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1. Sektion fiir Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag, 3. September 1944

Prdisident : Prof. Dr. G. bE RuAM (Lausanne)
Sekretir : Prof. Dr. H. Hapwicer (Bern)

1. JuLieN MALENGREAU (Bruxelles). — Sur quelques relations enire
grandeurs de l’espace euclidien.

L’auteur montre, par des exemples, que si en partant des postulats
classiques de la géométrie élémentaire on arrive & démontrer la relation
de Stewart, réciproquement en partant de cette derniére on arrive & dé-
montrer les postulats classiques. Cette réversibilité de la géométrie est
mise en évidence en utilisant Ia notion du n- point parfait, ensemble de
n points tels que la distance entre deux d’entre eux est toujours la
méme. Une formule trés simple, du 4° degré, relie cette distance com-
mune aux distances entre un point quelconque de lUespace déterminé
par le n- point parfait considéré et les points de ce dernier. De cette
formule, on peut déduire que l’espace déterminé par un n-+1- point
parfait est plus vaste que celui déterminé par un #»-point parfait.
L’auteur déduit de ces considérations que ’on peut commencer la géo-
meétrie analytique, indépendamment de la géométrie élémentaire, en
définissant ’espace euclidien déterminé par un »- point parfait comme
le lieu de tous les points S tels que si 4p, 4, et 4, sont trois de ses
points reliés entre eux par la relation 2 (&= A4, 4,) =0 la vaieur

SA4
absolue de la somme des quotients (= A4, 4,) i est

SAp, X S4,
égale a la valeur absolue du produwit de ces quotients.

L’étude analytique de ce lieu intégral peut se faire sans emploi de
coordonnées, dont la notion sera introduite seulement & partir de I’étude
des lieux qui ne comprennent qu’une partie des points de Despace
euclidien.

2. SopHIE PiccArRDp (Neuchitel). — Sur les couples de substitutions
qui engendrent un groupe régulier.

Soit m un entier > 2, £ un entier > 1, S une substitution régu-
litre d’ordre m et de degré km, T une substitution réguliére du méme
degré et portant sur les mémes éléments que S et soit (S, T') le groupe
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engendré par les deux substitutions S et 7. Nous dirons que T jouit
par rapport & S de la propriété p §’il existe un entier r (1 < r < m),
tel que T transforme les éléments de chaque cycle de S en éléments
de r autres cycles de S, et nous dirons dans ce cas que 7' jouit par
rapport & S de la propriété p,.

Soit S=(12...m)m+1m+42...2m ... (E—Dm+1

(k—1)m+2 ... km), soit T :(1 . km) et soit ¢ > 1

ay az. .. gy
Pordre de T.

I. Les conditions suivantes sont nécessaires pour que le groupe
(S, T) soit régulier :

' 1° 7 [S] ne transforme aucun élément ‘d’un cycle de S /T] en un
élément du méme cycle.

20 T [S] transforme les éléments de chaque cycle de S /7] en
éléments d'un nombre égal de cycles de S /7], autrement dit chacune
des substitutions S, T jouit par rapport & l'autre de la propriété p.

3% Si T jouit par rapport & S de la propriété p, (1 <7 < m),
m est un multiple de r et, si 7 transforme au moins un élément d’un
cycle C de S en un élément d’un second cycle C” de S, T' transforme
au total m/r éléments de C en éléments de C’. D’autre part, si r > 1,
T ne saurait transformer deux éléments consécutifs d’'un cycle de S
en deux éléments d’'un autre cycle de S, ni deux éléments quelconques
d'un méme cycle de S en deux éléments consécutifs d’'un autre cycle
de S. Quels que soient I'entier r (1 < r < m), le cycle (a1 a=. am)
de S et I'élément a; (1 < i < m) de ce cycle, T' transforme a; et al+r
en deux éléments d'un méme cycle de S et @i, g ..y Gy _qlen
éléments de r cycles différents de S. Il existe un entier n (1= Iu, < m)

tel que 7T'S"T —1= S*. Cet entier , vérifie les congruences "o
”
p

(mod. m) et =7 (mod. m), et on a D(m, ) =ret ajy y=a; +ju

" . m
(mod. m)2i=1,2, ..., km, j =1, 2, ...,T——l.

Si un cycle de 7' contient des éléments de 7 (1 I < 1) cycles de
S et de ! seulement, tout cycle de 7' jouit de la méme propriété.

Si r>1, quels que soient les cycles (by bz ... by) et (cL Cca ... cy)
de T comprenant deux éléments b, (1 Su <t ete, 1 v <0 d’un
méme cycle de S, si ¢, = b, (mod. 7), quel que soit j =1, 2, ..., ¢ —1,
les nombres b,4; et c,y; font partie d'un méme cycle de S et sont
congruents mod. r. Si T jouit par rapport & S de la propriété p_ , aucun
cycle de T ne saurait contenir plus d’un élément d'un méme cycle de S.

II. Quel que soit I'entier r > 1, il existe des couples de substi-
tutions régulicres S, T, tels que T jouit par rapport & S de la pro-
priété p, et que le groupe (S, T) est régulier.

! Les indices superieurs 4 m_doivent &tre réduits mod. 7.
? L’indice ¢ + jr doit étre réduit mod. 7 de fagon & appartenir au méme
cycle de S que i.



— 81 —

III. Si T jouit par rapport & S de la propriété pi, la condition
nécessaire et suffisante pour que le groupe (S, T') soit régulier, c’est que
I° a—pm+j=C@i—pym+1 T G—1 p(mod. m), i=1, 2, ..., Kk

j =2, 38, ..., m, u désignant un entier premier avec m, tel que
1S u<<m et que k=1 (mod. m)." . |

20 11 existe une permutation é» s ... i, des nombres 2, 3, ..., k
et k& nombres ji, j», ..., jx de la suite 1, 2, ..., g, tels que, en posant

i — 1, on ait a(i]—l)m—!-l pune (7:1+1 ‘—-1) m + j1+1, l = 1, 2, PN k,2
et que Jxtujx—1tptsx—at .. FurTlh=s st ujw_ot
wWriw_st ... tuklip=.. . =it uitpiic_1+. ... Fuk—1j
(mod. m).

IV. Nous avons établi différents critéres pour reconnaitre si le
groupe (S, T) est régulier, lorsque 7 jouit par rapport & S de la pro-
priété p, et r > 1.

3. Sopnie Piccarp (Neuchitel). — Systémes connexes de substi-
tutions et bases d’un groupe de substitutions.

Soient # un entier > 1, & un entier = 1, et soient Si, Ss, ..., Sk
k substitutions de degré n dont les éléments sont les nombres 1, 2, .. ., n.
Désignons par E l’ensemble de ces éléments. Nous disons que les
substitutions Si, S», ..., S constituent un systeme connexe, §’il n’existe
aucun sous-ensemble propre E; de E composé de ’ensemble des élé-
ments d’un certain nombre = 1 de cycles de chacune des substitutions
considérées.

Soit G un groupe transitif de substitutions de degré n. Nous disons
que G est d’ordre de connexion égal & %, si G contient au moins un
systéme connexe de k& substitutions, alors qu'aucun systéme comprenant
moins de % substitutigns de G n’est connexe. Ainsi, le groupe symétrique
G, de degré n > 2 a un ordre de connexion k=1, et le groupe alterné 2,
de degré #» >3 a un ordre de connexion égal & 1 (2), si » est impair
(pair). Quel que soit l'entier # > 1, il existe un groupe transitif G
dont I'ordre de connexion est égal a k. Tout systéeme connexe de
substitutions engendre un groupe transitif. Réciproquement, tout
groupe transitif de substitutions des éléments 1, 2, ..., n contient des
systémes connexes de substitutions. En particulier, ’ensemble de toutes
les substitutions d'un groupe transitif constitue un systéme connexe.

Soit G un groupe de substitutions de degré n et soit [ le plus
petit entier positif, tel qu’il existe au moins un systeme de [ substi-
tutions génératrices du groupe G. Nous appelons base du groupe G
un tel systéme de I éléments générateurs de G, et nous disons que G
est a base d’ordre I. Quel que soit I’entier n > 2 (> 8), le groupe symé-

'Les nombres @¢—1yma+j (j=1, 2,...m) faisant tous partie d’un
méme cycle de S.
?L’indice £ + 1 doit étre remplacé par 1.
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trique ©, (alterné A,) est, comme on sait, & base du second ordre.
L’ordre de la base est un invariant d’un groupe.

Soit G un groupe régulier de degré n qui est & base d’ordre I, et
soient Sy, Sz, ..., S; ! substitutions de G. La condition nécessaire et
suffisante pour que ces substitutions constituent une base du groupe G,
c’est qu’elles constituent un systéme connexe.

L’ordre de connexion d'un groupe transitif de substitutions est en
général différent de f’{ordre de sa base (voir le cas du groupe symé-
trique), mais ces deux ordres sont égaux pour un groupe régulier.

D’aprés le théoréme de Jordan, & tout groupe G de substitutions
correspond un groupe régulier G’ de substitutions, simplement iso-
morphe a4 G, et 4 toute base de G correspond une base de G'. Sup-
posons que G est & base d’ordre [ et soient Si, Ss, ..., S [ substitutions
de G. Pour reconnaitre si ces substitutions constituent ou non une base
du groupe G il suffit de voir si les substitutions correspondantes du
groupe (G’ constituent ou non un systéme connexe,.

4. SEVERIN Bays (Fribourg). — Swur la primitivité des groupes de
substitutions. '

On sait dans quelles conditions ’on dit qu’un groupe transitif est
imprimitif ou primitif pour les éléments. La méme question posée pour
les couples a un sens, mais du fait que le couple n’est pas unique
comme l’élément vis-a-vis des substitutions, il en résulte I'existence
d’imprimitivités nécessaires pour les couples, que nous écrirons dans
un exemple, celui du groupe alterné de degré 4 :

(01,10); (02,20); (03,30); (12,21); (13,31); (23,32), ou .. .; (ab,ba); ...
et (01,02,03); (10,12,18); (20,21,23); (30,31,32), ou...; (az); ...
(10,20,30); (01,21,31); (02,12,32); (03,13,23), ou...; (za): ...

et que nous notons & droite d'une maniére générale, en n’écrivant (et
sous forme abrégée pour les deux secondes) que le systéme général de
la répartition. Nous appelons inverses les deux couples ab et ba et
conjuguées les deux répartitions imprimitives que 'on obtient 'une de
l'autre en remplagant chaque couple par son inverse.

Une répartition en systémes imprimitifs de couples auire que les
trois ci-dessus, exclut, dans un cas la transitivité quadruple, dans un
autre cas la transitivité triple, donc dans les deux cas la transitivité
quadruple. Donc, dés que le groupe a cette derniére transitivité, il ne
peut avoir relativement aux couples que les imprimitivités nécessaires
ci-dessus; on peut I'appeler primitif par rapport aux couples.

Par contre dans les transitivités inférieures, on peut avoir par
rapport aux couples des imprimitivités non nécessaires. Pour le méme
groupe alterné de degré 4, deux fois transitif, ces imprimitivités sont
les suivantes :

(1) (01,23); (02,31); (03,12); (10,32); (20,13); (30,21),
(@) (01,12,20); (13,32,21); (30,02,28); (81,10,03),
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et la conjuguée de (2) qui est différente; en plus une troisiéme répar-
tition, identique encore & sa conjuguée, obtenue de (1) en remplacant
le premier ou le second couple de chaque systéme par son inverse. Ce
groupe qui est primitif pour les éléments, est donc imprimitif pour
les couples.

Nous donnerons ailleurs le résultat plus complet de notre étude;
nous dirons simplement ici que pour les quatre groupes généraux de
degré n, étudiés & titre d’exemple, cyclique, métacyclique, alterné et
symétrique, la question de leur primitivité ou imprimitivité par rap-
port aux couples est fixée. Par rapport aux ¢riples, il y a neuf répar-
titions en systémes imprimitifs de triples nécessaires pour le groupe
triplement transitif; pourtant il y a aussi des groupes imprimitifs (et
évidemment des groupes primitifs) par rapport aux triples.

5. Hans Bierr (Herzogenbuchsee). — Anwendung eines Abbildungs-
satzes auf das Randwertprobiem der Variationsrechnung, demonstriert
o
an drei Beispielen vom Typus j F (21, 23, 21, Z2) dt = Minimum.
P
Ein Satz {iber die umkehrbar-eindeutige Abbildung zweier einfach-
zusammenhéingender Gebiete aufeinander ist von Herrn Prof. W. Scher-
rer so formuliert worden, dass er mit Erfolg zur Losung des Randwert-
problems der Variationsrechnung herangezogen werden kann. Das
genannte Problem besteht in einem speziellen Falle darin, durch zwei

Punkte P und Q einen Extremalenbogen zu legen, der ein relatives
starkes Minimum von f F (@1, s, %1, %2) dt liefert.

Die ausgezeichnete Extremalenschar durch P (zy, x3) schreiben
wir in der Form

1 =ux1 (t, », 3, 23) ; gy ==& {to . :.);
mit to =20 1)
T — T2 (t) %, X3, .CC;)) Xy = T2 (f‘)" ‘);
. . 0 (x1, x
Die Enveloppenbedingung lautet : 9 (@, @)

5 (¢, %) = A, 2)=0 2)

t-Werte, die (2) erfiillen, werden mit 7 bezeichnet. In einer (Z, x)-
Ebene wird der Rand C von G definiert durch A (z,%) = 0. Fiir innere
Punkte von G gilt dann : 0 < ¢ < 7. — In einer (21, z2)-Ebene wird das
Bild des Randes C dargestellt durch (1) unter Beriicksichtigung von (2).
Es ist die Enveloppe von (1). (1) liefert ferner mit der Einschrinkung
0 < ¢ <7 die in Frage stehende Abbildung. — A (¢, x) verschwindet bei
‘unserer Koordinatenwahl fiir £ = 0; diese hdchst unerwiinschte Singu-
laritit kann durch Einfiihrung «kartesischer » Parameter & —sin ¢,

7 = —cos %t beseitigt werden.
Sind nun alle Voraussetzungen des Satzes erfiillt, so bedeuten die

L H. Bieri: Beispiele zum Randwertproblem der Variationsrechnung,
Digs. 1941.
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Bilder der Geradenstiicke z = konst., 0 < ¢ <7 Extremalenbogen,
welche die Jakobische Bedingung erfiillen und ausser P (22, 23) keinen
gemeinsamen Punkt besitzen. Ein gewisses Gebiet G der (zi, z2)-Ebene
wird also von ihnen einfach und liickenlos tiberdeckt. Ist jetzt Q ein

innerer Punkt von G und sind ausserdem noch die Legendresche und
die Weierstrassche Bedingung erfiillt, so existiert die Losung des
Randwertproblems und ist eindeutig.

Die Beispiele mit # — Az + \/ 2. 2; F =Y+ V@ —1)- 2%
F=9%+\(a+1)-i*; rot A = (0,0,1) lassen sich vollstindig
durchrechnen. A (z,%) =—0 hat die Form einer kubischen Gleichung
in 7. Diese ,wird sehr vereinfacht durch den Ansatz + :ﬁ%ﬂ 3)

S X

In allen drei Fillen lassen sich die Enveloppen, allerdings erst
nach Einfiilhrung geeigneter Hilfsgrossen mi , soweit als gerade notig
diskutieren.!

Resultate : Die ersten zwei Beispiele sind im wesentlichen #qui-
valent mit dem klassischen Problem der Rotationsfliche kleinster Ober-
fliche. Das dritte ist komplizierter. Man schneide von der (zi,Z2)-
Ebene zwei einfach-zusammenhingende Gebiete von der Form einer
Spitze weg. Im abgeschlossenen Restgebiet besitzt dann das Rand-
wertproblem immer genau eine Losung.

Fiir das erste Beispiel gibt es noch eine individuelle Ldsungs-
methode : Der Ansatz v =k (%) T, wo I' den #-Wert im Scheitel in
bezug auf die z.-Achse bedeutet, gestattet den Nachweis, dass die
Enveloppe mnicht nur einfach, sondern sogar durchwegs nach der glei-
chen Seite gekriimmt ist.

6. Papror Novr1 (Ziirich). — Die Sterblichkeit im Februar und
Mdrz 1944 in mathematischer Beleuchtung.

Die im Februar und Mirz 1944 in der Schweiz beobachtete Uber-
sterblichkeit gab Anlass zur Priifung der Frage, inwieweit angenommen
werden muss, dass dieses etwas sonderbare Ereignis rein zufillig oder
durch kausale Ursachen hervorgerufen worden ist. Die Beantwortung
dieser Frage auf Grund der Wahrscheinlichkeitsrechnung bietet inso-
fern Schwierigkeiten, als die Sterbenswahrscheinlichkeiten der einzel-
nen Personen einer Beviolkerung grosse Unterschiede aufweisen, so
dass es nicht zulissig wire, nach dem {iblichen Verfahren mit einer
durchschnittlichen Wahrscheinlichkeit zu rechnen.

Wenn man jedoch von der Vorstellung ausgeht, dass jeder der
beobachteten Personen eine Urne zugeordnet ist, enthaltend schwarze
und weisse Lose, und dass der Tod stindig aus diesen Urnen Lose
zieht, wobei das Erscheinen eines schwarzen Loses das Ableben, das

' Die ersten 2 Beispiele gestatten eine direkte Enveloppendiskussion,
ebenso das dritte fiir den Spezialfall x:° = 0. Fiir x,° 40 wird mit Erfolg
der Abbildungssatz verwendet.



Erscheinen eines weissen Loses das Weiterleben der Person, aus
deren Urne das Los gezogen wurde, bedeutet, so gelingt es, eine Wahr-
scheinlichkeitsbestimmung durchzufiihren, die den ins Gewicht fallenden
Besonderheiten Rechnung trigt. Die mathematische Formulierung ge-
staltet sich iiberraschend einfach. Die Wahrscheinlichkeit w (r) dafiir,
dass in einer Personengruppe r Todesfille eintreten, lisst sich auf die
einfache Formel

ul‘
w (r) = et

zuriickfiihren, wobei u die erwartete Zahl der Todesfille bedeutet. Mit
Hilfe der Brunschen Reihe gelingt es, auf Grund dieser Formel die
numerischen Werte fiir die Wahrscheinlichkeit bestimmter Abweichun-
gen zu berechnen. Auf Grund der vom statistischen Amt der Stadt
Ziirich mitgeteilten Zahlen ergab sich, dass praktisch mit Sicherheit
angenommen werden kann, dass die in den Monaten Februar und Méirz
beobachtete Ubersterblichkeit durch besondere Ursachen hervorgerufen
worden ist.

7. Huco HapwiGer (Bern). — Ein Umordnungssalz der Funfktionen-
theorie.

Nach dem bekannten Riemannschen Umordnungssatz * lisst sich
jede bedingt (nicht absolut) konvergente Reihe reeller Zahlen zu jeder
beliebigen reellen Zahl als Summe umordnen. Nach den Ergebnissen
von Steinitz? gibt es Vektorreihen, die sich zu jedem beliebigen
Summenvektor des endlich dimensionalen Vektorraumes umordnen
lassen. Zu einem analogen Resultat gelangt man auch in bezug auf
Reihen des unendlich dimensionalen Folgenraumes. Es muss hier dar-
auf hingewiesen werden, dass Wald den Steinitzschen Satz auf den
Folgenraum iibertragen konnte.* Dass es auch bedingt konvergente
Reihen des Hilbertschen Raumes gibt, die sich zu jeder Summe des
Raumes umordnen lassen, hat der Referent im Rahmen einer all-
gemeineren Untersuchung gezeigt,* durch welche dargetan wurde, dass
sich der Steinitzsche Satz (in einer dquivalenten Formulierung) nicht
auf den Hilbertschen Raum iibertragen lisst. Ferner hat der Referent
in einer kleinen Notes ein Beispiel einer Reihe reeller Funktionen
gegeben, welche die Eigenschaft hat, dass man sie zu jeder beliebig
gewihlten stetigen Funktion als Summe umordnen kann. Eine Erweite-

1Vgl. K. Knopp, Theorie und Anwendung der unendlichen Reihen,
Berlin 1931, 8. Aufl. S. 328.

? E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, Journ.
reine und angew. Math. 143 (1913) S. 128—175.

8 4. Wald, Reihen in topologischen Gruppen, Ergebnisse eines math.
Koll. Wien 59 und 60. Koll. (1933).

*H. Hadwiger, Uber das Umordnungsproblem im Hilbertschen Raum,
Math. Zeitschrift 46 (1940) S. 79.

5 H. Hadwiger, Eine Bemerkung iiber Umordnung von Reihen reeller
Funktionen. The T6hoku Math. Journ. 46 (1939) 8. 22—25.
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rung auf komplexe Verinderliche, d.h. die Formulierung eines ent-
sprechenden Satzes der Funktionentheorie, war naheliegend. Nun hat
in der Tat S. Rios!' den in Frage stehenden Satz formuliert und be-
wiesen. Bei der Konstruktion des Beispiels hat er im wesentlichen das
namliche Prinzip befolgt, das auch dem Referenten bei der Behandlung
des reellen Falles gedient hat (dies wird in einer Fussnote von Rios
erwéihnt). — Mit einigen unwesentlichen Modifikationen lautet dieser
Satz wie folgt :

Es gibt eine Reihe analytischer Funktionen, die in der ganzen
Ebene lokal gleichméssig zur Summe Null konvergiert und welche
folgende Eigenschaft hat : Zu jeder analytischen Funktion und einem
schlichten beschrinkten Regularititsgebiet derselben lisst sich eine
Umordnung der gegebenen Reihe finden, welche in dem gewihlten
Gebiet lokal gleichmissig gegen die gewihlte analytische Funktion
konvergiert. ‘

8. RoLiN WAVRE (Genéve). — Sur quelques hermitiens particuliers.

L’auteur applique & quelques exemples simples 1’étude théorique
développée dans les « Commentarii » vol. 15 et 16.

Es haben noch gesprochen : J. Bucher, Luzern; Georges Vincent,
Lausanne.

' S. Rios, Sobre la reordenacion de series funcionales y sus aplicaciones,
Abhandl. Math. Seminar der Hansischen Univ. 15 (1943) S. 72—75.
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