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1. Sektion für Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Sonntag und Montag, 18. und 19. August 1935

Präsident: Prof. Dr. W. Saxer (Küsnacht-Zürich)
Prof'. Dr. W. Scherrer (Zürich)

1. L. Bossard (Luzern). — Über Verallgemeinerungen des Satzes
von Schottkg und ihre Anwendungen.

Es sei f (z) eine im Kreise | z—z' | < q reguläre Funktion, welche
dort eine a-Stelle und höchstens q verschiedene ft-Stellen besitzt, wobei
die Zahlen a und b den Ungleichungen \a\ùh,\b\ùh,\ a—b | S d > o
genügen, und es sei f (z) im Kreismittelpunkt z' und in einem weiteren,
vom Punkte z' verschiedenen, im Inneren des Kreises | z—z' | < q
gelegenen Punkt zl91 Z±—zr | rt, gegeben oder nach oben beschränkt.
Alsdann gilt für f (z), wie unter Zuhilfenahme der Lindelöf-Transformation,
der Kreisabbildung und eines geeigneten Kreiskettenverfahrens gezeigt

werden kann,1 ju Max e^, — (2 • | f(z') | -f- | f(zx) | -)- 8 h) \
\ d - r1 J

gesetzt, die numerische, bezüglich a und b gleichmässige Abschätzung
y q2

I f (z) I ^ ^ ^
im Kreise | z—zf\ùq—# < g, y 5.207.

Durch Verallgemeinerung auf einen Kreisring ergibt sich die

Umkehrung : Ist f (z) eine im Kreisring r • (1 Z | z I Z
log log M (r)

v • (1 -| —- r"> o, reguläre Funktion, bleibt Max I f (z) I

log log M (r) \z\ r
p 700

M (r) > e und gibt es auf der Mittellinie | z | r 2 im Ab-

— 1 \/ log M (r)
i 7oo rstände s liegende Punkte mit r • e Z s Z

log log M (r)
1 s/ log M (r)

in welchen | f (z) | Z e ^ bleibt, so existiert mindestens eine
1 Siehe in diesem Zusammenhang: W. Saxer, Über eine Verallgemeinerung

des Satzes von Schottky (Compositio Mathematica, 1934, Vol. I, 207—216).
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700 • vim Kreisring liegende Kreisscheibe vom Radius in welcher
log log M (r)

1 log M (r)

f (z) entweder sämtliche Werte w mit | w | Ù 0
^

an wenigstens

zwei verschiedenen Stellen oder aber sämtliche Werte w mit
1 \/ log M (r)

| w | Ù 0
^ an wenigstens 3 \/ log M (r) verschiedenen Stellen

4

annimmt, dies jedoch mit eventueller Ausnahme gewisser Werte, welche alle

_! V log M (r)
4

im Inneren einer festen Kreisscheibe vom Radius e liegen.
Diese und analoge Sätze ermöglichen im Anschluss an A. Ostrowski1

die weitere Untersuchung der Werteverteilung einer Funktionsfolge
f (ovz) in der Umgebung eines Juliapunktes 3. Art von f (z) für (ov).
Hat ein Juliapunkt 3. Art £ von f (z) für (ov) die Eigenschaft, dass

für ein beliebig kleines e > o und für ein c > o jede der Funktionen

f (°vz) — ^is auf endlich viele — in einem Kreise um £ als Mittelpunkt

vom Radius e einen Wert ivv mit | iov | ù C höchstens einmal

annimmt, so nenne man £ einen Juliapunkt 6. Art von f (z) für (ov).
Die Gesamtheit der zu (ov) gehörenden Juliapunkte 6. Art für f (z)
nenne man die zu (ov) gehörende Juliamenge 6. Art für f (z). Eine Folge
(ov), deren zugehörige Juliamenge 6. Art nicht leer ist, nenne man eine

Juliafolge 6. Art für f (z). Auf Grund dieser Definitionen ergeben sich
die Sätze : Ist (ov) eine Juliafolge 3. Art für f (z) mit dem Juliapunkt
£, und nimmt für ein beliebig grosses ganzes k > 2 und ein beliebig
kleines e > o jede Funktion f (ovz) für v % v (e, h) im Kreise

g
| z — £ | — einen beliebigen Wert wv mit | ivv Z k 2 mal an, so

3
enthält (ov) entweder eine Juliafolge 4. Art mit dem Juliapunkt £ oder
aber es nimmt jede Funktion f (ovz) für v ^ v* (e, h) in einem Kreise
um £ als Mittelpunkt mit dem Radius e sämtliche Werte w mit | w | Z k
wenigstens 2 mal an. Enthält eine Juliafolge 3. Art für f (z) mit dem
Juliapunkt £ eine Juliafolge 6. Art mit dem Juliapunkt £ und keine
Juliafolge 4. Art mit dem Juliapunkt £, so nimmt für ein beliebig
grosses ganzes k > 2 und ein beliebig kleines £ > o jede Funktion
f (ovz) für v \ v (e, k) im Kreise | z — £ | < e jeden Wert w mit
| w | £ k genau einmal an.

1 A. Ostrowski, Studien über den Schottkyschen Satz (Rektoratsprogramm
der Universität Basel, 1931, 1—111 [41—62]).
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Diese Sätze ergeben sich aus entsprechenden allgemeineren Sätzen
über Ausnahmefolgen, deren Zusammenhang mit der Theorie der
quasinormalen Funktionsscharen im folgenden Sachverhalt zum Ausdruck
kommt: Es sei fn(z) eine Folge von in einem Kreise | z — f | < r
holomorphen Funktionen und es existiere zu jedem endlichen Wert a
eine Zahl ea und ein Index N=N (a, s) derart, dass für s < sa und
für n^N (a, e) fn (z) im Kreise | % — £|<« den Wert a genau
einmal annimmt ; dann ist der Punkt f ein irregulärer Punkt von der
Ordnung 1.

2. R. de Saüsscjre (Berne). — Application de la théorie des

flèches aux cartes météorologiques.

Pas reçu de manuscrit.

3 a. S. Bays (Fribourg). — Sur le nombre des systèmes cycliques
de triples différents pour chaque classe co.1

Si le groupe { \ x, \-\-x\, | x, aœx | } est le diviseur méta-
cyclique d'ordre le plus élevé qui laisse un système cyclique de triples
S invariant, nous disons que S est de la classe co.

3 Yl
Soit N= 6 n -f- 1 premier, 2a • nXl d diviseur de 3 n,

d
impair. Les classes possibles pour un système de triples S déterminé
par un système de caractéristiques 2 appartenant à d, sont données

par : co — 2 a d 2a + 1 pi' d, les pé étant les diviseurs de nx. Il y a
une exception pour d= 1, où l'ensemble des //, qui serait dans ce

cas celui des diviseurs de nx —, est à remplacer par celui plus
2 a

nrestreint des diviseurs de n\
2 a

Le nombre des systèmes de triples déterminés par le système des

caractéristiques principales (appartenant à d=l) dans la classe 2 ju
est ainsi le même que le nombre des systèmes de triples déterminés par
un système de caractéristiques appartenant à d — 3 dans la classe 6 pu

et ce nombre est:

1_ 2 l (,,•) 2 A. (1)
r-1 r

où pi" parcourt les diviseurs de pé et A (p!f) est la fonction de Möbius :

A (1 1, A (ju") (— l)r si pt" est le produit de r facteurs premiers
différents, A (pt!f) — o si pi" contient au moins un facteur premier
au carré.

1 Voir les Commentarii mathem. Helvetici, S. Bays: Vol. 2, Fase. IV, Vol. 3,
Fase. I, II et IV et principalement S. Bays et G. Belhôte, Vol. 6, Fase. I,
p. 28 à 46.
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Ce nombre est de par sa nature ^ o. Pour pd 1 et pd nx —-,1

2a

il est positif. Il restait à prouver qu'il est positif pour tous les pd.

L'expression 2 X (pd') 2^ développée, peut s'écrire, pu p2, p
A*" I A*' uétant les facteurs premiers différents de pd — — rangés par ordre de

grandeur : 2a

2P*P*"-Pr | 2pipi" 'Pr 2ptps'"pr 2ptp3"'pr 2P*P* ' ' 'Pr — 1
M

+ 2p'p"--pr+j
Sous cette forme, en donnant le signe — à tous les termes de la
parenthèse excepté le premier et en se servant des inégalités r<ipri px ^ 3,
on arrive aisément à établir que l'expression est positive.

La démonstration vaut maintenant sans autre pour les autres valeurs
de d, sauf une exception dans le cas où d est diviseur de n, < n et !> 3.
En effet, l'exception nommée mise à part, le nombre x(pd) des systèmes
de triples différents de la classe œ pour les autres valeurs de d, est,
s'il n'est pas directement positif, donné par des expressions qui ne
diffèrent de (1) que par l'adjonction d'un facteur constant au premier
terme de l'exposant de 2. Ainsi il est établi, sauf pour le cas de

l'exception susdite, qu'il y a des systèmes de triples dans toutes les

classes possibles.

3 b. S. Bays (Fribourg). — Sur les systèmes de caractéristiques
appartenant à d 3.

La théorie des caractéristiques est basée essentiellement sur le fait
suivant1: a étant une racine primitive de N, a0, a1, aSn~~l1 (1),
représentent les entiers 1, 2, 3 n, (2), dans un certain ordre;
a3w, a3^1, les reproduisent périodiquement dans le même ordre.
Nous appelons les exposants dans (1) les indices absolus des entiers
correspondants dans (2). Les caractéristiques, qui sont des triples de

la forme aaa a se répartissent en colonnes de caractéristiques,
cycliques par les exposants. Les colonnes de ces exposants, réduites mod 3,
donnent les trois types possibles :

0 0 0
type I: 111 où les trois restes sont égaux,

2 2 2

0 12
type II: 12 0 où les trois restes sont diftérents,

2 0 1

1 Nous entendons par a la valeur absolue du plus petit reste positif ou
négatif de l'entier a_ (mod N).



— 277 —

Oil 022
type III: 12 2 ou 1 0 0 où deux restes sont égaux.

2 0 0 2 1 1

Cherchant une indication sur le nombre des systèmes de
caractéristiques appartenant à d 3, systèmes qui sont fournis directement
par les colonnes du type II, nous avons été conduit à l'énoncé suivant,
par sa nature même très plausible :

Soit les entiers 1, 2Bn dans l'ordre naturel. Soit la suite
correspondante de leurs indices absolus o, a, i. Nous réduisons
ces indices mod 3. Dans la suite réduite, ainsi obtenue, chacune des

9 séquences possibles 00, 01, 02, 10, 11, 12, 20, 21, 22 doit tendre
3 n^à se présenter le même nombre de fois. c'est-à-dire fois, n

9

augmentant indéfiniment. 11 en résulte que les types I, II et III
des colonnes réduites ci-dessus, doivent tendre à se présenter resp.
3 n—1 2(3 n—1) 6(3n—1) « A7 xfois, N augmentant indéfiniment.

27 27 27
La concordance avec les nombres exacts, pour les trois types de

colonnes, pour les premières valeurs de N est remarquable. Nous
donnons ci-dessous les résultats pour le type II, c'est-à-dire pour le

nombre des systèmes caractéristiques appartenant à d 3, pour les N
inférieurs à 200 et iV=997. Le nombre approximatif est l'entier le

plus proche de la fraction
2 (3w—1)

_

27

Pour N= 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,
nombre exact: —, 1, 1, 1, 1, 2, 2, 3, 2, 4, 4,
nombre approché: —, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4,

109, 127, 139, 151, 157, 163, 181, 193, 199, 997.
4, 4, 4, 6, 5, 7, 7, 6, 7, 37.
4, 5, 5, 5, 6, 6, 7, 7, 7, 37.

4. E. Stiefel (Zürich). — Ein Problem aus der linearen Algebra
und seine topologische Behandlung.

Gegeben seien p reelle quadratische w-reihige Matrizen A^\ A(2\
A(p) undp unabhängige reelle Variable xu x2,..., xp. Ist die durch
Linearkombination entstandene Matrix A Xx M(1) x2 A(2) -f- -f- Xp A(p)

nur für das triviale Wertsystem x^ — X2 - • • Xp — 0 der Variabein
singular, so heissen die Matrizen linear unabhängig ; ist sogar A für alle
nichttrivialen Wertsysteme der Variabein orthogonal, so erzeugen unsere
Matrizen eine lineare Schar orthogonaler Matrizen.

Unter p' (n) verstehen wir die Maximalzahl linear unabhängiger
n-reihiger Matrizen und unter p (n) die Maximalzahl von w-reihigen
Matrizen, die eine Schar orthogonaler Matrizen erzeugen. Die Bestimmung
von p(n) und p' (n) ist das im Titel angekündigte algebraische Problem.
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Das topologische Problem, das wir zur Lösung heranziehen, ist die
Bestimmung der Maximalzahl [p" (n) — \] der linear unabhängigen
stetigen Vektorfelder, die im (n — 1^-dirnensionalen reellen projektiven
Raum konstruiert werden können. Die Verknüpfung zwischen diesen beiden
Aufgaben wird durch die Ungleichungen n^p" (n)^p' (n)>p (n)
hergestellt.

Auf algebraischem Wege haben A. Hurwitz (Werke Band II,
S. 565 — 571 und S. 641 — 666) und J. Radon (Hamburger Abh. Band I,
S. 1—14) die Zahl p (n) berechnet; falls man unter u die grösste in
n aufgehende ungerade Zahl versteht, ergibt sich:

Yi
a) p (n) - für n o (mod 16).

u

b) p(n)=p^~-^-j-8 für n^=0 (mod 16).

Auf topologischem Wege erhält man für n =|= n (mod 16) : p" (n)
Tb Tb

—, also: a*) p" (n) — pf (n) p (n) =—für n =|= o (mod 16).
u u

Die durch 16 teilbaren Zahlen n entziehen sich bis jetzt der topolo-
gischen Methode.

Unter n. (bzw. rip n!) verstehen wir alle Lösungen der Gleichung

P (%) nv bzw. p' (n.) n'v p"n[.
Diese Zahlen sind von besonderem Interesse. Es zeigt sich nämlich,

dass die n. die Ordnungen der (nicht notwendigerweise assoziativen)
nullteilerfreien Algebren über dem reellen Körper sind, während die

ni die Ordnungen derjenigen unter diesen Algebren bedeuten, in denen

die Normenregel gilt. Die Zahlen (nA—1) sind die Dimensionen der

parallelisierbaren projektiven Räume (vgl. Abh. der Schweiz. Naturf.
Gesellschaft 1934, S. 270, Note 11). Aus a) und b) folgt das bekannte
Hurwitz&ohs Resultat: n.= 1, 2, 4, 8; als zugehörige Algebren kann

man etwa die reellen Zahlen, die komplexen Zahlen, die Quaternionen
und die Cayleyschen Zahlen wählen. Aus a*) folgt das vorläufige Resultat:
n.= 1, 2, 4, 8, 16 m. und nt 1, 2, 4, 8, 16 wobei die m.
und m'. unbekannte ganze Zahlen sind.

Den Herren Prof. H. Hopf und G. Polya bin ich für Hinweise auf
die bestehende Literatur und auf einige der angedeuteten Probleme zu
Dank verpflichtet.

5. 0. Spiess (Basel). — Die wissenschaftliehe Korrespondenz der
Mathematiker Bernoulli.

Der Ruhm Leonhard Eulers hat den der früheren grossen Basler
Mathematiker etwas verdunkelt. Aber für den Historiker stehen die
beiden Brüder Jakob und Johann Bernoulli um 1700 herum nicht
weniger gewaltig da als 50 Jahre später der jüngere Euler. Sie waren
lange Zeit die einzigen Mathematiker, die den neu entstandenen Infini-
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tesimalkalkül von Leibniz ganz verstanden, und sie entwickelten in
stetem Gedankenaustausch mit dem Erfinder und oft im Streit mit der
Konkurrenz der Newtonschüler in England die grundlegenden Methoden
der höheren Analysis. Johann Bernoulli hat noch das weitere Verdienst,
durch Hunderte von Briefen mit den hervorragendsten Mathematikern
seiner Zeit die neue Lehre verbreitet zu haben ; für die Geschichte der
Wissenschaft wie für die Kenntnis der handelnden Personen bildet diese
Korrespondenz eine Quelle ersten Banges. Merkwürdige Umstände haben
nun bewirkt, dass diese Quelle bis zu unserer Zeit fast ganz ungenützt
blieb. Zwar war der Briefwechsel mit Leibniz Anno 1745 noch zu
Lebzeiten Johanns erschienen, und ein Jahrhundert später wurden die Briefe
einiger Bernoulli mit dem Petersburger Kreis (Euler, Fuss, Goldbach)
veröffentlicht, aber die grosse Masse, gegen 2000 Briefe, blieb
verschollen, bis der Schweizer Astronom und Biograph Pud. Wolf nach
jahrzehntelangen Bemühungen das Geheimnis lüftete. Es stellte sich
heraus, dass die gesamte wissenschaftliche Korrespondenz Johann
Bernoulli, vermehrt um die ebenfalls bedeutende der jüngeren Bernoulli,
kurz vor 1800 von einem Enkel teils an die Stockholmer Akademie,
teils an den Fürsten von Gotha verkauft wTorden war. An beiden
Orten war sie unbenützt liegen geblieben, aber auch nach ihrer
Entdeckung geschah wenig damit, so dass selbst ihre Existenz noch heute
nur einem engen Kreis von Fachgenossen bekannt ist. Man muss es
als eine Ehrenpflicht der Schweiz, speziell der Stadt Basel bezeichnen,
diesen wissenschaftlichen Schatz endlich der Vergessenheit zu entreissen
und der Öffentlichkeit zugänglich zu machen. Dies ist erfreulicherweise
seit kurzem möglich geworden dadurch, dass ein Basler Mäzen, Herr
Dr. Pudolf Geigy, der Basler Naturforschenden Gesellschaft ein Kapital
von Fr. 30,000 zur Gründung eines Bernoulli-Fonds zur Verfügung
gestellt hat. In ihrer Sitzung vom 19. Juni d. J. hat die genannte
Gesellschaft die grossartige Stiftung entgegengenommen und den
Vortragenden beauftragt, den wissenschaftlich wertvollen Nachlass der
Mathematiker Bernoulli in würdiger Form herauszugeben. Nachdem so
dem Unternehmen eine finanzielle Grundlage gesichert ist, dürfte die
Verwirklichung in absehbarer Zeit zu erwarten sein. Über die weitere
Entwicklung wird in einem spätem Zeitpunkt berichtet werden.

6. E. Trost (Zürich). —Zur Strukturtheorie der einfachen Algebren.
Durch die Sätze von Wedderburn wird die Struktur der halbeinfachen

Algebren über beliebigem Grundkörper h auf die Struktur der Divisionsalgebren

über k zurückgeführt. Für den Fall, dass k ein algebraischer
Zahlkörper endlichen Grades ist, hat Hasse gemeinsam mit P. Brauer
und E. Noether eine vollständige Lösung des Strukturproblems gegeben.
Er hat gezeigt, dass jede normale Divisionsalgebra sich als verschränktes
Produkt eines zyklischen Körpers mit seiner Gruppe darstellen lässt. Die
Möglichkeit dieser Darstellung ergibt sich aus der Existenz von zyklischen
Zerfällungskörpern w-ten Grades für jede normale Divisionsalgebra der
Ordnung n2. Der Existenzbeweis besteht in der Aufstellung eines Kri-
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teriums für Zerfällungskörper und dem Nachweis, dass die Bedingungen
durch zyklische Körper erfüllt werden können. Zur Formulierung dieses
Kriteriums wird die Divisionsalgehra gleichzeitig über allen p-adischen
Erweiterungen des Zentrums betrachtet ; denn auf Grund des Normensatzes

ist das Zerfallen in jeder h-adischen Erweiterung eines Körpers
für das Zerfallen in diesem Körper selber notwendig und hinreichend.

Es soll versucht werden, an Stelle der unendlichen .p-adischen
Körper die endlichen Restsysteme nach Primidealen und Primidealpotenzen

zu verwenden, mit deren Hilfe A. Speiser die Idealtheorie in
maximalen Integritätsbereichen rationaler Algebren begründet hat.
Beschränkt man sich auf den rationalen Körper als Zentrum, so kann
man direkten Gebrauch von den Speiserschen Resultaten machen.
Nimmt man noch das Brandtsche Zerlegungsgesetz für
Zentrumsprimideale hinzu, das in diesem Fall aussagt, dass bei der Zerlegung
einer rationalen Primzahl nur ein einziges Primideal auftritt, so ergeben
sich folgende Verhältnisse: Eine Primzahl p, die die Diskriminante
nicht teilt, bleibt unzerlegt, d. h. das Restsystem besteht aus der
vollständigen Matrixalgebra n-ten Grades mit rationalen Resten mod p
als Elementen. Mit Ausnahme der endlich vielen Diskriminantenteiler
findet somit für alle p bereits im Grundbereich Zerfällung statt. Ist p
Diskriminantenteiler, so lässt sich durch Erweiterung des Zentrums und
des Integritätsbereiches das Radikal der Restalgebra wegschaffen. Die
Diskriminante reduziert sich dabei um den Faktor p und kann so zu 1

gemacht werden. Es stellt sich hier das Problem, direkt nachzuweisen,
dass die vollen Matrixalgebren allein die Diskriminante 1 haben, oder
was damit gleichbedeutend ist, dass die Diskriminante einer echten
Divisionsalgebra von 1 verschieden ist. Dieser Satz, der aus der
Hasseschen Theorie gefolgert werden kann, zeigt, dass ein algebraischer
Zahlkörper dann Zerfällungskörper einer normalen Divisionsalgebra ist,
wenn er bei Reduktion die zur Erweiterung des Integritätsbereiches
erforderlichen Galoisfelder liefert.

7. A. Weinstein (Cambridge). — Eigenwertprobleme bei partiellen
Differentialgleichungen vierter Ordnung.

Kein Referat eingegangen.

8. F. K. Schmidt (Jena). — Zur arithmetischen Theorie der
algebraischen Funktionen.

Kein Referat eingegangen.

9. A. Peluger (Zug). — Wachstum ganzer Funktionen.
CO

Es gehöre G (Z) an zn der speziellen Klasse ganzer Funk-
0

tionen vom Maximaltypus der Ordnung 1 an, für die

limlogM (r) i, M(r) Max I (rei(p) |
r —>- oo r log r
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ist. Die Funktion die auch zu dieser Klasse gehört, habe

Z-\ (Z)
oo n

die Entwicklung —. Mittels der Entwicklungskoeffizienten ln wird
o n

der ganzen Funktion G (z) eine im Unendlichen reguläre Funktion
oo

g (z) — anlnZ~n~~1 zugeordnet. Zwischen der Stützfunktion h(<p)
0

des kleinsten konvexen Bereiches, in dessen Aussenraum g (z) durchwegs

regulär ist, und dein Wachstumsindikator

m M
r oo r log r

der Funktion G (z) besteht die Gleichung h (<p) k — <p).
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