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1. Sektion fir Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft
Sonntag und Montag, 18. und 19. August 1935

Président : Prof. Dr. W. SaAxEr (Kiisnacht-Ziirich)
Prof. Dr. W. SCHERRER (Ziirich)

1. L. Bossarp (Luzern). — Uber Verallgemeinerungen des Satzes
von Schottky und ihre Anwendungen.

Es sei f'(3) eine im Kreise | —23’ | << o regulire Funktion, welche
dort eine @-Stelle und hochstens ¢ verschiedene H-Stellen besitzt, wobei
die Zahlen ¢ und b den Ungleichungen |a|Z£ A, |b|Z A, |a—b]|>d >0
geniigen, und es sei [ () im Kreismittelpunkt 2’ und in einem weiteren,
vom Punkte 3’ verschiedenen, im Inneren des Kreises |z2—2'|<<p
gelegenen Punkt z,, | 3,—32"| =7, gegeben oder nach oben beschrinkt.
Alsdanu gilt fiir f(z), wie unter Zuhilfenahme der Lindeléf-Transformation,
der Kreisabbildung und eines geeigneten Kreiskettenverfahrens gezeigt

1
werden kann,’ M:Max{eq+ ’ S Nr) V1) |+ 3h)}
. 7/'1
gesetzt, die numerische, beziiglich @ und & gleichmissige Abschitzung
ye?
(e—ry) ¥
|z |<d-u " im Kreise | 2—3"|£Lo—9 <o, y = 5.20".
Durch Verallgemeinerung auf einen Kreisring ergibt sich die Um-

kehrung : Ist f(z) eine im Kreisring 7 - (1 — 700 ) L)z ] £

loglog M (r)
700

- (1 +l ), 7>>0, regulire Funktion, bleibt Max | f (z) | =
o9 log M (r) |z |=7»

700
M (r) >e€ , und gibt es auf der Mittellinie | 2]=7»2 im Ab-
—_ 1\/ log M (r)
stande s liegende Punkte mit 7 . ¢ 4 Zs G )
log log M (r)

1IN

1 log M (7)
in welchen | f(2)|<e ¢ bleibt, so existiert mindestens eine

! Siehe in diesem Zusammenhang: W. Saxer, Uber eine Verallgemeinerung
des Satzes von Schottky (Compositio Mathematica, 1934, Vol. I, 207—216).
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700 -
im Kreisring liegende Kreisscheibe vom Radius r , in welcher
log log M (r)
1y log M (r)
[ (z) entweder simtliche Werte 10 mit |w |<Le 4 an wenig-
stens zwei verschiedenen Stellen oder aber simtliche Werte w0 mit

1V log M (r)
4

an wenigstens 3 \/ log M (r) verschiedenen Stellen

4
annimmt, dies jedoch mit eventueller Ausnahme gewisser Werte, welche alle

—1\log M (r)

|w]|Le

im Inneren einer festen Kreisscheibe vom Radius e liegen.

Diese und analoge Sitze ermoglichen im Anschluss an A. Ostrowski!?
die weitere Untersuchung der Werteverteilung einer Funktionsfolge
[ (0,2) in der Umgebung eines Juliapunktes 3. Art von f(z) fir (o,).
Hat ein Juliapunkt 3. Art & von f (z) fir (o,) die Eigenschaft, dass

fir ein beliebig kleines ¢ > 0 und fiir ein ¢ > 0 jede der Funktionen
f (0,z) — bis auf endlich viele — in einem Kreise um £ als Mittel-

punkt vom Radius ¢ einen Wert w0, mit |20, | £ ¢ héchstens einmal
annimmt, so nenne man & einen Juliapunkt 6. Art von f(z) fiir (o0,).
Die Gesamtheit der zu (g,) gehdrenden Juliapunkte 6. Art fiir f(3)
nenne man die zu (g,) gehérende Juliamenge 6. Art fiir £(z). Eine Folge
(0,), deren zugehorige Juliamenge 6. Art nicht leer ist, nenne man eine
Juliafolge 6. Art fir f(z). Auf Grund dieser Definitionen ergeben sich
die Siatze: Ist (g,) eine Juliafolge 3. Art fiir / (z) mit dem Juliapunkt
&, und nimmt fiir ein beliebig grosses ganzes 2> 2 und ein beliebig
kleines &> 0 jede Funktion [ (0,3) fir » >+ (¢ k) im Kreise

| 2 — 5];% einen beliebigen Wert w0, mit |w,| £ & 2mal an, so

enthilt (0,) entweder eine Juliafolge 4. Art mit dem Juliapunkt & oder
aber es nimmt jede Funktion f (0,2z) fiir » > »* (¢, k) in einem Kreise
um & als Mittelpunkt mit dem Radius & samtliche Werte w mit | w | £ &
wenigstens 2 mal an. Enthilt eine Juliafolge 3. Art fiir /() mit dem
Juliapunkt & eine Juliafolge 6. Art mit dem Juliapunkt & und keine
Juliafolge 4. Art mit dem Juliapunkt & so nimmt fiir ein beliebig
grosses ganzes R > 2 und ein beliebig kleines ¢ > ¢ jede Funktion
f(0,3) fir v (e k) im Kreise |z —&|<<e jeden Wert 1w mit
| w | £k genau einmal an.

! A. Ostrowski, Studien iiber den Schottkyschen Satz (Rektoratsprogramm
der Universitit Basel, 1931, 1—111 [41—62]).
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Diese Sitze ergeben sich aus entsprechenden allgemeineren Sitzen
iiber Ausnahmefolgen, deren Zusammenhang mit der Theorie der quasi-
normalen Funktionsscharen im folgenden Sachverhalt zum Ausdruck
kommt: Es sei f,(z) eine Folge von in einem Kreise | 2 —&| <2
holomorphen Funktionen und es existiere zu jedem endlichen Wert a
eine Zahl & und ein Index N==N (a, ¢ derart, dass fir ¢ <<g, und
fir n XN (a,¢) [n(z) im Kreise |z-—&|<<e¢ den Wert a genau
einmal annimmt; dann ist der Punkt & ein irregulirer Punkt von der
Ordnung 1.

2. R. DE SAUSSURE (Berne). — Application de la théorie des
fléches aux cartes météorologiques.

Pas recu de manuscrit.

3a. S. Bays (Fribourg). — Sur le nombre des systémes cycliques
de triples différents pour chaque classe w.!

Si le groupe {lac, 14|, |z, a®x] } est le diviseur méta-
cyclique d’ordre le plus élevé qui laisse un systéme cyclique de triples
S invariant, nous disons que S est de la classe w.

3n
Soit N =67} 1 premier, — = 2%.ny, d diviseur de 3 n, n,

impair. Les classes possibles pour un systéme de triples S déterminé
par un systéme de caractéristiques 2 appartenant & d, sont données
par: w=2u d =22+ u' d, les u étant les diviseurs de #,. Il y a
une exception pour d =1, ol I'ensemble des u’, qui serait dans ce

. s | 3n .
cas celui des diviseurs de n1:2—, est & remplacer par celui plus
aQ

restreint des diviseurs de n'; =— —

2(1
I.e nombre des systémes de triples déterminés par le systéme des
caractéristiques principales (appartenant a d =— 1) dans la classe 2 u
est ainsi le méme que le nombre des systémes de triples déterminés par
un systéme de caractéristiques appartenant 4 d = 3 dans la classe 6 u
et ce nombre est.:

»

20;/1' —a — 1
S a2 # (1)
p' |l

1
@0 — —
yr

ot u” parcourt les diviseurs de u' et 1 (u”) est la fonction de Mobius :
A()=1, A(n')=(—1)" si u” est le produit de  facteurs premiers
différents, 1 (u”’)=0 si u” contient au moins un facteur premier
au carré. ‘

' Voir les Commentarii mathem. Helvetici, S. Bays: Vol. 2, Fasc. 1V, Vol. 8,
Fasc. I, IT et IV et principalement S, Bays et G. Belhote, Vol. 6, Fasc. I,
p. 28 & 46.
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n

Ce nombre est de par sa nature > 0. Pour ' =1 et y' =mn, — —,

2a

il est positif. Il restait & prouver qu’il est positif pour tous les u'.
y2

L'expression 3. 1 (u”) 2#", développée, peut s’écrire, p,, Day -0 D,
lun I‘u:

étant les facteurs premiers différents de u' = lad rangés par ordre de

grandeur : N

um
2p1pz...pr lzp1pz...p7_ . Zp:ps...pr . 2p1p3...p,r

R 2171192...1)7,_1

|

e PP L (— 1)
Sous cette forme, en donnant le signe — & tous les termes de la
parenthése excepté le premier et en se servant des inégalités »<<p,, p; >3,
on arrive aisément & établir que 1'expression est positive.

La démonstration vaut maintenant sans autre pour les autres valeurs
de d, sauf une exception dans le cas ou d est diviseur de n, <n et > 3.
En effet, I’exception nommée mise & part, le nombre o (u’) des systémes
de triples différents de la classe w pour les autres valeurs de d, est,
s’il n’est pas directement positif, donné par des expressions qui ne
difterent de (1) que par l'adjonction d’un facteur constant au premier
terme de l'exposant de 2. Ainsi il est établi, sauf pour le cas de
I’exception susdite, qu’il y a des systémes de triples dans toutes les
classes possibles.

3b. S. Bays (Fribourg). — Sur les systémes de caractéristiques
appartenant & d = 8.

La théorie des caractéristiques est basée essentiellement sur le fait
suivant!: o étant une racine primitive de IV, _go, 21, U (1),
représentent les entiers 1, 2, ...., 3n, (2), dans un certain ordre;
g_s_n ] a3”+1, . ... les reproduisent périodiquement dans le méme ordre.
Nous appelons les exposants dans (1) les indices absolus des entiers
correspondants dans (2). Les caractéristiques, qui sont des triples de
la forme aaabac, se répartissent en colonnes de caractéristiques, cy-

cliques par les exposants. Les colonnes de ces exposants, réduites mod 3,
donnent les trois types possibles:

00090

type 1: 1 1 1 ou les trois restes sont égaux,
222
012

type II: 1 2 0 ou les trois restes sont diftérents,
201

1 Nous entendons par a la valeur absolue du plus petit reste positif ou
négatif de l'entier a (mod N).



11 022
2 2 ou 10 0 ou deux restes sont égaux.
211 '

Cherchant une indication sur le nombre des systémes de caracté-
ristiques appartenant & d — 3, systémes qui sont fournis directement
par les colonnes du type II, nous avons été conduit & 1’énoncé suivant,
par sa nature méme treés plausible:

Soit les entiers 1, 2,...., 3n dans 'ordre naturel. Soit la suite
correspondante de leurs indices absolus 0, @, ...., i. Nous réduisons
ces indices mod 3. Dans la suite réduite, ainsi obtenue, chacune des
9 séquences possibles 0V, 01, 02, 10, 11, 12, 20, 21, 22 doit tendre

; A . 3n .
a se présenter le méme mnombre de fois, c’est-d-dire ———— fois, »

augmentant indéfiniment. 11 en résulte que les types I, II et III

des colonnes réduites ci-dessus, doivent tendre & se présenter resp.

3n—1 2@Bn—1) 6@Bn—1)
b]

9

27 27 27
La concordance avec les nombres exacts, pour les trois types de
colonnes, pour les premiéres valeurs de /N est remarquable. Nous
donnons ci-dessous les résultats pour le type II, c’est-a-dire pour le
nombre des systémes caractéristiques appartenant & d =3, pour les [N
inférieurs & 200 et N ==9Y97. Le nombre approximatif est lentier le

fois, /N augmentant indéfiniment.

plus proche de la fraction 2 (3%———11:
27
Pour N= 18, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,
nombre exact : — 1, 1, 1, 1, 2, 2, 3, 2, 4, 4,

nombre approché: —, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4,

109, 127, 139, 151, 157, 163, 181, 193, 199, 997.
4, 4, 4, 6 5 7, 7, 6, 17, 37
4, 5, 5 5 6, 6 17, T, 7, 87

4. E. St1eFEL (Ziirich). — Ein Problem aus der linearen Algebra
und seine topologische Behandlung.

Gegeben seien p reelle quadratische n-reihige Matrizen A(l), A® 3 a g

A% ynd p unabhingige reelle Variable &y, s, . . ., 4°p. Ist die durch Linear-

kombination entstandene Matrix A = a, A" —+ x, A® .. + x, AY
nur fiir das triviale Wertsystem 2, == 2, = . . . = @, = 0 der Variabeln
singulédr, so heissen die Matrizen linear unabhingig ; ist sogar A fiir alle
nichttrivialen Wertsysteme der Variabeln orthogonal, so erzeugen unsere
Matrizen ecine lineare Schar orthogonaler Matrizen.

Unter p’ (n) verstehen wir die Maximalzahl linear unabhingiger
n-reihiger Matrizen und unter p (n) die Maximalzahl von #-reihigen
Matrizen, die eine Schar orthogonaler Matrizen erzeugen. Die Bestiimmmung
von p(n) und p’(n) ist das im Titel angekiindigte algebraische Problem.
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Das topologische Problem, das wir zur Losung heranziehen, ist die
Bestimmung der Maximalzahl /p” (n) — 1] der linear unabhingigen
stetigen Vektorfelder, die im (» — 1)-dimensionalen reellen projektiven
Raum konstruiert werden konnen. Die Verkniipfung zwischen diesen beiden
Aufgaben wird durch die Ungleichungen »n =" ()=p’ (n)=p (1)
hergestellt.

Auf algebraischem Wege haben A. Hurwitz (Werke Band II,
S. 565—571 und S. 641—666) und J. Radorn (Hamburger Abh. Band I,
S. 1—14) die Zahl p (n) berechnet; falls man unter % die grésste in
n aufgehende ungerade Zahl versteht, ergibt sich:

a) p(n) :% fir n == 0 (mod 16).

b) pm) =np (117“_) +8 fir n==0 (mod 16).
6
Auf topologischem Wege erhilt man fir n==0 (mod 16) : p" (n)

n 7
= —, also: o*) p"Mm)=p () =p (n) =— fir n==0 (mod 186).
(2 o
Die ‘durch 16 teilbaren Zahlen 7 entziehen sich bis jetzt der topolo-
gischen Methode.
Unter n, (bzw. n, ;) verstehen wir alle Losungen der Gleichung
b (%z) —n, bzw. p’ (n;) = néa " (%;’) - 7’1;,
Diese Zahlen sind von besonderem Interesse. Es zeigt sich ndmlich,
dass die n; die Ordnungen der (nicht notwendigerweise assoziativen)

nullteilerfreien Algebren iiber dem reellen Korper sind, wihrend die
7, die Ordnungen derjenigen unter diesen Algebren bedeuten, in denen
die Normenregel gilt. Die Zahlen (%, — 1) sind die Dimensionen der
parallelisierbaren projektiven Rdume (vgl. Abh. der Schweiz. Naturf.
Gesellschaft 1934, S. 270, Note 11). Aus @) und b) folgt das bekannte
Hurwitzsche Resultat: n,=1, 2, 4, 8; als zugehorige Algebren kann
man etwa die reellen Zahlen, die komplexen Zahlen, die Quaternionen
und die Cayleyschen Zahlen wihlen. Aus a*) folgt das vorldufige Resultat -
n;==1, 2, 4, 8, 16 m; und n/=1, 2, 4, 8, 16 m;, wobei die m;
und mJ'.' unbekannte ganze Zahlen sind.

Den Herren Prof. H. Hopf und G. Pdlya bin ich fiir Hinweise aut
die bestehende Literatur und auf einige der angedeuteten Probleme zu
Dank verpflichtet.

5. O. Spiess (Basel). — Die wissenschaftliche Korrespondenz der
Mathematiker Bernoulli.

Der Ruhm Leonhard Eulers hat den der fritheren grossen Basler
Mathematiker etwas verdunkelt. Aber fiir den Historiker stehen die
beiden Briider Jakob und Johann Bernoulli um 1700 herum nicht
weniger gewaltig da als 50 Jahre spéter der jiingere Euler. Sie waren
lange Zeit die einzigen Mathematiker, die den neu entstandenen Infini-
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tesimalkalkiil von Leibniz ganz verstanden, und sie entwickelten in
stetem (Gedankenaustausch mit dem Erfinder und oft im Streit mit der
Konkurrenz der Newtonschiiler in England die grundlegenden Methoden
der hoheren Analysis. Johann Bernoulli hat noch das weitere Verdienst,
durch Hunderte von Briefen mit den hervorragendsten Mathematikern
seiner Zeit die neue Lehre verbreitet zu haben; fiir die Geschichte der
Wissenschaft wie fiir die Kenntnis der handelnden Personen bildet diese
Korrespondenz eine Quelle ersten Ranges. Merkwiirdige Umstéinde haben
nun bewirkt, dass diese Quelle bis zu unserer Zeit fast ganz ungeniitzt
blieb. Zwar war der Briefwechsel mit Leibniz Anno 1745 noch zu Leb-
zeiten Johanns erschienen, und ein Jahrhundert spiter wurden die Briefe
einiger Bernoulli mit dem Petersburger Kreis (Euler, Fuss, Goldbach)
veroffentlicht, aber die grosse Masse, gegen 2000 Briefe, blieb ver-
schollen, bis der Schweizer Astronom und Biograph Rud. Wolf nach
Jjahrzehntelangen Bemiithungen das Geheimnis liiftete. Es stellte sich
heraus, dass die gesamte wissenschaftliche Korrespondenz Johann Ber-
noullis, vermehrt um die ebenfalls bedeutende der jiingeren Bernoulli,
kurz vor 1800 von einem Enkel teils an die Stockholmer Akademie,
teils an den Fiirsten von Gotha verkauft worden war. An beiden
Orten war sie unbeniitzt liegen geblieben, aber auch nach ihrer Ent-
deckung geschah wenig damit, so dass selbst ihre Existenz noch heute
nur einem engen Kreis von Fachgenossen bekannt ist. Man muss es
als eine Ehrenpflicht der Schweiz, speziell der Stadt Basel bezeichnen,
diesen wissenschaftlichen Schatz endlich der Vergessenheit zu entreissen
und der Offentlichkeit zuginglich zu machen. Dies ist erfreulicherweise
seit kurzem moglich geworden dadurch, dass ein Basler Mizen, Herr
Dr. Rudolt Geigy, der Basler Naturforschenden Gesellschaft ein Kapital
von Fr. 30,000 zur Griindung eines Bernoulli-Fonds zur Verfiigung
gestellt hat. In ihrer Sitzung vom 19. Juni d. J. hat die genannte
Gesellschaft die grossartige Stiftung entgegengenommen und den Vor-
tragenden beauftragt, den wissenschaftlich wertvollen Nachlass der
Mathematiker Bernoulli in wiirdiger Form herauszugeben. Nachdem so
dem Unternehmen eine finanzielle Grundlage gesichert ist, diirfte die
Verwirklichung in absehbarer Zeit zu erwarten sein. Uber die weitere
Entwicklung wird in einem spitern Zeitpunkt berichtet werden.

6. E. Trost (Ziirich). — Zur Strukturtheorie der cinfachen Algebren.

Durch die Sitze von Wedderburn wird die Struktur der halbeinfachen
Algebren iiber beliebigem Grundkérper 2 auf die Struktur der Divisions-
algebren iiber & zuriickgefiihrt. Fiir den Fall, dass 2 ein algebraischer
Zahlkorper endlichen Grades ist, hat Hasse gemeinsam mit R. Brauer
und E. Noether eine vollstindige Losung des Strukturproblems gegeben.
- Er hat gezeigt, dass jede normale Divisionsalgebra sich als verschrinktes
Produkt eines zyklischen Korpers mit seiner Gruppe darstellen liasst. Die
Moglichkeit dieser Darstellung ergibt sich aus der Existenz von zyklischen
Zerfillungskorpern #n-ten Grades fiir jede normale Divisionsalgebra der
Ordnung n® Der Existenzbeweis besteht in der Aufstellung eines Kri-
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teriums fiir Zerfiallungskorper und dem Nachweis, dass die Bedingungen
durch zyklische Korper erfiilllt werden kénnen. Zur Formulierung dieses
Kriteriums wird die Divisionsalgebra gleichzeitig iiber allen p-adischen
Erweiterungen des Zentrums betrachtet; denn auf Grund des Normen-
satzes ist das Zerfallen in jeder p-adischen Erweiterung eines Korpers
fir das Zerfallen in diesem Korper selber notwendig und hinreichend.

Es soll versucht werden, an Stelle der unendlichen p-adischen
Korper die endlichen Restsysteme nach Primidealen und Primideal-
potenzen zu verwenden, mit deren Hilfe A. Speiser die Idealtheorie in
maximalen Integrititsbereichen rationaler Algebren begriindet hat.
Beschrinkt man sich auf den rationalen Koérper als Zentrum, so kann
man direkten Gebrauch von den Speiserschen Resultaten machen.
Nimmt man noch das Brandtsche Zerlegungsgesetz fiir Zentrums-
primideale hinzu, das in diesem Fall aussagt, dass bei der Zerlegung
einer rationalen Primzahl nur ein einziges Primideal auftritt, so ergeben
sich folgende Verhiltnisse: Eine Primzahl p, die die Diskriminante
nicht teilt, bleibt unzerlegt, d. h. das Restsystem besteht aus der voll-
stindigen Matrixalgebra #7-ten Grades mit rationalen Resten mod p
als Elementen. Mit Ausnahme der endlich vielen Diskriminantenteiler
findet somit fiir alle p bereits im Grundbereich Zerfillung statt. Ist p
Diskriminantenteiler, so ldsst sich durch Erweiterung des Zentrums und
des Integrititsbereiches das Radikal der Restalgebra wegschaften. Die
Diskriminante reduziert sich dabei um den Faktor p und kann so zu 1
gemacht werden. Es stellt sich hier das Problem, direkt nachzuweisen,
dass die vollen Matrixalgebren allein die Diskriminante 1 haben, oder
was damit gleichbedeutend ist, dass die Diskriminante einer echten
Divisionsalgebra von 1 verschieden ist. Dieser Satz, der aus der
Hasseschen Theorie gefolgert werden kann, zeigt, dass.ein algebraischer
Zahlkorper dann Zerfillungskorper einer normalen Divisionsalgebra ist,
wenn er bei Reduktion die zur Erweiterung des Integritidtsbereiches
erforderlichen Galoisfelder liefert.

7. A. WEINSTEIN (Cambridge). — Eigenwertprobleme bei partiellen
Differentialgleichungen vierter Ordnung.
Kein Referat eingegangen.

8. F. K. ScamIipT (Jena). — Zur arithmetischen Theorie der alge-
braischen Funktionen.

Kein Referat eingegangen.

9. A. PFLUGER (Zug). — Wachstum ganzer Funktionen.

Es gehore G (3) — Z a, 2" der speziellen Klasse ganzer Funk-
(Y]

tionen vom Maximaltypus der Ordnung 1 an, fiir die

— log M (r) —1, M(r):MamlG(rei(p)l

lim
r—>o plogr
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ist. Die Funktion ——1~—«, die auch zu dieser Klasse gehort, habe

z-[ (3)

— 3
die Entwicklung 2 T Mittels der Entwicklungskoeffizienten 4, wird
0

n
der ganzen Funktion @ (z) eine im Unendlichen regulire Funktion

g (3) = E anlnz_"— 1 zugeordnet. Zwischen der Stitzfunktion % (¢)
0

des kleinsten konvexen Bereiches, in dessen Aussenraum ¢ (z) durch-
wegs reguldr ist, und dem Wachstumsindikator
S iy
> oo rlog r

der Funktion G (3) besteht die Gleichung % (@) =~k (— ¢).
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