Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =
Actes de la Société Helvétique des Sciences Naturelles = Atti della
Societa Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft
Band: 108 (1927)

Vereinsnachrichten: Sektion fir Mathematik
Autor: [s.n]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

1. Sektion fiir Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft
Freitag und Samstag, 2. und 3. September 1927

Prisident : Prof. FERD. GONSETH (Bern)
Aktuar : Prof. S. Bays (Fribourg)

1. A. WEINSTEIN (Rome). — Sur extension d'un prmczpe analytique
avec des applications & Uhydrodynamique.

L’auteur n’a pas envoyé de résumé de sa communication.

2. L.-GUuSTAVE DU PasQuier (Neuchitel). — Sur un théoréme
d’ Hurwitz.

L’auteur s’est proposé de déterminer, dans le corps {Hm} des
quaternions hamiltoniens & coordonnées rationnelles, tous les groupes
additifs et multiplicatifs possibles. Il a traité ce probléeme par deux
méthodes, 1'une basée sur la théorie des substitutions, 1’autre sur les
propriétés des modules de nombres. IL’auteur indique la base du do-
- maine holoide le plus général formé & 1'aide de quatre quaternions
du corps {Hm} linéairement indépendants. Comme premiére applica-
tion, il démontre que pour arriver au domaine hurwitzien dont la base est

14, + s+ 1

11y Loy U, 9

savoir & l’ensemble des quaternions hamiltoniens

m My | . m m

Db (5 )it (b ma) i (G A ) s

2 2 2 2
obtenus quand m,, m,, M, et m, parcourent indépendamment ’un de
Pautre toutes les valeurs entiéres de — oo & + oo, il suffit de pos-
tuler dans le module, outre les nombres complexes entiers de Gauss,
encore #ne unité relatlve p- €X. iy; € est la ‘condition nécessaire et
suffisante. ' ‘

Comme deuxiéme application, 1'auteur indique deux théorémes
relatifs aux  groupes contenus dans le corps {Hm} Il généralise le
théoréme d’Hurwitz en remplacant le dénominateur 2 par un nombre

quelconque. La généralisation la plus simple aboutit au domaine ayant
comme base
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a+az1+bz2+z3
' 2a
a condition que @ et b soient solutions de 1’équation de Fermat
b® — 2na® = —1,
ol 7 est un nombre entier. Par exemple

<% + m0> —+ (% -+ ml) i, + (%—;— mg 29m2> i +

les quatre 72, ayant la signification susmentionnée.

Une note sur les recherches de l’auteur dans ce domaine a paru
dans les Comptes Rendus des séances de I’Académie des sciences de
Paris, t. 184, p. 59, séance du 10 janvier 1927.

1, iy, at,,

mg |
preyr. Z87

58

3. A. HEYeR (St. Gallen). — Ueber geometrische Oerter an kon-
fokalen Kegelschnitten.

In allen Aufgaben bedeutet A einen Hauptscheitel, B einen Neben-
scheitel, F' einen Fokus, ¢ die lineare Exzentrlznat Zentrum =— Ur-
sprung des Systems.

I. Gegeben sei eine Schar konfokaler Kegelschnitte. In F sei das
Lot zur Hauptachse errichtet, in den Schnittpunkten desselben mit den
Kurven seien die Tangenten angelegt und von F' die Lote auf die Tan-
genten gefillt. Gesucht ist der geometrische Ort fiir die Fusspunkte.

y== (c —x) \/ v (Gerade Strophoide)
2¢c —x

II. Gegeben sei eine Schar konfokaler Ellipsen. In jeder ziehe
man von B aus die Fokussehne. Dann ziehe man von B aus die Pa-
rallele zur Hauptachse, vom andern Endpunkt aus die Parallele zur
Nebenachse und bestimme den Schnittpunkt dieser Geraden. Man erhilt

y—+c 2 (x — c)
2c —
Asymptote. x = 2c

(,Schiitzenbogen“ nach Newman)

be /2
Inflexionspunkt: ¢ = —Z y==c 3

In Fist c=—= —¢

III. In einer Schar konfokaler Ellipsen ziehe man in jeder von B
aus  eine Fokussehne und bestimme deren Pol in bezug auf den kon-
zentrischen Kreis mit 7 =— a. Gesucht ist der geometrische Ort des Pols.

_® y2 ‘
x4y (Kurve von Longchamps)
o

Asymptote: & = ¢
Tiefster Punkt: x =y =2 ¢
Inflexionspunkt: & — 4 ¢



— 81 —

IV. Gegeben ist eine Schar konfokaler Ellipsen. In jeder zieht man
von einem Nebenscheitel eine Fokussehne und von einem Endpunkt des zu-
gehorigen Parameters den Durchmesser. Man bestimme den geometrischen
Ort des Schnittpunktes dieser Geraden.

(c —x)?

y==* . ex— o0

c
Asymptote: x = 9

C
Im Fokus ¢ =— -2

V. Gegeben eine Schar konfokaler Ellipsen. Man verbinde A mit
B und fille vom Zentrum das Lot auf A B. Gesucht ist der geome-
trische Ort des Fusspunktes dieser Lote.

(y2 S wZ‘) (w2 + y2) 2 — 02 m2 y2

Asymptoten: x = =+ y
Inflexionspunkt: x = 3 \/ 2 y=_-¢

C
Im Zentrum: ¢ — — —

2

4, J. KieMsE (Schmolln-Thiiringen). — Die Idealtheorie der Liou-
villeschen Integrititsbereiche der Quaternionemzahlen.

Die Arbeit ist ein ins Einzelnste entwickelter Teil einer allgemeinen
Theorie der endlichen Rationalitétsbereiche in Quaternionen und gibt
die vollstindige Theorie der Integritdtsbereiche und Diskriminanten A,
der Ideale und deren Multiplikation und Primproduktdarstellung. Sie ist
gegriindet auf die zahlen- und idealtheoretischen Begriffsschopfungen und
Beweismethoden von Gauss, Kummer, Dirichlet, Dedekind, Minkowski,
Hurwitz, Landau. Beriihrt, aber nicht verwandt werden Methoden
und S#tze von E. Noether, L. G. du Pasquier, A. Speiser, H. Brandt,
Dickson, Wedderburn, von denen zur Zeit der Entstehung nur die
Arbeiten der ersigenannten. beiden Autoren dem Verfasser bekannt
gewesen sind.

Es ist dargestellt die Theorie der Rationalitdtsbereiche mit den

Liouvilleschen Formen 5(2) + g ff -+ &y 53 + Sq §§ ;6169 = g2 Sy als
Relativnormenformen, welche bis auf Isomorphien zugleich alle qua-
terniren quadratischen Formen mit Komposition in sich schliessen. Es
werden zun#chst alle umfassendsten Integrititsbereiche iiber dem Be-
reich aller durchaus ganzen Quaternionen dargestellt und abgezihlt, zu
welchen Ergebnissen- die Theorie der algebraischen quadratischen Zahl-
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korper verhilft. Alsdann werden die Diskriminanten bestimmt und fiir
die weitere Untersuchung handliche Isomorphiegesetze gefunden.

Die Theorie der Ideale griindet sich auf die wesentliche Wahr-
heit, dass es rechts- und linksseitige Ideale gibt und dass die Ideale
eines Integrititsbereiches in ganz bestimmter Weise von anderen um-
fasst werden und wieder andere umfassen. Primideale werden nur von
sich selbst und vom Einheitsideal umfasst oder geteilt. Grundbegrift
ist die Relativnorm # () eines Ideals A als Produkt des Zahlenum-
fanges in den Zahleninhalt desselben, der grossten positiven Rational-
zahl, welche alle Quaternionen des Ideals teilt, in die kleinste positive
Rationalzahl des Ideals. Ein Ideal vom Zahlenumfang 1 heisst primitiv.
Die Primideale sind primitive Ideale, deren Relativnormen natiirliche
Primzahlen sind. Die Primirideale haben Primzahlpotenzen als Relativ-
normen. Die Abz#hlung der primitiven und die Anzahlbestimmung aller
Ideale gegebener Relativnorm a gelingen durch eine Verallgemeinerung
des Hurwitzschen Zuordnungssatzes. Die Anzahlen sind 4 (a) und
O (a), und es ist :

I (AY)=1; 0(v=1; » ] 1); O(a”) =1 fir eigentliche Diskri-
minantenteiler ; '
9 (a”) = a*—1 (r41); O(xn”) = 25; § = alle positiven Teiler
von n” .
fiir Primzahlen 7z, welche die reduzierte Diskriminante 2 —* 4 nicht
teilen. Die Abzihlfunktionen zusammengesetzter Relativnormen a sind
die Produkte der Funktionswerte der maximalen Primpotenzen in
a. Zweiseitig sind die Zahlenideale (a), welche durch eine natiir-
liche Zahl erzeugt werden, ferner die Ideale, deren Relativnormen
allein durch eigentliche Diskriminantenteiler geteilt werden und die
Produkte dieser beiden Arten. Einseitig sind alle anderen Ideale.
Jedes Ideal U ist eindeutig darstellbar als kleinstes gemeinschaft-
liches Vielfaches von Primiridealen. Diese Darstellung ist absolut ein-
deutig fiir Primitivideale, fiir imprimitive allein in Riicksicht der Bil-
dungsvorschrift der Komponenten '

(91, n:")a; n(A) = n:" I 1

2 s
(Emmy Noether * Andreas Speiser).

Zwei verschiedene primitive Ideale derselben Relativnorm haben
nur imprimitive Quaternionen gemeinsam. Diese Bemerkung gibt zur
Bildung der urspriinglichen Idealsterne vom Kerne a Anlass, deren
jeder ein ¥ (a) == strahliges Gebilde darstellt, dessen Strahlen je vom
Mass a? Strahleinheiten sind und welche sich gesetzmissig aufzweigen.
Es gibt soviele Aufzweigungs- und Strahlordnungen im Stern als Mog-
lichkeiten, den Kern als Primzahlprodukt darzustellen, das sind

| (vy + vy ... ve)!
n(a) = —— :

vi!lvey! .o L wg!
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Jeder Faktor sz, der Darstellung bestimmt eine Aufzweigung jedes
Strahles in 7. -+ 1 oder sz, neue Strahlweiten, je nachdem die Prim-
zahl 7z, ein neuer Faktor ist oder Wiederholung eines fritheren. Jedes
Galoisfeld der Theorie von Herrn A. Speiser trigt einen links- und
einen  rechtsseitigen urspriinglichen Idealstern, welcher je alle kon-
gruenzlosenden Reste des Feldes in sich vereint.

Die Einsicht in die Gestaltung der Idealsterne ist von so wesent-
licher Bedeutung, dass die weitere Theorie vollig auf diese Erkennt-
nisse gestiitzt werden kann. Sie ermoglicht vorerst eine Bezeichnung
aller primitiven o-seitigen Ideale derselben Relativnorm durch je ein
Indizessystem von solcher Art, dass der grosste gemeinsame Teiler je
die gemeinsamen Anfinge der Indizessysteme als Indizessystem besitzt,
indes das Kkleinste gemeinschaftliche Vielfache alsdann Produkt des
grossten gemeinsamen Teilers in eine emdeutlg bestimmte Rational-
zahl ist.

Des weiteren ergibt s1ch die Moglichkeit, ein System von Koor-
. dinaten der rechtsseitigen Primideale zu wihlen, welches zugleich
Koordinatensystem der linksseitigen Primideale ist und durch Bildung
der (primitiven) Produkte der Koordinaten alle (primitiven) Primir-
ideale eindeutig mit Koordinaten ausstattet. Es gibt unendlich viele
Koordinatensysteme der Primirideale, welche sich durch Einbeziehung
des Prim#rdarstellungssatzes zu Koordinatensystemen aller Ideale des
Integrititsbereiches erweitern. Jedes Koordinatensystem bestimmt eine
eindeutige Multiplikation je der rechts- und linksseitigen Ideale unter-
einander und einen eineindeutigen Primproduktdarstellungssatz der o-sei-
tigen Ideale. Dieser Eindeutigkeitssatz ist Invariante der Koordinaten-
systeme und bei Hinzufiigung des Kommutativgesetzes mit dem Ein-
deutigkeitssatze der algebraischen Idealtheorie identisch.

Verzicht auf die Assoziativitit der Idealmultiplikation und stren-
gere Definition der Hauptideale ermoglichen die Einfilhrung der Stern-
multiplikation, welche als Produkt von Sternhauptidealen immer wieder
solche erzeugt. Wesentlich fiir diese Theorie ist der Begriff des o-sei-
tigen Idealsternsystemes der Charakteristik {nl, TCoy o v oy :zzg}, welches
Inbegriff aller unendlich vielen o-seitigen Idealsterne von einem Kerne

Y1 V2 Yo ot . — ;
ot .. @ S I8ty vy, ve, L, ve —1, 2, ..., co.

Der Inbegriff aller Idealsterne und Idealsternsysteme heisst der Ideal-
sternhimmel des Integritdtsbereiches.

Die Einfiihrung der Z-Funktion und die transzendenten Methoden
von Dirichlet, Kummer, Dedekind geben Anzahlsitze fiir die Darstell-
barkeit natiirlicher ganzer Zahlen durch Liouvilleformen.

Indes die Arbeiten der Herren A. Speiser und H. Brandt wesent-
lich die im Inkommutativen noch giiltigen Beziehungen a priori dar-
stellen, fiigt der Verfasser die zur Abrundung der Theorie erforderlichen
,verbindungen im einzelnen“ hinzu.
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5. M. Gur (Ziirich). — Uber die Klassenzahl der quadratischen Korper.

Der Vortragende referiert iiber seine unter dem gleichen Titel er-
schienene Arbeit in der Vierteljahrsschrift der Naturforschenden Gesell-
schaft in Ziirich (72. Jahrg., 1927, S. 197). Auf Grund der Hecke’schen
Funktionalgleichung ergibt sich ein vom klassischen etwas verschiedener
Ausdruck fiir die Klassenzahl eines beliebigen algebraischen Zahlkorpers.
Vermdge eines Satzes aus der Theorie der divergenten Dirichlet-Reihen
erh#lt man fiir quadratische Korper so insbesondere eine Bestimmung
der Klassenzahl ohne Verwendung der Gauss’schen Summen. Der Vor-
tragende fiigt bei, dass er von Herrn Prof. Hecke nachtriglich erfahren
hat, dass E. Landau die beiden im Falle der quadratischen Korper be-
rechneten divergenten Reihen schon friiher einmal in anderer Weise
abschitzte, vgl. Crelle’sches Journal, Band 125 (1903), S. 64 u. ff.,
besonders S. 132—137.

6. R. WAVRE (Genéve). — Sur la stratification et les mouvements
internes des planétes.
L’auteur n’a pas envoyé de résumé de sa communication.

7. G. PoLya (Zirich). — Notwendige Determinantenkriterien fiir
die Fortsetzbarkeit einer Potenzreihe.

Es sei A eine in der z-Ebene gelegene abgeschlossene Punktmenge,
¢ der Radius des kleinsten Kreises vom Mittelpunkt 2 =10, der A ent-
hilt und ¢ der Radius des kleinsten Kreises von demselben Mittelpunkt,
der den perfekten Kern von A enthilt (¢ = 0, wenn A abzihlbar
ist). 7 (2) = 3" -} --- sei das Polynom #n-ten Grades, das in 4 am
wenigsten von O abweicht, und 7, das Maximum von |7, (2)] in 4;

es existiert bekanntlich (M. Fekete) der Grenzwert lim "\/r,,z = &
Ny oo
Es ist o >¢>1.

Es sei o der Radius des Konvergenzkreises der Reihe

o Ui M4 =@

und f (2) sei reguldar und eindeutig in der Komplementdrmenge
der Punktmenge A. Man setze

Ay Ant1.-- Ap4k—1

An +1 An 42 ... Aptk __A(k)

— Ay
Opn4+t—1 Autbk--- Opn42k—2

R .

Wenn 7 so mit & wichst, dass lzm == x, ist
@) IA GFEDE < ol — % g%,
k}oo
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In dem Sonderfall » = 0 (also x = 1) geht die Ungleichung (2)
fiir viele speziellen Funktionen [ (z) (und vielleicht fiir alle) in eine
Gleichung iiber bei richtiger Zuordnung von A zu f(z). Ein Korol-
lar von (2): Wenn eine ganzzahlige Potenzreihe eine eindeutige, aber
nichtrationale Funktion f () darstellt, ist die Gesamtheit der singuli-
ren Punkte von f(2z) nicht abzihlbar. ‘

Ein Nebenresultat der Untersuchung: Wenn die Punktmengen A
und A * abgeschlossen sind, A* in A enthalten und A — A* abzihl-
bar ist, und z* zu A* so zugeordnet ist wie 7 zu A, so ist v* = 7.

8. F. GonserH (Berne) et G. Juver (Neuchitel). — Sur la rela-
tivité & cing dimensions et la théorie des quanta.

Voir: C. R. Acad. Sc., Paris, t. 185, p. 341, 412 448 et 535,
aotit-septembre 1927.

9. A. SpEISER (Ziirich). — Uber Gruppen und Gruppoide.

Mit Hilfe des Matrizenkalkiils ldsst sich die Gesamtheit der Ideale
in einem Integritdtsbereich einer Algebra aufstellen und die Art, wie
sie in einander enthalten sind, iiberblicken. Brandt hat gezeigt, dass
die Gesamtheit aller Ideale einer rationalen Algebra ein Gruppoid bil-
det. Nimmt man das von Krull und Artin eingefiihrte inverse Ideal
hinzu, so kann man die Teilbarkeit der Ideale, die sich auf den Be-
griff des Enthaltenseins zweier Ideale griindet, und die Multiplikation
der Ideale, die auf das Gruppoid und damit auf die Basismultiplikation

gegriindet ist, miteinander verbinden. Das Ideal {a), das links zum
Integrititsbereich {1}, rechts zu (1) gehort, sei im Sinne der ersten
Definition durch [b) teilbar, das links zu [1], rechts zu (1) gehort.
‘Dann bilde man durch Basismultiplikation {a) P (b—l] = { b] " Dieses
Ideal gehort links zu {1} und rechts zu [1] und es gilt {d]>< [b) ={a),
womit im Sinne des Gruppoids ein Faktor aus [a) abgespalten ist.
Eine Fortsetzung dieses' Verfahrens zeigt, dass man damit die Zérle-
gung der Ideale in Primideale im Gruppoid vollstindig auf das Pro-
blem im Sinne der ersten Definition zuriickfiihren kann. Falls { a)
und [b) ganze Rechtsideale in (1) sind, so ist auch {b] ein solches
in [1], denn alle Zahlen von {a) sind in [b) enthalten, daher ist auch
{a) (67!] ein Teilsystem von [b) (b—1] = [1].

Man erhalt alle Ideale einer Algebra, indem man die Rechtsideale
‘eines bestimmten Integrititsbereiches rechts mit allen inversen zusam-
mensetzt, gerade wie man alle Strecken eines Raumes erhilt, indem
man von einem Punkt aus alle Vektoren abtrigt und ihre Endpunkte
verbindet. Denn es sei {a] irgendein Ideal, ferner (1) ein Integri-
titsbereich. Dann bilde man [1] X (1) = [b). Letzteres ist ein
Rechtsideal in (1). Es wird nun {a] [b) == {c) ein Rechtsideal in (1)
und {a] ={c)(67'], also Produkt eines Rechtsideales in (1) und
eines inversen, womit die Behauptung bewiesen ist.

15
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Falls die Ideale [a) und {b) zueinander prim sind, so ist das
kleinste gemeinsame Vielfache { a b) = {(d) das Produkt im Sinne
der ersten Definition. Um dasselbe nach der zweiten zu machen, setze
man {a b) (b"l} e (a und man erhalt {a b) = <a; {b) Man
kann offenbar die beiden Ideale [a) und {a} s als ,stellvertretende Ideale®
bezeichnen, das Gemeinsame derselben ist analov zum Vektor, der das
Gemeinsame zweier Strecken mit derselben Richtung und Grosse be-
zeichnet. Die Restklassen genommen nach dem kleinsten zweiseitigen
Ideal, das [a) als Teiler besitzt, sind fiir [a) und (a} dieselben.

10. H. BRANDT (Aachen). — Zur allgemeinen Idealtheorie.

Der Vortragende  entwickelt zunichst nach dem Vorbilde von Dede-
kind! eine allgemeine Theorie der Moduln fiir eine beliebige assoziative,
eine Haupteinheit enthaltende Algebra 92 Unter einem Modul a ist
dabei ein System von Zahlen aus 9 verstanden, das mit a, §,-- stets
auch alle linearen Kombinationen @ a -+ b f -}- - - enthalt, wobei a,
b, - - - irgendwelche Zahlen aus einem Koeffizientensystem 3 bezeichnen,
das aus dem Zentrum J von U so ausgewshlt ist, dass es die Haupt-
einheit enthilt und in bezug auf Addition, Subtraktlon und Multiplikation
geschlossen ist (also Ringeigenschaft besitzt). ,

Um die Rechenoperationen fiir die Moduln zu definieren, seien a
und b irgend zwei Moduln und a die Zahlen aus a, g die Zahlen aus b.
Addition und Subtraktion konnen dann wie im kommutativen Fall er-
klart werden: a ++ b == (a, b) =t ist der grosste gemeinsame Teiler
von a und b, d. h. die Gesamtheit der Zahlen @ + 8, a — b= [a, b] = b
ist das kleinste gemeinsame Vielfache, d. h. der Durchschnitt der Moduln
a und b oder die Gesamtheit der sowohl unter den a wie den S ent-
haltenen Zahlen. Bei  der Multiplikation und Division der Moduln er-
geben sich naturgemiss einige Aenderungen, da das kommutative Mul-
tiplikationsgesetz nicht gefordert wird. Unter dem Produkt a X b =—¢
verstehen wir die Gesamtheit der mit Koeffizienten aus 3 gebildeten
linearen Kombinationen der Produkte a §, unter dem Quotienten a " b=—1q:
(lies a durch D) die Gesamtheit der Zahlen 1, fiir welche der Modul
%1 b durch a teilbar wird und ebenso unter dem Quotienten b \ @ = q2
(lies b in a) die Gesamtheit der Zahlen x2 fir welche der Modul
b %2 durch a teilbar wird.

Fiir einen beliebigen Modul a werden die Quotienten a ./ a = a?,
a \a=qao die Links- bzw. Rechtsordnung von a genannt. Diese
Ordnungen konnen auch erklirt werden als die umfassendsten, den Glei-
chungen a® > a =aqa, a X ao = a geniigenden Moduln a?® ao. Bildet
man ao . a und a\ a® so ergibt sich derselbe Modul, der daher
durch a \a. a==a—1! bezeichnet und reziproker Modul genannt
werden kann.

1 Dirichlet-Dedekind, Zahlentheorie, 4. Auflage, S. 493.
2 Dickson, Algebren und ihre Zahlentheorie, Ziirich 1927.



— 87 —

Ein Modul a heisst umkehrbar, wenn der reziproke Modul q—1
den Gleichungen a— 1> a=ao, a X a—1 =qa? geniigt.

Unter einer eigentlichen Multiplikation, bezeichnet durch a b — ¢
(also ohne ><-zecichen) verstehen wir eine solche, bei der weder @ noch
b durch einen umfassenderen Modul ersetzt werden kann, ohne dass
das Produkt sich #&ndert. Aehnlich kann man eine eigentliche Division
definieren. Im Sinne der eigentlichen Multiplikation und Division sind
die drei Gleichungen a b — 5 /b =a, a \ ¢ =D gleichbedeutend.
Fiir die sechs Ordnungen a® ao, b bo, ¢? co gelten die Bedingungen
ao="0% a®=¢° bo = co, die man leicht aus dem Begrlff der ei-
O'enthchen Multlphkatlon ableitet.

Moduln, welche (direkt oder indirekt) durch elgenthche Multipli- -
kation miteinander verbunden werden kénnen, mégen als’ verwandt be-
zeichnet werden. Dann gilt der folgende allgemeine Satz: Die sidmt-
lichen mit einer Ordnung verwandten umkehrbaren Moduln sind durch
die eigentliche Multiplikation zu einem Gruppoid! verkniipft.

- Wendet man ‘die Modultheorie im besonderen auf eine rationale
Dedekindsche Algebra an (d. h. eine solche ohne Radikal) und betrachtet
nur die mi{ 3 als dem Ring der natiirlichen Zahlen gebildeten n-gliedrigen
Moduln, wobei n die Ordnung der Algebra bezeichnet, so ist namentlich
der Fall von Interesse, dass iiberhaupt alle mit einer Ordnung verwandten
Moduln umkehrbar sind.

Das ist dann und nur dann der Fall, wenn das Komplement der
Ordnung umkehrbar ist. Dieser Satz war fiir den kommutativen Fall
schon Dedekind bekanni. ' -

Von einer beliebigen Ordnung kann man durch Erweiterung stets
zu -einer Ordnung gelangen, die ein umkehrbares Komplement besitzt.
Eine maximale Ordnung muss -daher stets dieser Bedingung geniigen.
Bezeichnet man die Moduln, welche zu maximalen Ordnungen gehoren,
als Ideale, so gilt daher der Satz: Die Ideale einer Dedekindschen
Algebra sind durch die eigentliche Multiplikation zu einem Gruppoid
miteinander verkniipft.

Weiter werden die Zerlegungsgesetze der ganzen Ideale besprochen.
Ein ganzes Ideal ist dabei ein solches, das durch die eine (und somit
auch durch die andere) der beiden zugehorigen Ordnungen teilbar ist.
Hier gilt der fundamentale Saiz: Wenn das Ideal a durch das Ideal b
teilbar ist, so gibt es ganze Ideale r, 3, so dass a==1 b 8, und wenn
umgekehrt diese Gleichung gilt, so 1st a durch b teilbar. Daher decken
sich wie im kommutativen Falle die Begriffe Teiler und Faktor.

Von besonderer Wichtigkeit ist der Begriff des Distanzideals, das
fir zwei Einheiten €1, e2 durch die Formel (e2 > €1) ~1 = b gewonnen
wird. Dies Ideal D ist ganz und gemeinsamer Linksfaktor, gemeinsamer
Rechtsfaktor und grosster gemeinsamer Teiler aller ganzen Ideale, die

' H. Brandt, Ueber eine Verallgemeinerung des Gruppenbegriffes, Math.
Annalen 96 (1926) S. 360.
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links zu e1 und rechts zu e: gehdren, kann also-gewissermassen als
der kiirzeste Weg, der von ei1 nach es fithrt, angesehen werden.

Mit Hilfe dieser Begrifte und Sitze lisst sich in Verbindung mit
den Untersuchungen des Herrn Speiser (vgl. Dicksonl, letztes Kapitel)
die Zerlegung der ganzen Ideale in Primfaktoren vollstindig erledigen.

11. P. FiNsLER (Ziirich). — Quadratische Formen und algebraische
Gebilde.

Die Frage, unter welchen Bedingungen in einer linearen Schar
von quadratischen Formen eine definiter Form enthalten ist, steht in
Zusammenhang mit einer Klasse von algebraischen Gebilden.

Die einfachsten algebraischen Gebilde, die zum 7-dimensionalen Raum
gehoren, d. h. in keinem kleineren linearen Raum enthalten sind, und
die aus irreduzibeln Teilen der Dimension p; und der Ordnung ¢; be-
stehen, geniigen der Bedingung X (p;+ q;) = n -+ 1. Sie gehoren
zusammen mit gewissen andern reduzibeln Gebilden zu den , Freigebilden,
die so zu definieren sind:

Ein algebraisches Gebilde G heisst Freigebilde, wenn der Schnitt
von (G mit einem beliebigen linearen Raum stets entweder aus unendlich
vielen oder nur aus linear unabhiingigen Punkten besteht.

Der Einteilung nach der Ordnung entspricht dann die folgende:

Ein Gebilde heisst vom Zwang £, wenn die Anzahl der einzeln
liegenden Schnittpunkte mit einem linearen Raum um { grisser sein
kann, als die Anzahl der linear unabhiingigen unter ihnen.

Es gelten einfache Sitze iiber die Freigebilde, die auch bei jeder
speziellen Lage ertiillt sind. So ist z. B. der Schnitt mit einem linearen
Raum stets wieder ein Freigebilde.

Ferner gilt der Satz: Ist im Reellen ganz auf der einen Seite
einer Hyperfliche zweiter Ordnung ein Freigebilde gegeben, so lidsst
sich durch dasselbe stets eine andere Hyperfliche zweiter Ordnung legen,
welche die erste nicht trifft. Dieser Satz gilt nur fiir die Freigebilde.

Es folgt: In einer linearen Schar von quadratischen Formen
@+ 24; Q; ist dann und nur dann stets eine definite Form enthalten,
wenn 2'4; @; — 0 die Schar aller Hyperflichen zweiter Ordnung darstellt,
die ein ganz in Gebiet Q > 0 oder @ < 0 gelegenes Freigebilde enthalten.

Es ergibt sich folgende Anwendung auf die Variationsrechnung :

Die von J. Hadamard (Bull. Soc. Math. de France 30 [1902]) an-
gegebenen notwendigen und hinreichenden Bedingungen fiir ein Minimum
bei n-fachen Integralen mit 72 unbekannten Funktionen sind fiir 7 — 2
oder #» — 2 im wesentlichen identisch, jedoch nicht mehr fiir m > 2,

n> 2.

12. Rup. FurTER (Zirich). — Reziprozititsgesetze in quadratisch-
imagindren Korpern. '
- Die von mir im zweiten Teile meines Buches: ,Vorlesungen iiber
die Theorie der singuliren Moduln und die komplexe Multiplikation der

t Dickson, loc. cit.
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elliptischen Funktionen“ aufgestellte Theorie ist hinreichend, um die-
jenigen Reziprozititsgesetze aufzustellen, die dem Eisenstein’schen
Reziprozititsgesetze im Falle der absolut-Abelschen Korper entsprechen.
Es zeigt sich, dass die Funktion & (3) eine weitgehende Analogie zu
der Exponentialfunktion aufweist. Ist z. B. = eine primire Primzahl
von k(\/ m), m quadratfrei und negativ, d. h.:

=1 (mod. 4),

was im wesentlichen auf dasselbe hinauskommt, so haben die Zahlen

z(.’lil wl—l—wz

4x
a) Sie sind Einheiten.

b) ‘I(wl w; + X5 0y
\ 4x
gebbaren geraden Teiler, nur durch Primidealteiler von s teilbar.
¢) Thr Relativgrad zum Klassenkorper von & ist n (z) — 1.

d) Der Oberkérper ist relativzyklisch zum Klassenkorper von A.
Nun gilt die Formel:

i (\/z (x k) —\/E (fl)) =+n, (1) \/:,';:—7 1 = L1 wlj‘-’”z 002,
() ﬂ

Wy .
folgende Eigenschaften:
/ i

) — 1 ist, abgesehen von einem genau an-

= —x (mod. #), x=2=1 (mod. 4),

wo N, (1) eine Zahl des Klassenkorpers ist und a ein solches System

1
von 3 (n () — 1) inkongruenten Zahlen (mod. z) durchliuft, dass

auch die 2® inkongruent sind. Hieraus und aus dem Zerlegungssatz
der Primideale im Oberkorper folgt sofort, wie im Falle des gewdhn-
lichen quadratischen Reziprozititsgesetzes :

=)

wo {} das quadratische Restsymbol in % ist, und z und » beide pri-
mire Primzablen sind. Dieses Gesetz lisst sich noch bedeutend ver-
allgemeinern. A '
Entsprechend konnen die Betrachtungen im Falle des l.ten Rezi-
prozititsgesetzes, 1 eine ungerade Primzahl, durchgefiihrt werden.

13. J. J. BURCKHARDT (Basel). — Die Algebra des Dieders.

Will man die Struktur einer Algebra untersuchen, so zerlegt man
sie in eine direkte Summe, d. h. man zerlegt sie derart in die Summe
einzelner Subalgebren, dass das Produkt zweier Grissen aus verschie-
denen Komponenten stets Null ergibt. Auf diese Weise wurde die durch
die Diedergruppe bestimmte rationale Algebra untersucht und dies fiir das
Dieder mit drei Ecken nasher ausgefiihrt. Diese Algebra zerfallt in die
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direkte Summe dreier Komponenten, wovon zwei von der Ordnung 1 sind,
also dem Korper der rationalen Zahlen #quivalent, und die dritte von der
Ordnung 4 ist. Da jede Grosse aus dieser dritten Komponente einer
quadratischen Gleichung geniigen muss, gelingt es die Norm zu defi-

nieren; sie ist hler die quadratische Form 77 1 N1 Mg -+ 17 5 —
(17 s — N3N, n, ) wo 7, ,..., 7, rationale Zahlen bedeuten.” Wenn

wir die quadratische Form durch eine rationale Transformation auf
die Stammform § {-'3 _ 5 54 transformieren, so liefert uns die dazu

transponierte Transformation, auf die Basisgrossen der dritten Kom-
ponente ausgeiibt, deren Transformatlon auf eine vollstindige Matrixal-
gebra. Im allgemeinen Fall des Dieders mit ungerader Eckenanzahl

m lassen sich auch vorerst zwei Komponenten der Ordnung 1 abspalten.
Der ubrlgblelbende Teil zerfillt 1m Korper der Charaktere in —2_—\1

Algebren der Ordnung 4, deren Summe sich wieder rational darstellen
ldsst. Auch hier geniigt eine allgemeine Grosse daraus einer quadra-
tischen Gleichung, welche die Norm definiert, die wiederum eine indefinite
quadratische Form ist. S

14. WoLFeaANG KRULL (Frelburg i. Br.). — Uber unendliche alge-

braische Zahlkorper. . : AT

Es handelt sich um die Ubertragung des Satzes, dass jedes Ideal
der Hauptordnung eines endlichen algebraischen Zahlkorpers eindeutig
in Primidealfaktoren zerlegbar ist, auf unendliche' algebraische Zahl-
korper. Die Ergebnisse lauten: .

1. Jedes Ideal der Hauptordnung eines beliebigen algebraischen
Zahlkorpers kann dargestellt werden als das kleinste—gemeinschaftliche—
Vielfache von endlich oder unendlich vielen ,einartigen“ Idealen, die
jeweils nur durch ein einziges Primideal teilbar sind. Treten nur end-
lich viel Komponenten auf, so ist die genannte kleinste—gemeinschaft-
hche—Vlelfachendarstellung eindeutig und kann durch die Produkt—
darstellung ersetzt werden.

2. Die Gesamtheit der durch ein festes Primideal p teilbaren :ein-
artigen Ideale bestebt i. a. nicht nur — wie bei ‘den  endlichen Zahl-
korpern — aus den Potenzen von p. Doch kann jedes durch p teil-
bare einartige Ideal durch eine reelle Zahl, seinen ,Wert“, und die
Angabe ob ,endlich“ oder ,unendlich® vollkommen charakterisiert
werden.

3. Besitzt jedes Ideal der Hauptordnung des Zahlkérpers K nur
endlich viel Primidealteiler, so ermoglichen die unter 1. und 2. skiz-
zierten KErgebnisse einen genauen Einblick in die Tellbarkelts- und
Multiplikationsverhiltnisse bei beliebigen Idealen aus K. In allgememsten
Zahlkorpern hingegen muss man noch gewisse Gedankengﬁnge aus der
Topologie 'zu Hilfe nehmen, auf dle indes in dem Vortrag nicht ein-
gegangen wurde. : o
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15. S. Bays (Fribourg). — Sur le nombre des systémes cycliques
de triples de Steiner différents pour N =— 6 n -} 1 premier.

Le probléeme de l’obtention des systémes cycliques *de triples de
Steiner différents pour N ='6 » -} 1 premier, est actuellement ramené
a celui de ’obtention des svstemes de caractéristiques différents, appar-
tenant & chaque diviseur d. de 8 n.!

La recherche des systémes de caractéristiques différents appartenant
4 7n et aux diviseurs de 7 a été ramenée au probleme suivant: 2

Obtenir toutes les combinaisons constituées de o triples pris dans
n — 2 colonnes cycliques de triples des éléments 0, 1, 2, ..., n —1;
(a), et de y éléments pris dans la “série (a), avec la propriété :
3a -+ y=mn et dans la méme combinaison les éléments sont tous
diftérents. Des combinaisons obtenues, ne retenir que celles qui ne
sont pas déductibles l'une de l'autre par les substitutions du groupe
{(012...—1)}.

La recherche des systémes de caractéristiques diftérents appartenant
au diviseur d quelconque de 3 7, est maintenant ramené au probléme
"suivant: o

Si d est » ou un diviseur de 7%, on a au plus # — 2 colonnes
cycliques (n — 2 pour d = n) de triples des éléments 0, 1, 2, .. .,
d — 1; (B); les éléments (B) représentent chacun g des éléments (a).
T faut obtenir toutes les combinaisons de o triples pris dans ces
colonnes cycliques et de ¥y éléments pris dans la série (a) avec la

3 n v
propriété : g e + y =mn et dans la méme combinaison les éléments

{(a) représentés ou entrant effectivement sont tous différents.
Si d est multiple par 3 de n ou d’un diviseur de #, on a au
plus n — 1 colonnes cycliques de triples des éléments (ﬁ). Il faut

a
simplement obtenir toutes les combinaisons de 3 triples pris dans ces

colonnes, sans élément répété ou, autrement dit, contenant chacune les
d éléments (B).

Dans 'un et Dautre cas, il ne faut retenir que celles des com-
binaisons qui ne sont pas déductibles 'une de l’autre par les substitu-
tions du groupe {(O 12...d— 1)}. ’

Avant ce résultat, j’avais pu pousser la recherche des systémes
de caractéristiques différents et donc celles des systémes cycliques de
triples de Steiner différents jusqu’a N = 43; je puis maintenant avec
du temps, obtenir les systémes de caractéristiques différents appartenant

! Voir mes second et troisieme mémoires sur ce probléme des systemes
cycliques de triples de Steiner: l'un est dans le Journ. de math. pures et
appliquées, t.2, 1923, fasc. 1, p. 78 a 98; D'autre est dans les Annales de la
Faculté des Sciences de Toulouse, t. XVII 1925, p. 3 a 41.

? Voir le troisiéme mémoire (celui des Annales de Toulouse) aux p. 29 a 41.

¢



— 99

a chaque diviseur d (excepté 3 » lui-méme) jusqu’'a N =— 97, et sur-
tout donner presque immédiatement ceux appartenant aux petits diviseurs
de 3 m, au diviseur 3 en particulier, pour. des N = 6 % -} 1 premiers
plus grands, méme aussi grands que l’on veut, pourvu que jen aie
une racine primitive.

16. S. Bays (Fribourg). — Sur un probléme posé par Cayley en
rapport avec le probléme des systémes de triples de Steiner.

Le probléme posé par Cayley, relativement au probléme des sys-
témes de ftriples de Steiner, est le suivant. Nous ’énoncerons d’une
tacon plus explicite : : ‘ '

Un systéme de triples de Steiner de [V éléments est tel que
chaque couple des N éléments entre une fois et une seule fois dans
un de ces triples. Un systéme de triples de Steiner contient donc
N(N — 1) N(N—1)(N—2)

6 6
triples de NV éléments en N — 2 systémes de triples de Steiner?

triples. Pourrait-on répartir les

Cayley a fait remarquer que pour 7 éléments (les systémes de
triples de Steiner n’existent que pour les N des formes 67 -~ 1 et
67 -} 3) cette répartition n’est pas possible; sur les 30 formes dif-
férentes que prend l'unique systéme de triples de Steiner de 7 éléments
par les 7! permutations de ces éléments, on- peut en trouver deux
différentes par tous leurs triples et pas davantage, alors qu’il en fau-
drait cinq pour contenir les 35 triples de 7 éléments. Il a donné
une démonstration, fausse d’ailleurs (voir Actes de la S. H. S. N., Lu-
gano, 1919, II™® partie, p. 74), incitant & croire que pour 15 éléments
cette répartition n’est pas possible non plus. J’ai montré que pour
9 éléments (Enseignement mathématique, n® 1-2, 19™¢ année, 1917,
p- 57—67) la question de Cayley a 2 solutions différentes (ne prove-
nant pas l'une de l’autre par une permutation des éléments), et a
I’encontre de Cayley qui parait avoir pensé plutot le contraire, j’ai des
raisons de croire que cette répartition de 1’ensemble des triples de N
éléments en [V-— 2 systémes de triples de Steiner doit &tre possible
au moins pour certains N des formes 6# - 1 et 6xn - 3.

Pour les N =— 6n -+ 1 premiers en-dessous de 100, je puis don-
ner maintenant, pour chacun d’eux, un nombre de systémes cycliques
de triples de Steiner différents par tous leurs triples, supérieurs a
N — 2

£
N = 61, jobtiens avec la plus grande facilité, parce que les systémes
de caractéristiques appartenant aux petits diviseurs de 37, ou a des
diviseurs que je dirais commodes, me suffisent pour cela, 44 systémes
cycliques de triples sans un triple commun, alors que la répartition de
Cayley en demanderait 59. Pour N = 73 j’en obtiens 56 sur 71 qui
seraient nécessaires.

, exceptés, comme il vient d’étre dit, pour /N — 7. Ainsi pour



Il faut remarquer d’ailleurs que je n’opére qu’avec une catégorie
trés restreinte de systémes de triples, les systémes de triples cycliques;
si je parvenais & une solution de la question de Cayley par cette voie,
elle serait une solution d’un type particulier aussi, puisque possédant
le groupe cyclique {Iw 14 wl}, c’est une raison de plus, me
- semble-t-il, de penser que, si nous avions  disposition tous les systémes
de triples de Steiner qui existent pour IV éléments, la répartition de
Cayley serait probablement possible.

H.-S. White a démontré (Transactions of the Amer. Math. Soc.,
vol. XVI, n°® 1, 1915) que pour N=231, il y a déja plus de 37 . 1012
systémes - de triples différents (il y a 80 systémes cycliques de triples
différents pour N =—=31); avec toutes les formes qu’ils peuvent prendre
chacun par les permutations du groupe symétrique des 31 éléments,
on a une idée du nombre excessivement grand déja pour N — 31, de
systémes de triples & disposition pour chercher une répartition de
Cayley.
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