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1. Section de Mathématiques
Séance de la Société suisse de Mathématiques

Dimanche, le 31 aoit 1947

Président : Prof. D* Max Gur (Zurich)
Secrétaire : Prof. D* CHARLES BLanc (Lausanne)

1. THEODOR REICH (Glarus). — Das Verhalten der reguldren
Quaternionenfunktionen in der Ndhe isolierter unwesentlich singuldrer
Punkte, Kurven und Fldchen. — Kein Manuskript eingegangen.

2. Georcks DE REAM (Lausanne). — Sur la théorie des distributions
de M. Laurent-Schwartz. — Pas re¢u de manuscrit.

3. Louis KoLrLros (Zurich). — Solution d’un probleme de Steiner.
— Paraitra dans « Elemente der Mathematik ».

4. Huco HapwiGer (Bern). — Eine elementare Herleitung der iso-
perimetrischen Ungleichung im Raum. — Kein Manuskript erhalten.
5. Sormie Piccarp (Neuchitel). — Un théoreme concernant le

nombre total des bases d’'un groupe d’ordre fini.

Soit G un groupe d’ordre fini N. Nous disons qu’il est & base d’ordre
v §'il existe au moins un systéme formé de v éléments de G qui engendrent
le groupe G tout entier par composition finie, alors qu’aucun systéme formé
de moins de v éléments de G ne jouit de cette propriété, et nous appelons
base de G tout systéme de v éléments de G, générateurs de ce groupe.

Soit B = {al, a2, . - o av} une base de G et soit a un élément de G.
Posons a; = aaa—!, i=1,2,...,v, et B'= {a'l, gy« e sy a;} = aBa— L,
B’ est aussi une base de G. Nous disons qu’elle est la transformée de B par a
et que les deux bases B et B’ sont semblables.

Deux bases B = {al, a9, ..., ay% et By = {bi, bg, . . ., bv> de G sont
distinctes si les ensembles {al, a2y « « o av} et {b 1, bay ..y bv} différent au
moins par un élément.
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Deux bases de G sont indépendantes si I'une d’elles n’est pas la trans-
formée de I’autre par un élément de G.

Répartissons toutes les bases de G en classes de bases semblables.
Soit m le nombre de ces classes et soit R un ensemble comprenant un repré-
sentant (choisi & volonté) et un seul de chaque classe de bases semblables
du groupe G. R est, par définition, un systéme complet de bases indépen-
dantes du groupe G et, quelle que soit la base B de G, il existe une base
B’ du systéme R et un élément a de G, tel que B = aB'a—1.

Quel que soit le groupe G d’ordre fini N, & base d’ordre v, et quelle
que soit la base B de G, ’ensemble E des éléments de G qui transforment
la base G en elle-méme forme un groupe. Soit n I'ordre de E. On an >1
et n est un diviseur de N. Soit E; le centre de G et soit k 1'ordre de E..
Onan S vk

Soit By, By, . . ., By un systéme complet de bases indépendantes de
G, soit E; ’ensemble des éléments de G qui transforment la base B; en elle-
méme et soit n; I’ordre de E; (i=1, 2, ..., n). B

On démontre sans peine que le nombre total des transformées dis-
~ tinctes de la base B; par les éléments de G est égal & N/n;.

Soit 1 le plus petit commun multiple des nombres ny, ng, . . ., Ny, soit

n ;
ni' = i=1,2,...,m, et soit N le nombre total des bases du groupe G.
i ‘

On a, d’aprés ce qui préceéde, N = (ni +n,+4-... —+n.) %I— . Nous pouvoﬁs

donc énoncer le théoréme suivant: Quel que soit le groupe G d’ordre fini N,
il existe un entier 1, diviseur de N et tel que le nombre total des bases de
G est un multiple de N/1.

6. SormiE Piccarp (Neuchitel). — Sur les bases du groupe symé-
trique.

Soit &, le groupe symétrique d’ordre n! et soient 1, 2,..., n les
éléments permutés par les substitutions de &, (n = entier = 3), Deux
substitutions A, B de &, constituent une base de ce groupe si, quelle que
soit la substitution C de &,,, elle peut &tre obtenue par composition finie
de A et de B.

Soit A, B une base de &, et soit m I'ordre de la substitution A. Alors
quels que soient les entiers iet j vérifiant les inégalités 1 Si<m, 1 <j <m,
le couple A, AIBAJ est également une base de &,. Si la substitution A est
circulaire, les n2 substitutions AIBAJ (i, j =1, 2,...,n) sont distinctes.

11 s’ensuit que, quel que soit I'entier n = 4 et quelle que soit la sub-
stitution circulaire A du groupe &,, le nombre total des bases du groupe
©, dont fait partie la substitution A est un multiple de n? et, quel que soit
I’entier impair n = 5, le nombre total des bases de &, dont 1’'une des subs-
titutions est circulaire, est un multiple de n?.
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Chaque base A, B du groupe &, peut étre caractérisée par un systée
de relations fondamentales, dont aucune n’est une conséquence des autres
et dont résultent toutes les relations satisfaites par A et B. C’est ainsi que
la base A = (1 2...n), B=(12) du groupe &, est caractérisée par
les relations fondamentales A®=1, B2=1, (AB)*—1=1, (BAIBA- )2 =1,

i—_—.1,2,...,n/2[n 1

, si n est pair [impair] = 6. La connaissance
2

d’'un systéme complet de bases indépendantes! du groupe &, et des relations
fondamentales caractérisant 'une de ces bases fournissent un moyen trés
simple d’établir les automorphismes externes du groupe &g. En effet, soit
B = {B,, Bo, ..., ng} un systéme complet de bases indépendantes du
groupe ©g, soit B; = {A, B} une quelconque de ces bases et soient
¢i (A,B)=1,1i=1, 2, 3, 4, 5, les relations fondamentales caractéris-
tiques de cette base. Dans tout automorphisme externe du groupe &g a la
substitution A correspond une substitution du méme ordre A’, & la substi-
tution B une substitution du méme ordre B’, telles que A’, B’ est également
une base de &g, que ¢, (A, B) =1, i=1, 2, 8, 4, 5 et qu’il n’existe
aucune substitution C de &g vérifiant les relations A'==CAC—1, B'=CBC—.
La base A’, B’ n’est d’ailleurs pas forcément distincte de A, B et il peut
arriver que A'= B et B'== A.

Pour trouver un automorphisme externe du groupe &g, il suffit de
trouver une base du systéme S dont les deux substitutions A’, B’ satis-
fassent les relations ¢; (A, B)=1,i=1, 2, 8, 4, 5, alors que ’on n’a
pas simultanément A'= A, B'= B. On trouve ensuite les 720 automor-
phismes externes du groupe & en faisant correspondre & A1’élément CA'C—1,
a B ’élément CB'C -1 et a tout élément ¢ (A, B) de &g 1’élément Co (A’,
B')C—1, ou C parcourt successivement tous les éléments du groupe Ss.

Inversement, la connaissance d’un automorphisme externe du groupe
S¢ permet de simplifier 1'étude des bases du groupe, deux bases qui se cor-
respondent dans un automorphisme externe, sans étre les transformées 1’'une
de 1’autre par un élément du groupe &g, ayant la méme loi de composition.

Le groupe &,, pour n=}= 6, ne posséde, comme 1’a montré Holder, aucun
automorphisme externe, mais, d’une maniére générale, I’étude des bases
d’'un groupe d’ordre fini est intimement liée & celle des automorphismes
de ce groupe.

7. MarceL DietHELM (Schwyz). — Uber Anwendungen des Lehr-
satzes von Ptolemdus.

Direkt ergeben sich Konstruktionen von Ellipsenverwandlungen,
analog den Kreisverwandlungen beim Pythagoriischen Lehrsatz.

Im Spezialfall, dal das eingeschriebene Viereck in ein gleich-
schenkliges Trapez iibergeht, erhilt man die Verwandlung der Ellipse
in einen Kreis.

1Pour les définitions, voir notre communication précédente.



— 57 —

In den Spezialfillen, daBl das eingeschriebene Viereck in ein gleich-
schenkliges Trapez oder in ein Rechteck iibergeht, kann dieser Ptole-
méische Lehrsatz auch bei der Behandlung der Kegelschnitte zur An-
wendung gelangen, womit zugleich eine kiirzeste Einfiihrung in die
Hyperbelfunktionen und in den Gebrauch von Tafeln der Hyperbel-
funktionen gegeben ist.

Der Ptolemiische Lehrsatz ltist, als spezielles Beispiel erwihnt, in
seiner Art die Aufgabe: Gegeben: zwei Strecken: VEL_ und Va + 1,
a = ganze reelle Zahl; gesucht die zu diesen Strecken gehorige Ein-
heitsstrecke, und fuhrt damit zur Konstrukmon der Quadratwurzel-
Spirale.

Ont encore parlé: A. Amman, Genéve; A. Challand, Berne ;
A. Kriszten, Zurich.
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