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1. Sektion für Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Samstag und Sonntag, 6. und 7. September 1941

Präsident : Prof. Dr. Louis Kollros (Zürich)
Sekretär : Prof. Dr. G. de Rham (Lausanne)

1. Karl Merz, Chur. — Kreuzhaube erweitert nach Boy.
Eine einfache Kreuzhaube1 besitzt eine Doppelstrecke SO 5,

wobei S die gemeinsame Spitze ist, von den beiden an SO in Scheitellage

anstossenden dreiseitigen Pyramiden, und 0 der Schnitt der beiden
Diagonalen des Quadrates, auf dem über zwei Scheiteldreiecken die
beiden Pyramiden errichtet sind. Wird das unter jenem Quadrat
ansetzende Prisma noch durch seine Grundfläche abgeschlossen, so ist
das entstandene Polyeder als 11-Flach mit e 10, k 20, also c — 1,
eine Abbildung der projektiven Ebene, wobei S ui^d 0 singulare Punkte
sind, als Endpunkte der Doppelstrecke.

Diese Kreuzhaube soll nun so erweitert werden, dass dadurch am
Polyeder eine Selbstdurchdringung entsteht, die einen einfachen
geschlossenen Streckenzug bildet, so dass keine Endpunkte mehr an der
Durchdringung bestehen. Um dies zu erzielen, sind zu der Doppelstrecke

OS 5 noch weitere Doppelstrecken anzufügen, zum Beispiel
S!T=9 und TO^ 3, womit das Doppelstreckendreieck SOT entsteht.
Um dabei die neue Doppelstrecke 9 zu erhalten, hat man die in 9 als
Kante zusammenstossenden beiden Flächen A und E über 9 hinaus
zu erweitern und dann noch mittelst zwei abschliessenden Flächen eine
neue Scheitelzelle aussen längs 9 anzufügen. Längs 3 entsteht, auf
entsprechende Weise, eine innere Hohlzelle, die in Scheitellage ist zu einer
äussern Lücke der Kreuzhaube. Von diesem geschlossenen Polyeder,
/ 15, e 14, k 28, also auch mit c 1, mit dem Dreieck SOT als
Selbstdurchdringung, lässt sich ein Netz herstellen (Vorweisung). Bei
der Aufklappung dieses Netzes zum 15-Flach tritt die Eigentümlichkeit
ein, dass die dabei entstehenden Wendestrecken, in denen Ober- und
Unterseite des Netzes aneinanderstossen und damit die Einseitigkeit
herbeiführen, zugleich in die Doppelstrecken fallen. Das Dreieck SOT
der Doppelstrecken entspricht damit der unendlich fernen Geraden,

1K. Merz. Kreuzhaube aus verschiedenen Netzen, Vierteljahresschrift
der Naturforschenden Gesellschaft in Zürich. LXXXV. 1940 (Seite 51).
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welche die Wendegerade der projektiven Ebene ist, und es entspricht
daher zugleich auch der Selbstdurchdringung dieser Ebene. Diese
durch die erweiterte Kreuzhaube erhaltene Abbildung der projektiven
Ebene hat allerdings noch die drei singulären Punkte S, 0, T, die aber
von einfacherer Art sind als die sechs singulären Punkte am Heptaeder,
in denen die drei Doppelstrecken als Selbstdurchdringungen endigen.
Ausserdem fehlt der dreifache Punkt, wie er am Heptaeder auftritt.
Doch tritt dafür eine Hohlzelle auf. Dieses Polyeder kann als Zugang
zu einer neuen Boyschen Fläche dienen.

2. Marcel Diethelm (Rickenbach-Schwyz). — Ein kurzer Weg
zur Entwicklung der Hyperbelfunktionen.

1. Definition und Konstruktion der Hyperbel, besonders der
gleichseitigen Hyperbel.

2. Ableitung der Mittelpunktsgleichung der Hyperbel und der
Gleichung des Asymptotenpaares.

3. Behandlung der Aufgabe : Gesucht die Schnittpunkte einer
Geraden mit der Hyperbel und gesucht die Schnittpunkte derselben
Geraden mit den Asymptoten. Die Lösung dieser Aufgabe ergibt für
Xx + x2, das heisst für den Mittelpunkt der Geraden denselben Wert,
woraus folgt :

a) Eine Gerade schneidet die Hyperbel und ihre Asymptoten derart,

dass ihre zwischen den Hyperbelästen und Asymptoten gelegenen
beiden Stücke gleich lang sind.

b) Das Parallelogramm, das von den Asymptoten und den durch
einen Hyperbelpunkt zu den Asymptoten parallel gelegten Geraden
begrenzt wird, hat einen Inhalt, der für alle Hyperbelpunkte
derselbe ist :

x ' y — c
C

y — Gleichung der Hyperbel.
x

c) Bei der gleichseitigen Hyperbel wird das Parallelogramm zum
Rechteck. Bei Benützung der Asymptoten als Koordinaten ist der
Inhalt dieses Rechtecks gleich demjenigen eines Quadrates

2
1

x * y — a2 — —
2

y — —— Gleichung der gleichseitigen Hyperbel.
2x

4. Berechnung des Hyperbelsektors
1

7
1

œ — — in
2 2p2

5. Berechnung des zu einem Hyperbelbogen gehörigen ©inu$ und
SojmuS.

6
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6. Ableitung der beiden Fundamental-Hyperbelfunktionen

0tri <p
^ - e*

®0f cp
e* + e"?

Die Ableitung der Fundamental-Hyperbelfunktionen aus der
Fläche des Hyperbelsektors ist von Bedeutung, weil damit die enge
Verknüpfung der geometrischen und der algebraischen Interpretation
der Hyperbelfunktionen gegeben ist.

7. Der geometrische Vergleich zwischen den hyperbolischen und
goniometrischen Funktionen.

8. Ableitung der Kreis- und Hyperbelfunktionen aus der Exponen-
tialreihe.

9. Wichtige Formeln (Rechnung) und Beziehungen zwischen dem
gemeinsamen Winkel cp und dem transzendenten Winkel #.

3. Johann Jakob Burckhardt (Zürich). — Der Nachlass von Ludwig

Schläfli.

Zusammenfassung eines Berichtes über die Katalogisierung und
Neuordnung des Nachlasses von Ludwig Schläfli, der mit einem
Sachregister und einem Anhang über Schläflis Arbeiten zur Theorie der
quadratischen Formen in den Mitteilungen der Berner Naturf. Ges.
veröffentlicht werden soll. — Der Nachlass ist unter Zugrundelegung
des Verzeichnisses von Graf (Mitteilungen der Berner Naturf. Ges.
1896) geordnet worden mit Unterstützung der Escher-Abegg-Stiftung.
Ein Sachverzeichnis hilft Zusammengehörendes aufzufinden. — Aus
folgenden Gebieten haben wir Manuskripte gefunden, die einer weiteren

Bearbeitung wert sind : 1. Theorie der Flächen dritter Ordnung,
2. 25 Hefte geometrischen Inhaltes, 3. 12 Hefte zu Hermites Theorie
der Modulargleichungen, 4. Theorie der quadratischen Formen.

4. Louis Kollros (Zurich). — 1. Généralisation de théorèmes de
Miquel et Clifford.

Cinq droites d'un plan, prises 4 à 4, déterminent 5 paraboles dont
les foyers sont sur un cercle (théorème de Miquel). Ce cercle est le lieu
géométrique des points P tels que les pieds des perpendiculaires abaissées

de P sur les 5 droites données et le point P lui-même soient sur
une conique.

Six droites d'un plan, prises 5 à 5, déterminent 6 cercles de

Miquel; ces 6 cercles passent par un point; 7 droites, prises 6 à 6,
déterminent 7 de ces points qui sont sur un cercle, et ainsi de suite
(théorème de Clifford, Math. Papers, p. 38). Les cercles de Clifford
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peuvent aussi être définis comme lieux géométriques; on trouve le
résultat suivant :

« On donne 2n + 1 droites dans un plan; le lieu géométrique des
points P tels que les pieds des perpendiculaires abaissées de P sur ces
droites soient sur une courbe algébrique de degré n ayant en P un
point multiple d'ordre n — 1 est un cercle. » Si on a 2n + 2 droites,
il n'y a qu'un point jouissant de cette propriété.

2. Démonstration de deux formules de Stemer.

Une conique est déterminée par son centre 0 et trois tangentes.
Soient A, B, C les sommets du triangle formé par les trois tangentes,
A', B', C les milieux des côtés a, b, c, r le rayon du cercle circonscrit
au triangle ABC, x, y, z les distances du centre 0 aux côtés a, 6, c
et x', y', z' les distances de 0 aux côtés du triangle A'B'C'. Si la
conique inscrite au triangle ABC est une ellipse, son aire E{ est donnée
par la formule : Ef 4 n*rx'y'z'\ l'aire Ec de l'ellipse de même centre
circonscrite au triangle ABC est donnée par :

x2 y2 z2
E ji'rc x' y' P

Si la conique est une hyperbole (inscrite ou circonscrite à ABC) d'axes
2m et 2in, chaque formule donne l'aire de l'ellipse d'axes 2m et 2n.

Pour démontrer ces 2 formules de Steiner (Oeuvres complètes, t. II,
p. 329), on peut déterminer le produit des puissances des involutions
des points conjugués sur les axes. Mais on peut aussi transformer les
formules en expressions invariantes par affinité en multipliant et divisant

la première par abc et la seconde par a2 b2 c2. Si l'on désigne l'aire
du triangle ABC par T abc : Ar) et les doubles des aires des
triangles OBC, OCA, OAB respectivement par t — ax, f by, t" cz,
on aura : ax' T—t, by' T—t', cz T—t" et

2 „2(T — t)(T— i')(T— t") 2 jz2t2t'2t"2
E. — -T c AT(T—t) {T—t') (T—t")

Il suffit alors de démontrer ces formules respectivement pour le cercle
inscrit et le cercle circonscrit à un triangle, ce qui est élémentaire.

Une conique est aussi déterminée par son centre 0 et un triangle
polaire ABC; si c'est une ellipse, son aire Ep est donnée par :

2 n 2 2 M'*"=2 Ji2 rxys ,t2
p ~ 2 T

Si le centre 0 est à l'intérieur du triangle polaire, la conique est
imaginaire; la formule donne alors l'aire de l'ellipse d'axes 2m et 2n, si
2im et 2in sont les axes de la conique imaginaire.

On a toujours :

2

E E Ep l u c
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5. Heinz Hopf (Zürich). — Über gewisse Zusammenhänge zwischen
Gruppentheorie und Topologie.

Man weiss, dass die erste Bettische Gruppe B1 eines Komplexes
durch dessen Fundamentalgruppe G bestimmt ist : sie ist die Faktorgruppe

GICg, wobei Cg die Kommutatorgruppe von G ist. In der
Untersuchung, über die hier berichtet wird, handelt es sich um den
Einfluss der Fundamentalgruppe G auf die zweite Bettische Gruppe B2.

Satz I : Jeder Gruppe G ist durch einen bestimmten algebraischen
Prozess eine Äbelsche Gruppe G* zugeordnet; wenn G die Fundamentalgruppe

eines Komplexes K und wenn S2 die Untergruppe von
B2 ist, die aus denjenigen Homologieklassen besteht, welche stetige
Bilder von Kugelflächen enthalten, so ist

ß*/S2 ^ Gl

Korollar : B2 besitzt G* als homomorphes Bild; in diesem Sinne
ist also die zweite Bettische Gruppe « nicht kleiner » als die Gruppe G*

f
die durch die Fundamentalgruppe bestimmt ist.

Zusatz : Zu jeder Gruppe G (mit endlich vielen Erzeugenden und
endlich vielen Relationen) gibt es einen Komplex K, dessen Fundamen-
talgruppe G und für den S2 0 ist; daher ist G* die « genaue untere
Schranke » derjenigen Gruppen B2, die als zweite Bettische Gruppen
mit der Fundamentalgruppe G verträglich sind.

Um Gl algebraisch zu charakterisieren, benutzen wir die folgende
Bildung von Gruppen : ist F irgendeine Gruppe, R eine Untergruppe
von F, so ist CF (R) die Untergruppe von F, die von allen Elementen
x • r • x1 • r1 mit x 6 F, r 6 R erzeugt wird; z. B. ist CF (F) CF die
Kommutatorgruppe, CF (CF) CJ> die « zweite Kommutatorgruppe »

von F.
Satz II : G sei homomorphes Bild der freien Gruppe F, und dabei

sei der Normalteïler R von F das Urbild des Eins-Elementes von G;
dann ist

ß-,mcrr>ll)ICrIB).
Es ist ein gruppentheoretischer Satz, dass die auf der rechten Seite

dieser Isomorphie stehende Gruppe nicht von den Gruppen F und R,
sondern nur von der Faktorgruppe F/R, also von G, abhängt.

Beispiel : Ist G die freie Abelsche Gruppe vom Range p, so ist G*

die freie Abelsche Gruppe vom Range ——. Dies kann man sowohl
2

geometrisch auf Grund des Satzes I, als auch algebraisch auf Grund
des Satzes II erkennen.

Die Gruppen C$ (R) spielen in der neueren Gruppentheorie —
besonders in Arbeiten von Hall, Magnus, Witt — eine wichtige Rolle;
auf den Zusammenhang zwischen dieser gruppentheoretischen Bildung
mit topologischen Begriffen sollte hier besonders hingewiesen werden.

Eine ausführliche Darstellung erscheint in den Commentarii
Mathematici Helvetici.
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6. Pierre Humbert f. — Polyèdre sans singularités topologiques
homêomorphe au plan projectif dans Vespace à 3 dimensions. (Vorgetragen

von H. Hopf, Zürich.)
Durch Abänderungen an einem Polyeder, das Herr K. Merz (Chur),

ausgehend von dem Heptaeder, erhalten hatte, wird ein Polyeder im
dreidimensionalen euklidischen Raum konstruiert, das in folgendem
Sinne ein Modell der projektiven Ebene ist : Es ist eindeutiges und
stetiges Bild der projektiven Ebene, und jeder Punkt der projektiven
Ebene besitzt eine Umgebung, in der die Abbildung eineinàeutig ist. Dieses
Modell besitzt dieselbe Symmetrie wie die bekannte Boysche Fläche
und kann als polyedrale Approximation dieser Fläche angesehen werden,

zu welcher damit ein neuer und anschaulicher Zugang gewonnen
ist. Die genaue Beschreibung dieses Modells soll zusammen mit der
angedeuteten Konstruktion von Herrn Merz in den Comment. Math.
Helvetici erscheinen.

7. de Rham (Lausanne). — Sur une décomposition des chaînes
d'un complexe.

Voir compte rendu dans « l'Enseignement mathématique ».

8. B. Eckmann (Zürich). — Vektorfelder auf Sphären.
Unter einem Vektorfeld (oder Richtungsfeld) auf einer Sphäre soll

im folgenden ein stetiges Feld von tangentialen Einheitsvektoren dieser

Sphäre verstanden werden. Nach einem bekannten Satz von Poin-
caré-Brouwer gibt es auf Sphären gerader Dimension keine derartigen
Vektorfelder (wohl aber gibt es solche auf Sphären ungerader Dimension).

Ein k-Feld auf einer Sphäre ist ein System von k Vektorfeldern,
derart dass in jedem Punkt der Sphäre die k dort angebrachten
Vektoren linear unabhängig sind, oder, was auf dasselbe herauskommt, ein
Orthogonalsystem bilden. Wenn es auf einer Sphäre der Dimension
n ein w-Feld gibt, so heisst sie parallelisierbar1 — die Sphären der
Dimensionen 1, 3, 7 sind es, wie man weiss1; ob noch andere Sphären
parallelisierbar sind, ist unbekannt. Die Methoden von Stiefel1, die
im Falle der reellen projektiven Räume zu weitgehenden Resultaten
über ^-Felder geführt haben, versagen bei den Sphären. Man kann
aber zeigen :

Auf einer Sphäre der Dimension 4 s +1 gibt es kein 2-Feld. Solche
Sphären sind also nicht parallelisierbar.

Der Beweis dieses Satzes, der demnächst in einer ausführlichen
Arbeit erscheinen wird, benützt die von Hurewicz eingeführten « Homo-
topiegruppen » und Resultate aus der Theorie der « Faserungen »2,

1E. Stiefel, Comm. Math. Helv. 8 (1935), 3—51; ferner Comm. Math. Helv.
13 (1941), 201—218.

2 B. Eckmann, Zur Homotopietheorie gefaserter Räume, Comm. Math.
Helv. (im Druck).
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ferner Eigenschaften der Fundamentalgruppe der orthogonalen Gruppen.

Der Satz wird in diesem Beweis auf den folgenden zurückgeführt:
r sei ungerade, und f19 f2, ..fr seien r komplexe Funktionen der

komplexen Variabein w19 w2, ..ur, die für alle von (i09 0, 0)
verschiedenen Werte dieser Variabein stetig sind. Wenn identisch in
den Uj gilt

r
VI Ujfj(Wl,• • -, «r) 0,
J=1

dann haben die fj mindestens eine (von (0, 0, v 0) verschiedene)
gemeinsame Nullstelle.

Aus diesem auf topologischem Wege gefundenen Ergebnis
entnimmt man leicht neue algebraische Sätze (man setze für die f j Formen
oder Polynome in den Uj ein). Man kann die Aufgabe stellen, diese
auch auf algebraischem Wege zu beweisen.

9. Willy Scherrer (Bern). — Zur Theorie der Elementarteilchen.
Veranlasst durch neue Ansätze zu einer skalaren relativistischen

Wellenmechanik1 diskutiert der Referent folgenden Ansatz zu einer
Gravitationstheorie mit einer skalaren und durchwegs positiven
Wirkungsdichte

T (#o, a?i, %2, xz) (1)
und dem Linienelement

ds2 GiJc dxi dxjc • (2)

T R\f G dxo dxi dx2 dx 3 — Extremum (3)

mit der Nebenbedingung

T\f~G dx0 dx 1 dx2 dxs konst. (4)

/
wo R den Riemannschen Krümmungsskalar darstellt.

Bezeichnet man mit /\ die wegen (4) sich ergebende kosmologische
Konstante und benutzt man die Abkürzung

~ - 02 T
(5)

oxi dx^
1 dx

so ergeben sich die Gleichungen

(6)

1 Vgl. Helvet. Phys. Acta XIV, 1, 81, und XIV, 2.
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zur Bestimmung der 11 Grössen Gilc und T.
Als Folgerung aus (6) ergibt sich die Gleichung

n TA (7)
8

Sie darf nicht unmittelbar als Wellengleichung angesprochen werden,
da nicht T2, sondern T die Materiedichte darstellt.

Das zugehörige kosmologische Problem ist eindeutig bestimmt
und liefert eine Welt, die sich aus einer Einsteinschen Zylinderwelt
für x0 .— oo in eine De-Sitter-Welt für x0 + oo entwickelt.

Einen allgemeinern Ansatz erhält man, wenn man in (3) R ersetzt
durch

R + k (grad Lg T)\ (8)

10. Louis Locher (Winterthur). — Über projektive Linien- und
Ebenenkoordinaten.

Homogene projektive Koordinaten bildet man, indem die
nichthomogenen K. als Quotienten mit derselben Hilfsvariablen im Nenner
dargestellt werden. Zur Einführung stellt sich die didaktische Frage,
ob diese homogenen K. nicht unmittelbar anschaulich gelesen werden
können. Das geht sehr einfach und wird doch in der Lehrbuchliteratur
unterlassen. Führt man das K.-System entsprechend ein, so lassen sich
die K. u, v, des Punktes Uu 4- Vv + 0 und des mit ihm
incidierenden dualen Elementes ü, V, unmittelbar anschaulich
fassen. Sind im metrischen Falle u, v, w, rechtwinklige
Punktkoordinaten, so stellen £/, F, TF, diejenigen dazu dualen K. dar,
welche sich aus der pseudoeuklidischen Metrik ergeben. Die vorgetragene

Bemerkung ist in meinem Buche « Projektive Geometrie » (Orell
Füssli, 1940, S. 215 f.) angewendet.

11. A.Speiser (Zürich). — Über geodätische Linien.
Erscheint in den « Commentarii Mathematici Helvetici ».

12. R. Wavre (Genève). — Uitération au moyen d'un opérateur
hermitien.

Voir compte rendu dans « l'Enseignement mathématique » et dans
les « Commentarii Mathematici ».

Es haben noch gesprochen: S. Piccard, Neuchâtel; J. Malengreau,
Clarens; H. Hadwiger, Bern; F. Fiala, Genève; Ch. Blanc, Lausanne;
P. Bernays, Zürich; A. Pfluger, Fribourg.
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