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1. Sektion für Mathematik
Sitzung der Schweizerischen Mathematischen Gesellschaft

Freitag und Samstag, 2. und 3. September 1927

Präsident: Prof. Feed. Gonseth (Bern)
Aktuar : Prof. S. Bays (Fribourg)

1. A. Weinstein (Rome). — Sur Vextension d?un principe analytique
avec des applications à Vhydrodynamique.

L'auteur n'a pas envoyé de résumé de sa communication.

2. L.-Gustave du Pasquier (Neuchâtel). — Sur un théorème
d'Hurwitz.

L'auteur s'est proposé de déterminer, dans le corps {Hm} des

quaternions hamiltoniens à coordonnées rationnelles, tous les groupes
additifs et multiplicatifs possibles. Il a traité ce problème par deux
méthodes, l'une basée sur la théorie des substitutions, l'autre sur les

propriétés des modules de nombres. L'auteur indique la base du
domaine holoïde le plus général formé à l'aide de quatre quaternions
du corps {iîm} linéairement indépendants. Comme première application,

il démontre que pour arriver au domaine hurwitzien dont la base est

1 -f- &'i ~f" it + is
hi if) lsi '

savoir à l'ensemble des quaternions hamiltoniens

mo /m0 ; Y (m0 \ fm0 \
mi)ll"t*

obtenus quand m0, m±, m2 et m5 parcourent indépendamment l'un de

l'autre toutes les valeurs entières de — oo à -|- oo, il suffit de
postuler dans le module, outre les nombres complexes entiers de Gauss,
encore une unité relative, p. ex. i2 ; c'est la condition nécessaire et
suffisante. <

Comme deuxième application, l'auteur indique deux théorèmes
relatifs aux groupes contenus dans le corps {Hm}. Il généralise le
théorème d'Hurwitz en remplaçant le dénominateur 2 par un nombre
quelconque. La généralisation la plus simple aboutit au domaine ayant
comme base



— 80 —a-|-ai-f-bi2 + is
1, CLI21 1

2 a
à condition que a et & soient solutions de l'équation de Fermât

ft2 — 2 na2 — 1,
où n est un nombre entier. Par exemple

m i
58 s'

(m 3 \ \ /41 \—}- m0J -f- —f- m1j i± -f- wî8 -J- 29m2j i2 +
les quatre ayant la signification susmentionnée.

Une note sur les recherches de l'auteur dans ce domaine a paru
dans les Comptes Rendus des séances de l'Académie des sciences de

Paris, t. 184, p. 59, séance du 10 janvier 1927.

3. A. Heyer (St. Gallen). — TJéber geometrische Oerter an kon~

fokalen Kegelschnitten.

In allen Aufgaben bedeutet A einen Hauptscheitel, B einen
Nebenscheitel, F einen Fokus, c die lineare Exzentrizität. Zentrum
Ursprung des Systems.

I. Gegeben sei eine Schar konfokaler Kegelschnitte. In F sei das
Lot zur Hauptachse errichtet, in den Schnittpunkten desselben mit den
Kurven seien die Tangenten angelegt und von F die Lote auf die
Tangenten gefällt. Gesucht ist der geometrische Ort für die Fusspunkte.

1/ + (C — x) 1 / — (Gerade Strophoide)
V 2c — x

II. Gegeben sei eine Schar konfokaler Ellipsen. In jeder ziehe
man von B aus die Fokussehne. Dann ziehe man von B aus die
Parallele zur Hauptachse, vom andern Endpunkt aus die Parallele zur
Nebenachse und bestimme den Schnittpunkt dieser Geraden. Man erhält

12 (qq
y + cv /— („ Schützenbogen " nach Newman)

V 2 c— x

>/!
Asymptote : x 2 c

5 c / 2
Inflexionspunkt : x y c w —

In F ist ç — c

III. In einer Schar konfokaler Ellipsen ziehe man in jeder von B
aus eine Fokussehne und bestimme deren Pol in bezug auf den
konzentrischen Kreis mit r a. Gesucht ist der geometrische Ort des Pols.

x y2
x2 -f- y2, — (Kurve von Longchamps)

c
Asymptote : x c
Tiefster Punkt : x y — 2 c
Inflexionspunkt: x — 4 c
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IV. Gegeben ist eine Schar konfokaler Ellipsen. In jeder zieht man
von einem Nebenscheitel eine Fokussehne und von einem Endpunkt des

zugehörigen Parameters den Durchmesser. Man bestimme den geometrischen
Ort des Schnittpunktes dieser Geraden.

(c — x) 2

y i y/ c (2 x — c)

c
Asymptote : X —

C
Im Fokus ç —

2

V. Gegeben eine Schar konfokaler Ellipsen. Man verbinde A mit
B und fälle vom Zentrum das Lot auf A B. Gesucht ist der geometrische

Ort des Fusspunktes dieser Lote.

(y2 — x2) (x2 -}- y2)2 c2 x2 y2

tg <p

r c vV
xlsymptoten : x + y

c 2
Inflexionspunkt ; x — — y 2 y — t c

3 3

c
Im Zentrum: g

2

4. J. Kiemse (Schmölln-Thüringen). — Die Idealtheorie der Liou-
mlleschen Integritätsbereiche der Quaternionenzahlen.

Die Arbeit ist ein ins Einzelnste entwickelter Teil einer allgemeinen
Theorie der endlichen Rationalitätsbereiche in Quaternionen und gibt
die vollständige Theorie der Integritätsbereiche und Diskriminanten
der Ideale und deren Multiplikation und Primproduktdarstellung. Sie ist
gegründet auf die zahlen- und idealtheoretischen Begriffsschöpfungen und
Beweismethoden von Gauss, Kummer, Dirichlet, Dedekind, Minkowski,
Hurwitz, Landau. Berührt, aber nicht verwandt werden Methoden
und Sätze von E. Noether, L. G. du Pasquier, A. Speiser, H. Brandt,
Dickson, Wedderburn, von denen zur Zeit der Entstehung nur die
Arbeiten der erstgenannten beiden Autoren dem Verfasser bekannt
gewesen sind.

Es ist dargestellt die Theorie der Rationalitätsbereiche mit den

Liouvilleschen Formen fJ 4" f i + ^2 ^2 gs £3 5 çi ç2 çs als

Relativnormenformen, welche bis auf Isomorphien zugleich alle qua-
ternären quadratischen Formen mit Komposition in sich schliessen. Es
werden zunächst alle umfassendsten Integritätsbereiche über dem
Bereich aller durchaus ganzen Quaternionen dargestellt und abgezählt, zu
welchen Ergebnissen die Theorie der algebraischen quadratischen Zahl-
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körper verhilft. Alsdann werden die Diskriininanten bestimmt und für
die weitere Untersuchung handliche Isomorphiegesetze gefunden.

Die Theorie der Ideale gründet sich auf die wesentliche Wahrheit,

dass es rechts- und linksseitige Ideale gibt und dass die Ideale
eines Integritätsbereiches in ganz bestimmter Weise von anderen um-
fasst werden und wieder andere umfassen. Primideale werden nur von
sich selbst und vom Einheitsideal umfasst oder geteilt. Grundbegriff
ist die Relativnorm n (21) eines Ideals 21 als Produkt des Zahlenum-
fanges in den Zahleninhalt desselben, der grössten positiven Rationalzahl,

welche alle Qüaternionen des Ideals teilt, in die kleinste positive
Rationalzahl des Ideals. Ein Ideal vom Zahlenumfang 1 heisst primitiv.
Die Primideale sind primitive Ideale, deren Relativnormen natürliche
Primzahlen sind. Die Primärideale haben Primzahlpotenzen als Relativnormen.

Die Abzahlung der primitiven und die Anzahlbestimmung aller
Ideale gegebener Relativnorm a gelingen durch eine Verallgemeinerung
des Hurwitzschen Zuordnungssatzes. Die Anzahlen sind û (a) und

0(a), und es ist

${nv) 1; 0(r —1; ^ "7 1 ; 0(nv) 1 für eigentliche Diskri-
minantenteiler ;

& (tzv) (ti -f- 1 ; 0{nv)—26\ ö — alle positiven Teiler
von nv

für Primzahlen n. welche die reduzierte Diskriminante 2 ~4 A nicht
teilen. Die Abzählfunktionen zusammengesetzter Relativnormen a sind
die Produkte der Funktionswerte der maximalen Primpotenzen in
a. Zweiseitig sind die Zahlenideale (a), welche durch eine natürliche

Zahl erzeugt werden, ferner die Ideale, deren Relativnormen
allein durch eigentliche Diskriminantenteiler geteilt werden und die
Produkte dieser beiden Arten. Einseitig sind alle anderen Ideale.

Jedes Ideal 21 ist eindeutig darstellbar als kleinstes gemeinschaftliches

Vielfaches von Primäridealen. Diese Darstellung ist absolut
eindeutig für Primitivideale, für imprimitive allein in Rücksicht der
Bildungsvorschrift der Komponenten

(St, n{%) *

(Emmy Noether * Andreas Speiser).

Zwei verschiedene primitive Ideale derselben Relativnorm haben

nur imprimitive Qüaternionen gemeinsam. Diese Bemerkung gibt zur
Bildung der ursprünglichen Idealsterne vom Kerne a Anlass, deren
jeder ein fi (a) strahliges Gebilde darstellt, dessen Strahlen je vom
Mass a2 Strahleinheiten sind und welche sich gesetzmässig aufzweigen.
Es gibt soviele Aufzweigungs- und Strahlordnungen im Stern als
Möglichkeiten, den Kern als Primzahlprodukt darzustellen, das sind

<>! -f- v2+ n)!
V(a) — : *.

V1\ V% \ Vgl
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Jeder Faktor ni der Darstellung bestimmt eine Aufzweigung jedes
Strahles in ni -|- 1 oder ni neue Strahlweiten, je nachdem die Primzahl

n i ein neuer Faktor ist oder Wiederholung eines früheren. Jedes
Galoisfeld der Theorie von Herrn A. Speiser trägt einen links- und
einen rechtsseitigen ursprünglichen Idealstern, welcher je alle
kongruenzlösenden Reste des Feldes in sich vereint.

Die Einsicht in die Gestaltung der Idealsterne ist von so wesentlicher

Bedeutung, dass die weitere Theorie völlig auf diese Erkenntnisse

gestützt werden kann. Sie ermöglicht vorerst eine Bezeichnung
aller primitiven a-seitigen Ideale derselben Relativnorm durch je ein
Indizessystem von solcher Art, dass der grösste gemeinsame Teiler je
die gemeinsamen Anfänge der Indizessysteme als Indizessystem besitzt,
indes das kleinste gemeinschaftliche Vielfache alsdann Produkt des

grössten gemeinsamen Teilers in eine eindeutig bestimmte Rationalzahl

ist.
Des weiteren ergibt sich die Möglichkeit, ein System von

Koordinaten der rechtsseitigen Primideale zu wählen, welches zugleich
Koordinatensystem der linksseitigen Primideale ist und durch Bildung
der (primitiven) Produkte der Koordinaten alle (primitiven) Primärideale

eindeutig mit Koordinaten ausstattet. Es gibt unendlich viele
Koordinatensysteme der Primärideale, welche sich durch Einbeziehung
des Primärdarstellungssatzes zu Koordinatensystemen aller Ideale des

Integritätsbereiches erweitern. Jedes Koordinatensystem bestimmt eine
eindeutige Multiplikation je der rechts- und linksseitigen Ideale
untereinander und einen eineindeutigen Primproduktdarstellungssatz der a-seitigen

Ideale. Dieser Eindeutigkeitssatz ist Invariante der Koordinatensysteme

und bei Hinzüfügung des Kommutativgesetzes mit dem
Eindeutigkeitssatze der algebraischen Idealtheorie identisch.

Verzicht auf die Assoziativität der Idealmultiplikation und strengere

Definition der Hauptideale ermöglichen die Einführung der
Sternmultiplikation, welche als Produkt von Sternhauptidejilen immer wieder
solche erzeugt. Wesentlich für diese Theorie ist dér Begriff des a-seitigen

Idealsternsystèmes der Charakteristik {tz1? jt2, tt?}, welches

Inbegriff aller unendlich vielen a-seitigen Idealsterne von einem Kerne

n** .nv?sist; vu v2, 1, 2, oo.

Der Inbegriff aller Idealsterne und Idealsternsysteme heisst der
Idealsternhimmel des Integritätsbereiches.

Die Einführung der Z-Funktion und die transzendenten Methoden
von Dirichlet, Kummer, Dedekind geben Anzahlsätze für die Darstellbarkeit

natürlicher ganzer Zahlen durch Liouvilleformen.
Indes die Arbeiten der Herren A. Speiser und H. Brandt wesentlich

die im Inkommutativen noch gültigen Beziehungen a priori
darstellen, fügt der Verfasser die zur ABrundung der Theorie erforderlichen
„Verbindungen im einzelnen" hinzu.
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5. M. Gut (Zürich). — Über die Klassenzahl der quadratischen Körper.
Der Vortragende referiert über seine unter dem gleichen Titel

erschienene Arbeit in der Vierteljahrsschrift der Naturforschenden Gesellschaft

in Zürich (72. Jahrg., 1927, S. 197). Auf Grund der Hecke'schen
Funktionalgleichung ergibt sich ein vom klassischen etwas verschiedener
Ausdruck für die Klassenzahl eines beliebigen algebraischen Zahlkörpers.
Vermöge eines Satzes aus der Theorie der divergenten Dirichlet-Reihen
erhält man für quadratische Körper so insbesondere eine Bestimmung
der Klassenzahl ohne Verwendung der Gauss'schen Summen. Der
Vortragende fügt bei, dass er von Herrn Prof. Hecke nachträglich erfahren
hat, dass E. Landau die beiden im Falle der quadratischen Körper
berechneten divergenten Reihen schon früher einmal in anderer Weise
abschätzte, vgl. Crelle'sches Journal, Band 125 (1908), S. 64 u. ff.,
besonders S. 182—187.

6. R. Wavbe (Genève). — Sur la stratification et les mouvements
internes des planètes.

L'auteur n'a pas envoyé de résumé de sa communication.

7. G. PolYA (Zürich). — Notwendige Determinantenkriterien für
die Fortsetzbarkeit einer Potenzreihe.

Es sei A eine in der ^-Ebene gelegene abgeschlossene Punktmenge,
q der Radius des kleinsten Kreises vom Mittelpunkt 0, der A
enthält und ç der Radius des kleinsten Kreises von demselben Mittelpunkt,
der den perfekten Kern von A enthält (ç 0, wenn A abzählbar
ist). Tn (z) Zn -j sei das Polynom n-ten Grades, das in A am
wenigsten von 0 abweicht, und xn das Maximum von \Tn {z)\ in A ;

es existiert bekanntlich (M. Fekete) der Grenzwert lim w\/tn x.

und f (z) sei regulär und eindeutig in der Komplementärmenge
der Punktmenge A. Man setze

o

Es ist g > ç *> x.

Es sei q der Radius des Konvergenzkreises der Reihe

(i) 7 + ^ + S + - + ^+- ^2)
Cln

CLn CLn-iç-i \
&n-1-1 dtn4* 2 • • • &n k i (k)

&n k — 1 Ctn -{- k • • • &n -j- 2k — 2

Wenn n so mit k wächst, dass lim — x. ist
fc^oo n -f- k

(2)
OO
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In dem Sonderfall n — 0 (also x l) geht die Ungleichung (2)
für viele speziellen Funktionen f(z) (und vielleicht für alle) in eine

Gleichung über bei richtiger Zuordnung von A zu f (z). Ein Korol-
lar von (2) : Wenn eine ganzzahlige Potenzreihe eine eindeutige, aber
nichtrationale Funktion f (z) darstellt, ist die Gesamtheit der singulä-
ren Punkte von /*(,£) nicht abzählbar.

Ein Nebenresultat der Untersuchung: Wenn die Punktmengen A
und A * abgeschlossen sind, A * in A enthalten und A — A * abzählbar

ist, und t* zu A* so zugeordnet ist wie t zu A, so ist r* — r.

8. F. Gonseth (Berne) et G. Juvet (Neuchâtel). — Sur la
relativité à cinq dimensions et la théorie des quanta.

Voir: C. P. Acad. Sc., Paris, t. 185, p. 341, 412, 448 et 535,
août-septembre 1927.

9. A. Speiser (Zürich). — Über Gruppen und Gruppoide.

Mit Hilfe des Matrizenkalküls lässt sich die Gesamtheit der Ideale
in einem Integritätsbereich einer Algebra aufstellen und die Art, wie
sie in einander enthalten sind, überblicken. Brandt hat gezeigt, dass

die Gesamtheit aller Ideale einer rationalen Algebra ein Gruppoid
bildet. Nimmt man das von Krull und Artin eingeführte inverse Ideal
hinzu, so kann man die Teilbarkeit der Ideale, die sich auf den
Begriff des Enthaltenseins zweier Ideale gründet, und die Multiplikation
der Ideale, die auf das Gruppoid und damit auf die Basismultiplikation
gegründet ist, miteinander verbinden. Das Ideal (d), das links zum

Integritätsbereich |l|, rechts zu 1 gehört, sei im Sinne der ersten
Definition durch [b) teilbar, das links zu [1], rechts zu (1) gehört.
Dann bilde man durch Basismultiplikation {a) X (b—1] {b]. Dieses

Ideal gehört links zu und rechts zu [1] und es gilt {b] X [*)={«),
womit im Sinne des Gruppoids ein Faktor aus [a) abgespalten ist.
Eine Fortsetzung dieses Verfahrens zeigt, dass man damit die Zerlegung

der Ideale in Primideale im Gruppoid vollständig auf das
Problem im Sinne der ersten Definition zurückführen kann. Falls {a)
und [ b ganze Rechtsideale in 1 sind, so ist auch {*] ein solches

in [1], denn alle Zahlen von {a) sind in [b) enthalten, daher ist auch

(«Hb-1] ein Teilsystem von [b) (b—1] [1].
Man erhält alle Ideale einer Algebra, indem man die Rechtsideale

eines bestimmten Integritätsbereiches rechts mit allen inversen
zusammensetzt, gerade wie man alle Strecken eines Raumes erhält, indem
man von einem Punkt aus alle Vektoren abträgt und ihre Endpunkte
verbindet. Denn es sei |a] irgendein Ideal, ferner (1) ein
Integritätsbereich. Dann bilde man [1] X (1) [b). Letzteres ist ein
Rechtsideal in (1). Es wird nun {a][b) { c) ein Rechtsideal in 1

und {a] {c) (b"1], also Produkt eines Rechtsideales in (1) und
eines inversen, womit die Behauptung bewiesen ist.

15
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Falls die Ideale [et) und |b) zueinander prim sind, so ist das

kleinste gemeinsame Vielfache «( a £>) -( b) das Produkt im Sinne
der ersten Definition. Um dasselbe nach der zweiten zu machen, setze

man <(a 6) (6-1} -(ctj, und man erhält b) (aj |b). Man

kann offenbar die beiden Ideale [d) und <^a} als „stellvertretende Ideale"
bezeichnen, das Gemeinsame derselben ist analog zum Vektor, der das
Gemeinsame zweier Strecken mit derselben Richtung und Grösse
bezeichnet. Die Restklassen genommen nach dem kleinsten zweiseitigen
Ideal, das [a) als Teiler besitzt, sind für [a) und ^ a} dieselben.

10. H. Bbandt (Aachen). — Zur allgemeinen Idealtheorie.
Der Vortragende entwickelt zunächst nach dem Vorbilde von Dede-

kind1 eine allgemeine Theorie der Moduln für eine beliebige assoziative,
eine Haupteinheit enthaltende Algebra SI2. Unter einem Modul a ist
dabei ein System von Zahlen aus 31 verstanden, das mit a, /?, • • stets
auch alle linearen Kombinationen a a -f- b ß -f- • • enthält, wobei ar
&, - • • irgendwelche Zahlen aus einem Koeffizientensystem § bezeichne.^
das aus dem Zentrum $ von 31 so ausgewählt ist, dass es die Haupteinheit

enthält und in bezug auf Addition, Subtraktion und Multiplikation
geschlossen ist (also Ringeigenschaft besitzt).

Um die Rechenoperationen für die Moduln zu definieren, seien a
und b irgend zwei Moduln und a die Zahlen aus a, ß die Zahlen aus b-
Addition und Subtraktion können dann wie im kommutativen Fall
erklärt werden : d -f- b (a, b) t ist der grösste gemeinsame Teiler
von d und b, d. h. die Gesamtheit der Zahlen a -(- ß, d — b [a, b] t>

ist das kleinste gemeinsame Vielfache, d. h. der Durchschnitt der Moduln
d und b oder die Gesamtheit der sowohl unter den a wie den ß
enthaltenen Zahlen. Bei der Multiplikation und Division der Moduln
ergehen sich naturgemäss einige Aenderungen, da das kommutative
Multiplikationsgesetz nicht gefordert wird. Unter dem Produkt d X b C

verstehen wir die Gesamtheit der mit Koeffizienten aus j gebildeten
linearen Kombinationen der Produkte a ß, unter dem Quotienten a/b qi
(lies d durch b) die Gesamtheit der Zahlen hi, für welche der Modul
hi b durch d teilbar wird und ebenso unter dem Quotienten b \ d — q2-
(lies b in a) die Gesamtheit der Zahlen h 2, für welche der Modul
b H2 durch a teilbar wird.

Für einen beliebigen Modul a werden die Quotienten a / a a°T
a \ a — a 0 die Links- bzw. Rechtsordnung von a genannt. Diese
Ordnungen können auch erklärt werden als die umfassendsten, den
Gleichungen a0 x a a, a x cto a genügenden Moduln a°, Cto. Bildet
man do / û und a\ û°, so ergibt sich derselbe Modul, der daher
durch a \ a / a a-1 bezeichnet und reziproker Modul genannt
werden kann.

1 Dirichlet-Dedekind, Zahlentheorie, 4. Auflage, S. 493.
2 Dickson, Algebren und ihre Zahlentheorie, Zürich 1927.
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Ein Modul a heisst umkehrbar, wenn der reziproke Modul a-"1
den Gleichungen a-""1 X Ct =- cto, a X û""1 a° genügt.

Unter einer eigentlichen Multiplikation, bezeichnet durch a 6 — C

(also ohne X~z<dchen) verstehen wir eine solche, hei der weder a noch
b durch einen umfassenderen Modul ersetzt werden kann, ohne dass
das Produkt sich ändert. Aehnlich kann man eine eigentliche Division
definieren. Im Sinne der eigentlichen Multiplikation und Division sind
die drei Gleichungen ab —C, C /b a, a \ C b gleichbedeutend.
Für die sechs Ordnungen a°,.ûo, b°, bo, C°, Co gelten die Bedingungen
öo b°, a° c°, bo Co, die man leicht aus dem Begriff der
eigentlichen Multiplikation ableitet.

Moduln, welche (direkt oder indirekt) durch eigentliche Multiplikation

miteinander verbunden werden können, mögen als verwandt
bezeichnet werden. Dann gilt der folgende allgemeine Satz : Die
sämtlichen mit einer Ordnung verwandten umkehrbaren Moduln sind durch
die eigentliche Multiplikation zu einem Gruppoid1 verknüpft.

Wendet man die Modultheorie im besonderen auf eine rationale
Dedekindsche Algehra an (d. h. eine solche ohne Radikal) und betrachtet
nur die mit $ als dem Ring der natürlichen Zahlen gebildeten n-gliedrigen
Moduln, wobei n die Ordnung der Algebra bezeichnet, so ist namentlich
der Fall von Interesse, dass überhaupt alle mit einer Ordnung verwandten
Moduln umkehrbar sind.

Das ist dann und nur dann der Fall, wenn das Komplement der
Ordnung umkehrbar ist. Dieser Satz war für den kommutativen Fall
schon Dedekind bekannt.

Von einer beliebigen Ordnung kann man durch Erweiterung stets
zu einer Ordnung gelangen, die ein umkehrbares Komplement besitzt.
Eine maximale Ordnung muss daher stets dieser Bedingung genügen.
Bezeichnet man die Moduln, welche zu maximalen Ordnungen gehören,
als Ideale, so gilt daher der Satz : Die Ideale einer Dedekindschen
Algebra sind durch die eigentliche Multiplikation zu einem Gruppoid
miteinander verknüpft.

Weiter werden die Zerlegungsgesetze der ganzen Ideale besprochen.
Ein ganzes Ideal ist dabei ein solches, das durch die eine (und somit
auch durch die andere) der beiden zugehörigen Ordnungen teilbar ist.
Hier gilt der fundamentale Satz: Wenn das Ideal a durch das Ideal b
teilbar ist, so gibt es ganze Ideale t, %t so dass a V b 3, und wenn
umgekehrt diese Gleichung gilt, so ist a durch b teilbar. Daher decken
sich wie im kommutativen Falle die Begriffe Teiler und Faktor.

Von besonderer Wichtigkeit ist der Begriff des Distanzideals, das
für zwei Einheiten Ci, e2 durch die Formel (e2Xei)~'1 b gewonnen
wird. Dies Ideal b ist ganz und gemeinsamer Linksfaktor, gemeinsamer
Rechtsfaktor und grösster gemeinsamer Teiler aller ganzen Ideale, die

1 H. Brandt, Ueber eine Verallgemeinerung des Gruppenbegriffes, Math.
Annalen 96 (1926) S. 360.



— 88 —

links zu ei und rechts zu ß2 gehören, kann also gewissermassen als
der kürzeste Weg, der von Ci nach e2 führt, angesehen werden.

Mit Hilfe dieser Begriffe und Sätze lässt sich in Verbindung mit
den Untersuchungen des Herrn Speiser (vgl. Dickson1, letztes Kapitel)
die Zerlegung der ganzen Ideale in Primfaktoren vollständig erledigen.

11. P. Finsler (Zürich). — Quadratische Formen und algebraische
Gebilde.

Die Frage, unter welchen Bedingungen in einer linearen Schar
von quadratischen Formen eine definite- Form enthalten ist, steht in
Zusammenhang mit einer Klasse von algebraischen Gebilden.

Die einfachsten algebraischen Gebilde, die zum w-dimensionalen Kaum
gehören, d. h. in keinem kleineren linearen Kaum enthalten sind, und
die aus irreduzibeln Teilen der Dimension pi und der Ordnung
bestehen, genügen der Bedingung 2 (Pi~\-Qi) =n-f-1. Sie gehören
zusammen mit gewissen andern reduzibeln Gebilden zu den „Freigebilden",
die so zu definieren sind :

Ein algebraisches Gebilde G heisst Freigebilde, wenn der Schnitt
von G mit einem beliebigen linearen Kaum stets entweder aus unendlich
vielen oder nur aus linear unabhängigen Punkten besteht.

Der Einteilung nach der Ordnung entspricht dann die folgende :

Ein Gebilde heisst vom Zwang £, wenn die Anzahl der einzeln
liegenden Schnittpunkte mit einem linearen Kaum um £ grösser sein
kann, als die Anzahl der linear unabhängigen unter ihnen.

Es gelten einfache Sätze über die Freigebilde, die auch bei jeder
speziellen Lage erfüllt sind. So ist z. B. der Schnitt mit einem linearen
Kaum stets wieder ein Freigebilde.

Ferner gilt der Satz : Ist im Reellen ganz auf der einen Seite
einer Hyperfläche zweiter Ordnung ein Freigebilde gegeben, so lässt
sich durch dasselbe stets eine andere Hyperfläche zweiter Ordnung legen,
welche die erste nicht trifft. Dieser Satz gilt nur für die Freigebilde.

Es folgt : In einer linearen Schar von quadratischen Formen
Q -j- 2Xi Qi ist dann und nur dann stets eine definite Form enthalten,
wenn 2Ii Qi 0 die Schar aller Hyperflächen zweiter Ordnung darstellt,
die ein ganz in Gebiet Ô > 0 oder Q <£ 0 gelegenes Freigebilde enthalten.

Es ergibt sich folgende Anwendung auf die Variationsrechnung :

Die von J. Hadamard (Bull. Soc. Math, de France 30 [1902])
angegebenen notwendigen und hinreichenden Bedingungen für ein Minimum
bei w-fachen Integralen mit m unbekannten Funktionen sind für m 2

oder n — 2 im wesentlichen identisch, jedoch nicht mehr für m £> 2,
n £> 2.

12. Rud. Fueter (Zürich). — Reziprozitätsgesetze in quadratisch-
imaginären Körpern.

Die von mir im zweiten Teile meines Buches: „Vorlesungen über
die Theorie der singulären Moduln und die komplexe Multiplikation der

1 Dickson, loc. cit.
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elliptischen Funktionen" aufgestellte Theorie ist hinreichend, um
diejenigen Reziprozitätsgesetze aufzustellen, die dem Eisenstein'sehen
Reziprozitätsgesetze im Falle der absolut-Abelsehen Körper entsprechen.
Es zeigt sich, dass die Funktion % (z) eine weitgehende Analogie zu
der Exponentialfunktion aufweist. Ist z. B. n eine primäre Primzahl
von h m), m quadratfrei und negativ, d. h. :

71 EEEE 1 (mod. 4),
was im wesentlichen auf dasselbe hinauskommt, so haben die Zahlen

(001 CO i —I— ÜGa (O9\
% — 1 folgende Eigenschaften :

\ 4 n J

a) Sie sind Einheiten.

h\+ 10) £ — 1 ist, abgesehen von einem genau an-
\ 4 n

gebbaren geraden Teiler, nur durch Primidealteiler von ti teilbar.
c) Ihr Relativgrad zum Klassenkörper von h ist n (ti) — 1.

d) Der Oberkörper ist relativzyklisch zum Klassenkörper von k.
Nun gilt die Formel :

i=?i
(£C) 4 71

x — x (mod. jt), x ^ x 1 (mod. 4),

wo nn 1 eine Zahl des Klassenkörpers ist und x ein solches System
1

von — (n (tz) — 1) inkongruenten Zahlen (mod. n) durchläuft, dass
2

auch die x2 inkongruent sind. Hieraus und aus dem Zerlegungssatz
der Primideale im Oberkörper folgt sofort, wie im Falle des gewöhnlichen

quadratischen Reziprozitätsgesetzes :

{=}-{;}•
wo {} das quadratische Restsymbol in k ist, und ti und x beide
primäre Primzahlen sind. Dieses Gesetz lässt sich noch bedeutend
verallgemeinern.

Entsprechend können die Betrachtungen im Falle des l.ten
Reziprozitätsgesetzes, 1 eine ungerade Primzahl, durchgeführt werden.

13. J. J. BurCKHABDT (Basel). — Die Algebra des Dieders.

Will man die Struktur einer Algebra untersuchen, so zerlegt man
sie in eine direkte Summe, d. h. man zerlegt sie derart in die Summe
einzelner Subalgebren, dass das Produkt zweier Grössen aus verschiedenen

Komponenten stets Null ergibt. Auf diese Weise wurde die durch
die Diedergruppe bestimmte rationale Algebra untersucht und dies für das
Dieder mit drei Ecken näher ausgeführt. Diese Algebra zerfällt in die
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direkte Summe dreier Komponenten, wovon zwei von der Ordnung- 1 sind,
also dem Körper der rationalen Zahlen äquivalent, und die dritte von der
Ordnung- 4 ist. Da jede Grösse aus dieser dritten Komponente einer
quadratischen Gleichung genügen muss, gelingt es, die Norm zu defi-

2 i 2
nieren; sie ist hier die quadratische Form rj1 — V-i V9 i V9 —
/ 2 2 \ X J. & a

It] 3 — ^3^4 + ^4 wo rjt r\ 4 rationale Zahlen bedeuten. Wenn
wir die quadratische Form durch eine rationale Transformation auf
die Stammform f3 f2 transformieren, so liefert uns die dazu

transponierte Transformation, auf die Basisgrössen der dritten
Komponente ausgeübt, deren Transformation auf eine vollständige Matrixalgebra.

Im allgemeinen Fall des Dieders mit ungerader Eckenanzahl
m lassen sich auch vorerst zwei Komponenten der Ordnung 1 abspalten.

Yyi IDer übrigbleibende Teil zerfällt im Körper der Charaktere in —-—
dk

Algebren der Ordnung 4, deren Summe sich wieder rational darstellen
lässt. Auch hier genügt eine allgemeine Grösse daraus einer quadratischen

Gleichung, welche die Norm definiert, die wiederum eine indefinite
quadratische Form ist.

14. Wolfgang Krull (Freiburg i. Br.). — Über unendliche
algebraische Zahlkörper. \A

Es handelt sich um die Übertragung des Satzes, dass jedes Ideal
der Hauptordnung eines endlichen algebraischen Zahlkörpers eindeutig
in Primidealfaktoren zerlegbar ist, auf unendliche algebraische
Zahlkörper. Die Ergebnisse lauten :

1. Jedes Ideal der Hauptordnung eines beliebigen algebraischen
Zahlkörpers kann dargestellt werden als das kleinste—gemeinschaftliche—
Vielfache von endlich oder unendlich vielen „einartigen" Idealen, die
jeweils nur durch ein einziges Primideal teilbar sind. Treten nur endlich

viel Komponenten auf, so ist die genannte
kleinste—gemeinschaftliche—Vielfachendarstellung eindeutig und kann durch die
Produktdarstellung ersetzt werden.

2. Die Gesamtheit der durch ein festes Primideal p teilbaren
einartigen Ideale besteht i, a. nicht nur — wie bei den endlichen
Zahlkörpern — aus den Potenzen von p. Doch kann jedes durch p
teilbare einartige Ideal durch eine reelle Zahl, seinen „Wert", und die
Angabe ob „endlich" oder „unendlich" vollkommen charakterisiert
werden,

3. Besitzt jedes Ideal der Hauptordnung des Zahlkörpers K nur
endlich viel Primidealteilei:, so ermöglichen die unter 1. und 2.
skizzierten Ergebnisse einen genauen Einblick in die Teilbarkeits- und
Multiplikationsverhältnisse bei beliebigen Idealen aus AT. In allgemeinsten
Zahlkörpern hingegen muss man noch gewisse Gedankengänge aus der
Topologie zu Hilfe nehmen, auf die indes in dem Vortrag nicht
eingegangen wurde.
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S. Bays (Fribourg). — Sur le nombre des systèmes cycliques

de triples de Steiner différents pour N 6 n -f- 1 premier.
Le problème de l'obtention des systèmes cycliques -de triples de

Steiner différents pour N 6 n -f- 1 premier, est actuellement ramené
à celui de l'obtention des systèmes de caractéristiques différents, appartenant

à chaque diviseur d de 3 n.1
La recherche des systèmes de caractéristiques différents appartenant

à n et aux diviseurs de n a été ramenée au problème suivant :
2

Obtenir toutes les combinaisons constituées de x triples pris dans

n — 2 colonnes cycliques de triples des éléments 0, 1, 2, n — 1 ;

(a), et de y éléments pris dans la série (a), avec la propriété:
3 X -f- y n et dans la même combinaison les éléments sont tous
différents. Des combinaisons obtenues, ne retenir que celles qui ne
sont pas déductibles l'une de l'autre par les substitutions du groupe
{(0 12...

La recherche des systèmes de caractéristiques différents appartenant
«au diviseur d quelconque de 3 n, est maintenant ramené au problème
suivant:

Si d est n ou un diviseur de n, on a au plus n — 2 colonnes
cycliques (n — 2 pour d n) de triples des éléments 0, 1, 2,

Yl>

d — 1 ; (ß) ; les éléments (ß) représentent chacun - des éléments (a).
et

Il faut obtenir toutes les combinaisons de x triples pris dans ces
colonnes cycliques et de y éléments pris dans la série (a) avec la

3 Yt X
propriété : —-z 1- y — yi et dans la même combinaison les éléments

Uj

{a) représentés ou entrant effectivement sont tous différents.
Si d est multiple par 3 de n ou d'un diviseur de n, on a au

plus yi — 1 colonnes cycliques de triples des éléments (ß). Il faut

simplement obtenir toutes les combinaisons de ~ triples pris dans ces
o

colonnes, sans élément répété ou, autrement dit, contenant chacune les
d éléments (ß).

Dans l'un et l'autre cas, il ne faut retenir que celles des
combinaisons qui ne sont pas déductibles l'une de l'autre par les substitutions

du groupe {(012 ...d — 1 )}.
Avant ce résultat, j'avais pu pousser la recherche des systèmes

de caractéristiques différents et donc celles des systèmes cycliques de

triples de Steiner différents jusqu'à N — 43 ; je puis maintenant avec
du temps, obtenir les systèmes de caractéristiques différents appartenant

1 Voir mes second et troisième mémoires sur ce problème des systèmes
cycliques de triples de Steiner: l'un est dans le Journ. de math, pures et
appliquées, t. 2, 1928, fasc. 1, p. 78 à 98 ; l'autre est dans les Annales de la
Faculté des Sciences de Toulouse, t. XVII, 1925, p. 3 à 41.

2 Voir le troisième mémoire (celui des Annales de Toulouse) aux p. 29 à 41.
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à chaque diviseur d (excepté 3 n lui-même) jusqu'à N 97, et surtout

donner presque immédiatement ceux appartenant aux petits diviseurs
de 3 n, au diviseur 3 en particulier, pour des iV= 6 n 1 premiers
plus grands, même aussi grands que l'on veut, pourvu que j'en aie
une racine primitive.

16. S. Bays (Fribourg). — Sur un problème posé par Cayley en
rapport avec le problème cles systèmes de triples de Steiner.

Le problème posé par Cayley, relativement au problème des
systèmes de triples de Steiner, est le suivant. Nous l'énoncerons d'une
façon plus explicite :

Un système de triples de Steiner de N éléments est tel que
chaque couple des N éléments entre une fois et une seule fois dans
un de ces triples. Un système de triples de Steiner contient donc

triples de N éléments en N -— 2 systèmes de triples de Steiner?

Cayley a fait remarquer que pour 7 éléments (les systèmes de

triples de Steiner n'existent que pour les N des formes 6n -f- 1 et
6n-{-3) cette répartition n'est pas possible; sur les 30 formes
différentes que prend l'unique système de triples de Steiner de 7 éléments

par les 7 permutations de ces éléments, on peut en trouver deux
différentes par tous leurs triples et pas davantage, alors qu'il en
faudrait cinq pour contenir les 35 triples de 7 éléments. Il a donné
une démonstration, fausse d'ailleurs (voir Actes de la S. H. S. N.,
Lugano, 1919, IIme partie, p. 74), incitant à croire que pour 15 éléments
cette répartition n'est pas possible non plus. J'ai montré que pour
9 éléments (Enseignement mathématique, n° 1-2, 19me année, 1917,
p. 57 — 67) la question de Cayley a 2 solutions différentes (ne provenant

pas l'une de l'autre par une permutation des éléments), et à
l'encontre de Cayley qui paraît avoir pensé plutôt le contraire, j'ai des
raisons de croire que cette répartition de l'ensemble des triples de N
éléments en N— 2 systèmes de triples de Steiner doit être possible
au moins pour certains N des formes 6n -j- 1 et 6n -1- 3.

Pour les N 6n + 1 premiers en-dessous de 100, je puis donner

maintenant, pour chacun d'eux, un nombre de systèmes cycliques
de triples de Steiner différents par tous leurs triples, supérieurs à

N — 2
—7 exceptés, comme il vient d'être dit, pour N — 7. Ainsi pour

dà

N — 61, j'obtiens avec la plus grande facilité, parce que les systèmes
de caractéristiques appartenant aux petits diviseurs de 3n, ou à des
diviseurs que je dirais commodes, me suffisent pour cela, 44 systèmes
cycliques de triples sans un triple commun, alors que la répartition de
Cayley en demanderait 59. Pour N 73 j'en obtiens 56 sur 71 qui
seraient nécessaires.

N(N - 1)
6

triples. Pourrait-on répartir les N(N— 1) (N — 2)
6
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Il faut remarquer d'ailleurs que je n'opère qu'avec une catégorie
très restreinte de systèmes de triples, les systèmes de triples cycliques;
si je parvenais à une solution de la question de Cayley par cette voie,
elle serait une solution d'un type particulier aussi, puisque possédant
le groupe cyclique {| x, 1 -f- X |} ; c'est une raison de plus, me
semble-t-il, de penser que, si nous avions à disposition tous les systèmes
de triples de Steiner qui existent pour N éléments, la répartition de

Cayley serait probablement possible.
H.-S. White a démontré (Transactions of the Amer. Math. Soc.,

vol. XVI, n° 1, 1915) que pour iV=31, il y a déjà plus de 87 1012

systèmes de triples différents (il y a 80 systèmes cycliques de triples
différents pour N — 31) ; avec toutes les formes qu'ils peuvent prendre
chacun par les permutations du groupe symétrique des 31 éléments,
on a une idée du nombre excessivement grand déjà pour iV 31, de

systèmes de triples à disposition pour chercher une répartition de

Cayley.
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