Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =
Actes de la Société Helvétique des Sciences Naturelles = Atti della
Societa Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft
Band: 125 (1945)

Vereinsnachrichten: Section de Mathématiques
Autor: [s.n]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

1. Section de Mathématiques
Séance de la Société suisse de Mathématiques

Samedi et dimanche, les 1°r et 2 septembre 1945

Président : Prof. D* G. pE RuaM (Lausanne)
Secrétaire : Prof. Dr Huco HADWIGER (Berne)

1. M.DietHELM (Schwyz). — Uber Anwendungen der Intensitdts-
funktion in der Mathematik.

Der Referent schildert zuniichst das Wesen der einer gegebenen

Funktion f (x) zugeordneten Intensititsfunktion u (x) = — i—(ﬂ und

fx®)
hebt die grosse Bedeutung dieses Begriffes fiir Statistik und Versiche-
rungsmathematik hervor. Dann werden einige charakteristische Ziige
an Hand von zwei geeigneten Beispielen illustriert :

1. £ (x) =ke1*x* k>0, h<0; u(x)=2h*x (Gauss’sche Fehler-
funktion). k ist keine wesentliche, h eine wesentliche Konstante.
Falls h =0 ist, wird x4 (x) =0. Wenn in der Fehlerfunktion
k = 1 gesetzt wird und fiir die verschiedenen Werte von h alle
Kurven gezeichnet werden, so sind diese. in den beiden Grenz-
fallen h =0, f(x) =1und h =00 f (x) =0 fiir x 0, = 1 fiir

x = 0, die besonders betrachtet werden, eingeschlossen. In den
genannten Grenzfillen ist 4 (x) =0 bzw. y (x) =0 fir x =0,
= - oo fiir x 3= 0.

Lo

LX) = -z—, c>0; u((x) =—}1-{— (Gleichseitige Hyperbel). ¢ ist keine

wesentliche Konstante. Es ergibt sich der Satz, dass diejenige
Funktion f (x), fiir welche die Intensitidtsfunktion der Intensitéts-

funktion sich gleich bleibt, die gleichseitige Hyperbel % ist.

2. BeNo EckmManN (Lausanne). — Der Cohomologie-Ring einer be-
liebigen Gruppe.

Einer beliebigen Gruppe & (multiplikativ geschrieben) und einem
Ring J wird in folgender Weise ein Ring R(®, J) zugeordnet. Man be-
trachtet fiir n = 1, 2, ... Funktionen f» (x,, X,, ..., X,) von n Variabeln,
die die Gruppe & durchlaufen, mit Werten in J; n heisst die Dimension
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von fo. Ferner sollen unter Funktionen f° der Dimension O die Elemente
-von J verstanden werden. Fiir alle Funktionen wird ein Produkt
fn ygk = ho+k durch

heek (xq, .00 Xpep) =10 (X1, ..., Xp) - g (6. o> SURTINITS St S
fiirn >o0, k> o0, und
fouge (X1, .. X)) =1 X1,...,X%X,) - g°
- fougk (X1, . . X)) =10 B (xy, ..., Xg)

erklirt, welches distributiv und assoziativ ist; ferner eine Ableitung
ofr, die als (n -} 1)-dimensionale Funktion
Ot (X, v o Xpp) = (XT1Xg, .00, XTIX )
n+l . ’
+'21 (~ 1)1fn Xty v 3 Xi— 1 Xja1y -+ s Xpa1)
1=

definiert ist (8f° = O). Es gilt immer 56 fo = O. f» heisst exakt, wenn
ofr = O ist, total, wenn fo = §gn—t ist. Die exakten Funktionen der
Dimension n bilden beziiglich der natiirlichen Addition eine Gruppe Zn,
die totalen eine Untergruppe H® von Z», und die Faktorgruppe Z»/H»
heisst die n-te Cokomologiegruppe BX®,J) von & beziiglich J. Fiir
die Ableitung eines Produktes gilt
0 (frugk) = ofrugk -+ (—1) nfrydgk;

also ist ein Produkt exakt, wenn beide Faktoren es sind, total, wenn
ein Faktor exakt, der andere total ist. Es wird also ein u-Produkt fiir
die Elemente der Gruppen B»(®,J) induziert, welches deren direkte
Summe zu einem Ring R(®, J) macht, dem Cohomologie-Ring von &
beziiglich J.

Man stellt leicht fest, dass Bi(@®,J) die Gruppe der Homomor-
phismen von & in die additive Gruppe von J ist, und dass B2, J)
zur «Gruppe der zentralen Erweiterungen von J durch ®&» isomorph ist.

Der Ring R(®, J) spielt in der algebraischen Topologie folgende
Rolle : P sei ein (endliches oder unendliches) Pelyeder, Q eine regulire
Uberlagerung von P mit der Decktransformationengruppe ®&; ferner
seien die Homologiegruppen von Q beziiglich J alle = O. Dann ist der
Cohomologie-Ring * des Polyeders P beziiglich J dimensionstreu iso-
morph dem Ring R(®,J). Sind die Homologiegruppen von Q nur in
den Dimensionen < N gleich O, so gilt diese Isomorphie nur bis zur
Dimension N—1, und iiberdies ist BN (®, J) einer Untergruppe der N-ten
Cohomologiegruppe von P isomorph. — Spezialfall : Ist P ein Polyeder
mit der Fundamentalgruppe &, welches in den Dimensionen 2, 3, ...,
N—1 asphdrisch ist, dann ist der Cohomologie-Ring von P bis zur
Dimension N—1 dem Ring R(®, J) isomorph. — Diese Sitze gestatten
verschiedene Anwendungen algebraischer und geometrischer Natur.

1 Damit ist der Alexandersche Ring gemeint (vgl. J. W. Alexander, An-
nals of Math. 37 [1936], 698—708). '
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Die Tatsache, dass zwischen der Fundamentalgruppe und dem
Cohomologie-Ring eines asphirischen Polyeders Beziehungen bestehen,
shnlich wie sie Hopf? fiir die Homologiegruppen gefunden hat, geht
schon aus den Homotopie-Untersuchungen von Hurewicz 3 hervor; die .
algebraische Struktur dieser Beziehungen wird durch unsern Ring
R(®, J) geklirt und verallgemeinert. — Wegen der genauern Formulie-
rung, der Beweise und der Anwendungen unserer Sitze verweisen wir
auf die ausfiihrliche Arbeit, die in den « Comment. Math. Helv. » er-
scheinen wird.

3. RoLin WAVRE (Genéve). — Remarque au sujet du principe de
D’ Alembert.

L’auteur établit une « nuance » dans 1’expression trop bréve réduc-
tion des problémes de la dynamique & ceux de la statistique.
Voir « L’Enseignement Mathématique ».

4. MicHEL PLANCHEREL (Zurich). — Sur la convergence en moyenne
d’une suite de solutions d’une équation aur dérivées partielles du
second ordre, linéaire et de type elliptique.

Soit v, (p), n = 1, 2, 3, ..., une suite de solutions réguliéres d’une
équation aux dérivées partielles du second ordre, linéaire et de type
elliptique. La convergence en moyenne d’ordre o (¢ = 1) de cette suite
dans un domaine D entraine sa convergence, wniforme dans tout
domaine fermé strictement intérieur & D, vers une solution réguliére
de l’équation.

Cette proposition, qui ne parait pas avoir été explicitement
formulée jusqu’a présent, peut se démontrer aisément. Il suffira de
I'esquisser dans le cas de 1’équation homogéne. O désignant un point
intérieur & D et S, une sphére de centre O et de rayon r < d (d assez
petit pour que S, appartienne a D et que l’existence de la fonction de
Green soit assurée pour les domaines S, r < d), la valeur d’une solution
réguliere u (p) de I’équation homogéne en un point p intérieur a S,
s’exprime a l'aide de ses valeurs sur la périphérie 2, de S, et de la
dérivée normale de la fonction de Green par une relation

u @ = fh©;p, 9 u(@d, @
2

ou do, est I’élément d’intégration de 2, au point q. Faisant varier
rdersars (0<r,<r;<d) et intégrant par rapport  r, il vient

(re—r11) u (p) = f k (O; p, q) u (q) de,, ou dr, est élément d’intégration
Sr2 Srl
du domaine (S_,—S,,) au point q.

2 H. Hopf Comm. Math. Helv. 14 (1942), 257—309 und 17 (1944/45), 39———79
# W. Hurewicz, Proc. Akad. Amsterdam 39 (1936), 215—224.
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‘11 suffit d’appliquer cette formule & la différence u, (p)—u, (p) et de
faire usage de l'inégalité de Holder pour en déduire par des raisonne-
ments simples la convergence uniforme de la suite u, (p) dans un
domaine strictement intérieur & S,. Appliquant ensuite la relation (1)
4 u, (p) pour r <r; et passant & la limite n = oo, on voit que cette
limite satisfait & la méme relation et que lim wu, (p) est une solution
reguhere de 1'équation donnée.

5. SopHie Piccarp (Neuchitel). — Des couples de substitutions
qui engendrent un groupe régulier.

Soient S et T deux substitutions réguliéres de degré n (n — entier >1)
dont les éléments sont les nombres 1, 2, ..., n et soit (S, T) le groupe
qu’elles engendrent. Supposons qu’aucune des substitutions S, T n’est
une itérée de 'autre, que ces deux substitutions sont connexes! et que
T jouit par rapport & S de la propriété p, (r — entier = 1) 2. Nous avons
établi en 1944 la condition nécessaire et suffisante pour que le groupe
(8, T) soit régulier lorsque r — 1. Supposons & présent que r = 2. Sans
nuire & la généralité du raisonnement, nous pouvons poser

S=,2...m)(m—+1...2m)...((k— Om 4 1...km),
ou k et m sont deux entiers > 1.

Alors, sir=2 et si T est du second ordre, la condition nécessaire
et suffisante pour que le groupe (8, T) soit régulier ¢’est que m soit un
nombre pair et que T se compose des transpositions

(1 —m 411422 (e — m + 12 | p 2),
(GG —1m—-rj414 22 (42— Dm—-1540+4 pd),
((ik-l_l)m+rk—1+1+2}" (ik—l)m—}—rk+21—1+,c¢}.),

. m . .

ouil=1, 2,...,5——1,]:1, 2, ..., k—2,
ijig ... I est une permutation des nombres 1, 2, ..., k, les nombres
1, Is, ..., Iy font partie de la suite 1, 2, ..., m et ou:

@) wu=—2 et ]l est un entier, tel que 1 <21 —1 <m —1 et que
4 1= 2 (mod m), si k est impair;

b) p est un nombre pair compris entre 2 et m — 2 et tel qu’il existe
un entier positif o vérifiant la congruence 1) u o = 2 (mod m), le
plus petit entier 3 ~ (0 qui vérifie 1) satisfaisant également la
congruence 2) u = 2 p (mod m), et 1 étant un entier tel que

k

1 <21 —1<m—1cetque 3)22=41— 2 (mod m) et
4)2 (1 — 1) (o} 1) =0 (mod m), lorsque k est pair.

' S et T sont connexes 8’il n’existe aucun sous-ensemble propre de I'en-
semble {1 2,. n} composé de tous les éléments de certains cycles aussi
bien de S que de T.

2 T jouit par rapport & S de la propriété pr si T transforme les éléments
de chaque cycle C de S en éléments de r cycles de S, autres que C.
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Sir=m, k=m -} 1 et siT est du second ordre, la condition néces-
saire et suffisante pour que le groupe (S, T) soit régulier, c’est que pour
toutentier1 (1 < 1< m — 1)il existe deux entierss; et t; (1 < ) < m—1,
1<t £m —1)tels que T S!I'T=:8%T S". Les nombres s; et t; sont
tels que, pour tout m = 3, on ne saurait avoir sj=—=t; =1 ni sy =m —t;;
pour tout m > 6, on ne saurait avoir s; = t; = m — 1; pour tout
m > 3, on ne saurait avoir s; == t1, si sy << m — 1; si 5y = 1, alors m

. m ~ . :
est pair et t; — E; de méme, sit; =1, alors m est pair et sy — ;

| B

pour m >> 3, on ne saurait avoir sy = m — 1 nit; = m —1, si sy = t1;
d’autre part, on ne saurait avoir t; = s; 4+ 1 [s1 = t1 -} 1] que si
48y = 0 (mod m) [si 4t; == 0 (mod m)]; si m = 2m’, on ne saurait avoir:
a)sp=m' —1, ti=m'+4 1, sim=4; ) ss=m'— 1, t =m’ ou
2m’' — 2, nisy =m', t; =m'} loum’ - 2,sim = 6;¢) 8y =m' — 2,
ty =— m’, si m > 6. Par contre, pour m =— 3, on peut avoir sy = t; — 2
pour m =— 4, on peut avoir sy —1, t;, =—=2 et s; =2, t; =— 1; pour
m -— 5, il n’existe pas de substitution T définie ci-dessus et telle que
le groupe (S, T) soit régulier; pour m — 6, on peut avoir seulement
st =1t1 = 5; pour m=—"7, on ne peut avoir que s; —3, t; =5 ou
$1 = D, t1 == 3; pour m == 8, on ne peut avoir que s; = 2, t; = 3 ou
81 =— 3, t, = 2.

6. Huco HapwiGerR (Bern). — Mittelbarkeit wund Integration in
Gruppen.

Der Referent beschreibt einige Forschungsziele innerhalb des
Problems der (bedingt invarianten) Integration beliebiger (reell- oder
komplexwertiger, nicht notwendig beschrinkter) Funktionen iiber be-
liebigen abstrakten Gruppen. — Fiir Gruppen spezieller Struktur (z. B.
fiir metrische, separable und im Kleinen kompakte Gruppen) sind ver-
schiedene invariante Integrationen entwickelt worden. Hier sind an
erster Stelle wohl die Arbeiten von 4. Haar, A. Weil, 1. Schur, H. Weyl
und E. Cartan zu nennen!. Referent stellt sich die Frage, ob die
Ubertragung des klassischen Jordan-Lebesgueschen Uberdeckungsfor-
malismus auf Gruppen, zur Entwicklung einer Mass- und Integrations-
theorie (Theorie des Haarschen Masses) nicht ersetzt werden konnte
durch die Anwendung eines grundsitzlich anders gearteten Elementar-
prozesses, der der Gruppenstruktur besser angepasst ist und keme
topologischen Eigenschaften der Gruppe voraussetzt.

Eine Elementaroperation dieser Art scheint die in der Theorie der
fast-periodischen Funktionen u. a. von J. von Neumann ? herangezogene
Mittelwertsbildung zu sein. Der mit diesem Prozess verbundene Begriff

1 Vgl. das Literaturverzeichnis bei 4. Weil, L’intégration dans les groupes
topologiques et ses applications (Paris 1940).

2Vgl. F. Rellich, Uber die Neumannschen fastperiodischen Funktionen
auf einer Gruppe. Math. Ann. 111 (1935), 560—567.
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ist derjenige der Mittelbarkeit, den der Referent in den Mittelpunkt der
Entwicklung seiner Theorie stellen mochte. Definition : Eine iiber der
Gruppe G erklirte Funktion F (x) heisst mittelbar, wenn es einen Zahl-
wert M (Mittelwert) gibt, so dass sich zu jedem &> o ein System x;
(j=1, 2, ...n) von endlich vielen Gruppenelementen x (Raster) an-
geben lisst, so dass fiir alle beliebig gewéhlten Gruppenelemente y und z

1 n
EEF(yxiz)—M <e¢
1

gilt. — Der « Integraloperator », der einer mittelbaren Funktion den
Mittelwert zuordnet, ist eindeutig, endlich-additiv, bewegungsinvariant
und mittelhaft. Damit sind vier grundsitzliche Forderungen zitiert, die
man in jeder verniinftigen Integrationstheorie an das Integral stellt.

Nach einer klassischen Entdeckung von Hausdorff? ist es im all-
gemeinen nicht moglich, iiber einer vorgegebenen Gruppe einen Integral-
operator iiber der Klasse aller Funktionen zu konstruieren, der allen
vier Forderungen geniigt. Solche Integrationen sind dann i. a. stets
nur iiber gewissen Funktionenklassen (Klasse der integrierbaren Funk-
tionen) definiert. Ausnahmen gibt es bei spezielleren, beispielsweise
Abelschen Gruppen (Banachsche Integrale).

Die vom Referenten in Aussicht gestellte Entwicklung der Theorie
zielt nun darauf hin, iiber einer beliebigen Gruppe doch ein fiir alle
Funktionen erklirtes Integral einzufiihren, wobei nun natiirlich ein-
gerdumt werden muss, dass nicht mehr alle vier Postulate strikte
erfiillt sind. Das Integral ist dann bedingt invariant; dies soll bedeuten,
dass die Haupteigenschaft der Invarianz nur bei komplizierten Funk-
tionen verloren geht, wihrend fiir normale (beispielsweise mittelbare)
Funktionen alle vier Postulate strikte gelten. Die Konstruktion dieser
Integrale beruht wesentlich auf dem Begriff der Mittelbarkeit.

Einige Existenz-, Eindeutigkeits-, Erweiterungs- und Fortsetzungs-
sitze werden in Aussicht gestellt.

7. Cuaries Bianc (Lausanne). — Sur lintégration des équations
aux dérivées partielles a caractéristiques réelles.

Le probléeme de Cauchy relatif a certaines équations aux dérivées
partielles peut se résoudre graphiquement par le tracé des caractéris-
tiques : le procédé est en particulier applicable & 1’équation des cordes
vibrantes et & celle des propagations d’ondes planes gazeuses. En fait,
-de telles équations introduisent deux fonctions inconnues des deux
variables x (espace) et t (temps); et dans les cas indiqués plus haut,
les équations des caractéristiques se simplifient en ce sens que la pre-
miére ne contient que les différentielles de x et de t, et la seconde
celles des deux fonctions inconnues. L’épure se fait alors simultané-

3 F. Hausdorff, Bemerkungen iiber den Inhalt von Punktmengen. Math.
Ann. 75 (1914), 428-—433. ‘
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ment sur deux tableaux. La méthode ne peut plus étre employée sans
autre dans le cas d’équations plus générales : 'une des deux équations
différentielles des caractéristiques contient alors trois différentielles
(au moins), celles des deux fonctions inconnues et celle de l'une des
deux variables. Il est possible toutefois, par un changement approprié
des fonctions inconnues, de se ramener alors au cas ou il n'y a que
deux différentielles. Il suffit d’utiliser certains théorémes sur les for-
mes différentielles extéricures, en particulier le théoréme suivant (voir
E. Cartan : Sur certaines expressions différentielles et le probléme de
Pfaff, Ann. Ec. Norm. [3] 16 [1899], 239—332) : toute forme  de
elasse 4 peut se ramener a

w = Py dY1 + P, de

60 Py, Py Y1, ¥, sont 4 fonctions convenablement choisies des 4 lettres
figurant dans la forme . L’épure se fait alors dans le plan des nou-
velles fonctions y, et y,.

Ainsi, pour le systéme

__éu + u—()u + o1 (u, z)m()i—}- P (U, 2) =0
ox 0x
@1 ¢2 >0

‘g‘t-"l" U—é“—"" @2 (u, Z)—*“"+ Yo (U, 2) =0

(qui généralise celui des propagations gazeuses planes), les caractéris-
tiques ont les équations

dx — (u == Vo1 ¢2)dt =0 _
~-+\/€” (e At + dz) + yu dt + du=o;

la forme » contient les 3 différentielles dt, dz et du; en posant

A:i\/ﬁt, K = A¢s + o

Q2

et si l'on suppose que A dépend de z seulement, elle peut s’écrire

=d¢ — pdw
p=t+K
avec .

[=tK+ fAdz+ ;K*+u
w=K

L’épure se fait alors dans le plan (£, w).

On peut procéder d’'une maniére analogue dans de nombreux cas,
par exemple pour l’équation des telegraphlstes relative & une hgne
non homogeéne.
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8. Max Gur (Zurich), — Zur Theorie der Normenreste einer rela-
tiv-zyklischen Erweiterung von ungeradem Primzahlgrade.

Erscheint in der « Vierteljahrsschrift » der Naturforschenden Ge-
sellschaft in Ziirich.

9. Louis Loceer (Winterthur). — Bericht iiber eine neue Zeit-
schrift « Elemente der Mathematik ».

Den Mitgliedern der Gesellschaft wird ein Probeheft mit einem
orientierenden Schreiben zugesandt, so dass sich ein Bericht an dieser
Stelle eriibrigt.

10. Rorix WAVRE et ROBERT SounanN (Genéeve). — Sur les Polydro-
mies des fonctions polyharmoniques.

Les fonctions polyharmoniques, étudiées dans l'espace réel, pré-
sentent des multiformités du méme type que celles des fonctions har-
moniques. Les résultats se généralisent facilement & I’espace & n
dimensions.

11. JoacHmM Otro FLECKENSTEIN (Basel). — Die genaue Datierung
der erstmaligen analytischen Formulierung des Prinzips der virtuellen
Geschwindigkeiten durch Johann I Bernoulli.

In der Literatur heisst es allgemein, Johann I Bernoulli habe in
einem Brief vom 26. Januar 1717 an Varignon erstmals die analytische
Fassung des Prinzips der virtuellen Geschwindigkeiten (P.d.v.G.)

publiziert. Man kennt dieses Datum aus Varignons Hauptwerk « Nou-
velle Mécanique», das 1725 posthum erschien. Dort bringt Varignon auf
S. 174—176 des 2. Bandes das P.d.v.G. als ein « Corollaire général »
zur Statik und zitiert den entsprechenden Text des Bernoullischen
Briefes unter Angabe des obigen Datums, das seither in die Lehr-
biicher eingegangen ist.

Da in der Originalsammlung der Korrespondenz Bernoulli-Vari-
gnon unter diesem Datum kein Brief Bernoullis gefunden wurde, hielt
man den wichtigen Brief fiir endgiiltig verloren. Bei der Bearbeitung
dieser Korrespondenz in Basel wurde aber unter dem Datum vom
26. Februar 1715 ein Bernoulli-Brief aufgefunden, der den Text des
Varignonschen Zitats in der « Nouvelle Mécanique » vollstiindig ent-
hilt. Da Varignon am 27. Mirz 1715 den Brief vom 26. Februar 1715
mit dem P.d.v.G. verdankt, ist ein Irrtum Bernoullis resp. seines
Kopisten, der mit der Abfassung der Briefduplikate beauftragt war —
die iibrigens heute die einzigen Dokumente der Bernoullischen Briefe
darstellen, da der Nachlass des Adressaten verschollen ist — voll-
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stindig ausgeschlossen, und es ist das Datum vom 26. Februar 1715 als
das richtige statt des iiberall zitierten anzusehen. Damit beruht gerade
das Datum, das man bei den mechanischen Prinzipien als einziges
genau zitiert, auf einem Irrtum.

Wie dieser entstand, kann heute nicht mehr eruiert werden. Ent-
weder hat Varignon in dem Manuskript zu seinem Hauptwerk ver-
sehentlich ein falsches Datum eingesetzt, oder die Bearbeiter des post-
humen Nachlasses, de Beaufort und Camus, haben sich geirrt.

Bei der analytischen Formulierung des schon der Antike bekannten
P.d.v.G. durch Johann I Bernoulli tritt zum erstenmal der Begrift
Energie fiir die mechanische Arbeit (A =k-s-cos [k, s]) auf. In
diesem Sinn hatte allerdings Bernoulli schon in einem « privaten» Brief
vom 12. August 1714 an den Chevalier Renau d’Elisagaray den Energie-
begriff benutzt. Dieser hochgestellte franzosische Marineoffizier und
Akademiker hatte ein in Frankreich vielbewundertes Werk iiber die
mathematische Theorie der « Manceuvre des vaisseaux » (1689) ge-
schrieben; Bernoulli wies ihm aber darin die dauernde Verwechslung
des Energie- mit dem Kraftbegriff nach, wobei sich in der Folge eine
lingere briefliche Disputation zwischen den beiden Gelehrten ent-
wickelte. In dem erwihnten Brief an Renau leitet {ibrigens Bernoulli
schon die Gleichgewichtsbedingungen aus dem P.d.v.G. her, ohne
dieses allerdings ausdriicklich zu formulieren. Varignon war nun mit
Renau befreundet und musste diesem ofters die Argumente Bernoullis
erkliren. Es war eine der Riickfragen Varignons, die Bernoulli veran-
lasste, in dem Brief vom 17. Februar 1715 das P. d.v. G. ausdriicklich
analytisch zu formulieren und an 11 klassischen Beispielen der Statik
die Fruchtbarkeit und Eleganz dieses Prinzips zu erldutern. Varignon
hat bei seinem Zitat des Bernoullischen Briefes in der « Nouvelle
Mécanique » den vielleicht interessantesten Teil unterdriickt, den, wo
ndmlich aus dem P. d.v. G. die Gleichgewichtsbedingungen fiir die ein-
zelnen Maschinen, Hebel, Rolle, Flaschenzug usw. hergeleitet werden.

Die falsche Datierung dieses Briefes mag noch dazu beigetragen
haben, ginzlich zu vergessen, dass Probleme der Marine den Hinter-
grund fiir die Vorgeschichte des P. d.v. G. abgaben und die « Irrtiimer
eines mathematischen Amateurs » die erste analytische Formulierung
des P.d.v.G. und die Prigung des modernen Begriffes Energie im
Sinne der mechanischen Arbeit von seiten eines grossen Mathematikers
provozierten.

Ont encore parlé : Ed. Arnous, Leysin; P. Bidal, Aigle; P. Bernays,
Zurich; F. Fiala, Neuchitel.
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