt Q auf der Oberfläche strebt, in dem

lim
exigtiert

me—>- 0 me

2. Sophie PiccARD (Neuchâtel). — Les bases du groupe ©7.

Soit ©7 le groupe symétrique des substitutions des éléments 1, 2,

3, 4, 5, 6, 7. Ce groupe comprend, comme on sait, des substitutions
des types

1) (a1a2a3a4a5a6a7), 8) (a1a2a3) (a4) (a5) (a6) (a7),

2) (a1a2a3a4a5a6) (a7), 9) (a4a2a3) (a4a5) (a6) ^a7),

3) (a1a2a3a4a5) (a6) (a7), 10) (a1a2a3) (ata5) (a6a7),

4) (ajagagU^^ag) (a6a7), 11) (a^^y) (a4a5a6) (a7),

5) (a1a2a3a4) (a5) (a6) (a7), 12) (a4a2) (a3) (a4) (a5) (aG) (a7),

6) (a1a2a3a4) (a5a6) (a7), 13) (a1a2) (a3a4) (a5) (a6) (a7),

7) (a1a2a3a4) (a5a6a7), 14) (a1a2) (a3a4) (a5a6) (a7)

et la substitution identique, a1a2a3a4a5a6a7 étant une permutation
quelconque des nombres 1, 2, 3, 4, 5, 6, 7. Le groupe ©7 est, comme on sait,
à base du second ordre. Soit S, T une base de ®7. Nous dirons que la
base S, T est du type (a, b) si la substitution S est du type a et si T est
du type b (1 < a < 14, 1 < b 14). Le groupe ©7 possède des bases
de 60 types, savoir (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (2,9),

(2,10), (2,11), (2,12), (2,13), (2,14), (4,1), (4,3), (4,4), (4,5), (4,6), (4,7),
(4,8), (4,9), (4,10), (4,11), (4,12), (4,13), (4,14), (5,1), (5,3), (5,5), (5,6),
(5,7), (5,9), (5,10), (5,11), (5,14), (7,1), (7,3), (7,6), (7,7), (7,8), (7,9),
(7.10), (7,11), (7,12), (7,13), (7,14), (9,1), (9,3), (9,6), (9,9), (9,10), (9,11),
(9,14), (12,1), (14,1), (14,3), (14,6), (14,10) et (14,11). Si le couple S, T
de substitutions de @7 est de l'un des onze types (1,4), (1,5), (1,7), (1,9),
(1.12), (2,4), (2,7), (2,10), (3,7), (4,7), (4,11), alors les substitutions S et T
sont toujours connexes et elles constituent toujours une base de @7.

Si le couple S, T est de l'un des types (2,3), (2,5), (2,6), (2,8), (2,9), (2,12),
(2.13), (3,4) (3,5), (3,9), (3,14), (4,4), (4,5), (4,6), (4,8), (4,9), (4,10), (4,12),
(4.13), (4,14), (5,5), (5,6), (5,7), (5,9), (5,10), (5,11), (5,14), (6,7), (6,9),
(6.14), (7,7), (7,8), (7,9), (7,10), (7,11), (7,12), (7,13), (7,14), (9,9), (9,10),
(9.11), (9,14), (10,14), les substitutions S et T ne sont pas toujours
connexes et la condition nécessaire et suffisante pour que S, T soit une base
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de ©7, c'est que S et T soient connexes. Si le couple S, T est de l'un des
deux types (1,2), (1,14), les deux substitutions S et T sont toujours
connexes, mais elles ne constituent pas toujours une base de @7. Enfin,
si le couple S, T est de l'un des types (2,2), (2,11), (2,14), (11,14), les deux
substitutions S et T ne sont pas toujours connexes et, même si elles sont
connexes, elles ne constituent pas toujours une base de ©7. Le nombre
total de base de ©7 est 7 786800, dont 7 630 560 sont de première espèce
et 156 240 sont de seconde espèce 1.

3. Sophie PicoARD (Neuchâtel). — Quelques propositions de la
théorie des substitutions.

1. Soient Sj (i — 1,2,3) trois éléments indépendants, générateurs
d'un groupe G, liés par les relations fondamentales 1) S 1, i 1, 2, 3,

et 2) (Si Sj)3 1, i 1, 2, 3, j 1, 2, 3, i=£= j. Soit G1 le groupe
engendré par Sx et S2. Ce groupe est du 6me ordre et il est simplement
isomorphe au groupe symétrique ©3. Tout élément du groupe G peut
se mettre sous l'une des formes suivantes:

A (S3S1S2S1)h, h 0, 1, 2,...,
A (S3S1S2S1)h(S3S1S9)tZ, h 0, 1,..., k 0, 1,..Z S3, 838, ou

SAS2,
A (S3S1S2S1)h(S3S2S1)^Z/, h 0, 1,..., k 0, 1,..., Z' S3, S3S., 011

S.SA,
A désignant un élément quelconque du groupe Gr
Le groupe G peut être d'ordre infini et alors les éléments SASA,

S3SÀ S3SA sont tous trois d'ordre infini. Ou bien G est d'ordre
fini N. Il est alors isomorphe au groupe ©3. Tous les éléments de G sont
alors d'ordre fini. Soit u l'ordre de S3S1S2S1 et soit v l'ordre de S,S7S2
(c'est aussi l'ordre de S3S2S1). On a alors u ;> 2, v !> 2, u peut être un
nombre quelconque 2, le nombre v est nécessairement pair et les
nombres u et v sont liés par l'une des deux relations 3) u y ou

4) u 3j. Si 3) a lieu, le groupe G est d'ordre 6 u2 et il est à base du
second ordre, si u=0(mod. 3), et il est à base du 3m0 ordre, si

(mod. 3). Le groupe G est d'ordre 18 (-j)2 et il est àbase du 3me ordre, si
on a la relation 4). Il existe des groupes de transformations, respectivement

de substitutions, illustrant tous les cas théoriquement possibles.
2. Soit k un entier 2, soit n un entier > 7 et soit Tj (aixai2

ai7), i 1, 2,..., k, k cycles d'ordre 7 qui permutent, dans leur
ensemble, les n nombres 1, 2,..., n et qui constituent un système connexe.
Supposons d'abord que k 2, soit t le nombre d'éléments communs
aux deux cycles Tx et T2 et soit G le groupe engendré par Tx et T2.

1 Voir S. Piccard: Sur les bases du groupe symétrique, I et II, Librairie
Yuibert, Paris.
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Si t 7, G est d'ordre 168 ou bien c'est l'alterné ?l7. Si t 6, l'ordre
de G est l'un des nombres 56, 168, 1344 ou bien G 3l8. Si t 5,
G est d'ordre 504 ou se confond avec 2t9. Enfin, si t 4, 3, 2 ou 1,
G 5In. Supposons maintenant que k > 2 et soit n !> 10. Les
substitutions Ti engendrent alors toujours le groupe 2In. D'autre part quel
que soit l'entier n > 10, si S et T sont deux substitutions connexes et
primitives du groupe ©n (n ^ 10), telles que T (b1b2b3btb5bf.b7), où
b1?..., b7 sont sept nombres de la suite 1, 2,..., n, S et r engendrent

le groupe ©n, si S est de classe impaire, ou le groupe 3ÏU. si S

est de classe paire.

4. Sophie Piccard (Neuchâtel). — Sur les bases du groupe alterné.
Soit n un entier î> 4, soit @u le groupe symétrique d'ordre n!,

dont les substitutions permutent les éléments 1, 2, n et soit 2ln le
sous-groupe alterné de @n. Il existe des couples de substitutions de 9ln,
générateurs de SIn. Ces couples sont les bases de 3In. Quelle que soit la
base S, T de SIn et quelle que soit la substitution R=£= 1 de ®n, R ne saurait
être permutable aussi bien avec S qu'avec T et, s'il existe une substitution

R de @n telle que RSR—1=T et que RTR—1 S, alors la substitution

R est du second ordre et elle est unique. Une base S, T de 2tu est
de première espèce s'il n'existe aucune substitution R de 3ln, telle que
R2 l et RSR—1=T et elle est de seconde espèce dans le cas
contraire. Une base de première espèce est du genre 1 s'il n'existe aucune
substitution R de ©u—3ln, telle que R2 l et que RSR—1==T et elle est
du genre 2 dans le cas contraire. Quel que soit l'entier n î> 4, le groupe
3tn possède des bases de première espèce aussi bien du genre 1 que du
genre 2 et des bases de seconde espèce. Le nombre total de bases
de 3In est toujours un multiple de n!/2, c'est-à-dire de l'ordre du
groupe SIn. Nous avons établi des critères permettant de reconnaître
toutes les bases du groupe 2ïn pour n=4, 5, 6 et 7 1. Le groupe
possède en tout 48 bases. 36 de ces bases sont de première espèce (24 du
genre 1 et 12 du genre 2) et 12 sont de seconde espèce. Le groupe Sl5

possède au total 1140 bases, dont 960 sont de première espèce (840 du
genre 1 et 120, du genre 2) et 180 sont de seconde espèce. Le groupe 9Ig

possède au total 38160 bases, dont 36 000 sont de première espèce
(35 280 du genre 1 et 720 du genre 2) et 2160 sont de seconde espèce.
Le groupe 2I7 possède au total 2 308 320 bases, dont 2 270520 sont de
première espèce (2 177 280 du genre 1 et 93 240 du genre 2) et 37 800
sont de seconde espèce. Une partie des propositions générales concernant

les bases de ©n se généralisent à tout sous-groupe transitif et
primitif G du groupe ©n, à base du second ordre. Ainsi, le nombre total
de bases de G est un multiple de m ou de m/2, m désignant le nombre
des substitutions du groupe ©n qui transforment le groupe G en lui-
même.

1 A paraître dans Commentarii Mathematici Helvetici, 1949.
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5. Hugo Hadwiger (Bern). — Zerlegungsgleichheit und additive
Polyederfunktionale. — Wird voraussichtlich im « Archiv der Mathematik

», Bd. 3, erscheinen.

6. Willy Scherrer (Bern). — Zur Theorie der Materie.
Der Inhalt des Referates wird unter dem Titel « Gravitationstheorie

und Elektrodynamik » in den « Mitteilungen der Berner Natur-
forschenden Gesellschaft » (1949) erscheinen.

7. Max Jeger (Ölten). — Affine Zusammenhänge und Geioebe.
Von den beiden Hamburger Mathematikern Blaschke und Thom-

sen ging im Jahre 1927 die Anregung aus zu einem über 60 einzelne
Arbeiten umfassenden Zyklus über « Topologische Fragen der
Differentialgeometrie ». Gegenstand dieser Untersuchungen sind Systeme
von Kurvenscharen in der Ebene und Systeme von Flächenscharen im
dreidimensionalen Raum. Für diese Systeme wurde der Begriff «
Gewebe » eingeführt für den Fall, daß sie gewissen, hier nicht näher
umschriebenen Bedingungen genügen. Für die Praxis sind die genannten
Untersuchungen insofern von Bedeutung, als die Nomographie einen
Sonderfall der Gewebegeometrie ausmacht. Zur Behandlung
differentialgeometrischer Fragen der Gewebegeometrie wurde ein spezieller
Kalkül entwickelt, welcher gestattet, topologische Invarianten von
differenzierbaren Geweben darzustellen. Es ist nun gelungen, diesen
speziell den Geweben angepaßten Kalkül zu umgehen, indem gezeigt
werden konnte, daß sich der differentialgeometrische Teil der
Gewebegeometrie in die projektive Differentialgeometrie einordnen läßt.
Zudem lassen sich in dieser Form sämtliche Aussagen auf beliebige
Dimensionen verallgemeinern. Die Einordnung der Gewebegeometrie in
die projektive Differentialgeometrie vollzieht sich über die sogenannten

quasigeodätischen Kurvensysteme. Man versteht darunter ein
2(n—l)-parametriges Kurvensystem im Rn, das durch die geodätischen
Linien eines affinen Zusammenhanges gegeben ist. Grundlegend ist die
Tatsache, daß ein Gewebe aus (n-f-2) Hyperflächenscharen im Rn ein
quasigeodätisches System eindeutig bestimmt, derart, daß die
Gewebehyperflächen geodätische Hyperflächen sind. Dies gestattet das
Aufstellen der Bedingungen dafür, ob sich ein Gewebe eben, bzw. gradlinig
machen läßt. Dabei offenbart sich die Sonderstellung der parallelisier-
baren Gewebe in äußerst eleganter Form.

Es haben noch gesprochen: Walter Baum, Zürich; Albert Pfluger,
Zürich; M. Rueff, Zürich; Ernst Specker, Zürich; Harry Rauch, Zürich.
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