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- . 1. Section de Mathématiques
: Seance de la Société Suisse de Mathématiques
SR I;undl, 30 aoﬁt 1926

Preszdent Prof Dr F. GONSETH (Berne)
Secrétaire: D* P. LamBossy (Fribourg)

1. L.-G. Du Pasquier (Neuchatel). — Sur les nombf es premzers
dans les progressions arithmétiques du deuxiéme ordre. : !

Soit m4(a, b, ¢; x) le nombre des nombres premiers- << & con-
tenus dans la progression arithmétique générale du 'déuXié"me—Brdre

’ fn) = an®+ bn + c, )
ou a, b, ¢ sont trois mombres entiers, arbitrairement choisis mais fixes,
tandls que 7 parcourt la suite 1111m1tee des nombres naturels. Sl Pon
-pouvait démontrer que -

my(a, b, c; 98)—*@0 quand ac——>c>o (2)

on auralt résolu un probléme fameux qui intéresse beaucoup de mathé-
matlcwns IL’auteur montre d’abord les trois conditions auxquelles a, b

et ¢ doivent satisfaire pour que (2) puisse avoir heu, pu1s indique
pour ce nombre 7o la formule asymptotique :

e e, ®

ou 7 z représente le logarithme mtegral de z. La formule (3), sem-

blable a celle de MM. Hardy et Littlewood, entrainerait (2); mais comme

elle n’est pas démontrée en toute rigueur, il y a intérét a la vérifier

expérimentalement. C’est ce que 'auteur a fait pour les six cas suivants:

() =mn*+1 ;[0 =101n®F 20n + 1; f;(n) = 10001 n? -4 2007 -+ 1;

(n) =n*~+n+1; fi(n) =122n* + 2250 -+ 1; f; (n) =10610 702} 206 n 1.

‘La factorisation des nombres f; (%) est poussée jusqu’a 225 000 000.

Grace a cette limite élevée, I'auteur a pu constater I’inexactitude d’une

présomptlon de Gauss admise depuis plus d’un siécle (n(x) << ch)

Apres avoir introduit deux nouvelles notions: l’écart absolu de la pro-

gression (1), savoir =z, (a, b, c; .17) — @ (90), et Décart relatif de la
progressmn (1) savoir -

TTo (a b, c; x) — ' () ng(m)

@ (x) T A @)

a () = 0

‘__17'

- Jauteur fermlne sa commumcatlon par six proposmons relatives aux
nombres premiers contenus dans les progressions arithmétiques du

deuxiéme ordre et presente plusieurs tableaux graphiques se rapportant
a ce sujet. , ,
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2. E. MEISSNER (Zollikon-Ziirich). — Uber eine singuldre Differential-
- gleichung, die in einem Problem der Seismologie aufiritt.

Oberflichen-Querwellen in einem elastischen Halbraum
sollen diejenigen Wellen heissen, die horizontal und rechtwinklig zur
Ausbreitungsrichtung schwingen und die mit der Tiefe so rasch ab-
klingen, dass ihre Energie pro Oberflicheneinheit endlich ist.

Die mathematische Formulierung fithrt fiir solche Wellen in einem
Halbraum, dessen elastische Eigenschaften Funktionen der Tiefe 2z sind,
auf die Differentialgleichung:

Lu)+ Au=o0 L(u) = %(p(w)-%)——q(w)u

fir die ein Integral so zu suchen ist, dass

o0

<_‘_Z_'f_) — 0 faﬂ . dac = endlich.
dw 0 ‘

/]

Dieses Problem ist von H. Weyl (Math. Ann. 68, 1909) behandelt
worden. Die Gleichung gehért dem von ihm als Grenzpunkttypus
bezeichneten Fall an. Fiir das seismologische Problem wichtig ist dann
die Frage nach dem Punktspektrum des Frequenzparameters bei
vorgegebener Wellenlinge, das i. a. neben einem Streckenspektrum auf-
tritt. Jedem Eigenwert desselben entspricht eine Dispersionskurve der
~ Wellen. Existiert kein Punktspektrum, so gibt es keine Oberflichen-
wellen (homogener Halbraum). In den seismologisch wichtigen Fillen
nimmt die Zahl der Punkte des Punktspektrums mit wachsender Wellen-
linge ab; eine Dispersionskurve bricht ab. Verschiedene Dispersions-
kurven gehéren zu Wellen mit verschiedenzihligen ,Knotenebenen“.

Ausser den bis jetzt allein bekannten zwei Fillen, die Love und
der Vortragende publiziert haben, werden eine Reibe neuer Fille vor-
gefiihrt, deren Kenntnis erwiinscht ist wegen der praktischen Anwendung
auf die Erforschung der #ussersten Erdrinde von ca. 100 km Dicke.

3. L. KoLLRrOs (Zurich). — Projection centrale et géoméirie réglée.

En projection centrale, la droite est déterminée par sa trace T
sur le tableau s et par son point de fuite F. Une surface réglée est
représentée par sa trace ¢ et sa ligne de fuite f; les génératrices
établissent une correspondance ponctuelle entre ces deux courbes; si
les tangentes aux points homologues de ¢ et de f sont paralléles, la
surface est développable.

Les droites d’une congruence déterminent une transformation ponc-
tuelle T->F de tous les points de m; on voit facilement! qu’a une
affinité, une collinéation ou une inversion correspondent respectivement
des congruences (1,1), (3,1) ou (2,2). '

Les droites d’un complexe donnent lieu & une correspondance
point—>- courbe : T—>f'; f est la ligne de fuite du cone formé par les droites

1 MorLes-KRUPPA: Vorl. ii. darst. Geom. Bd. I: Die lin, Abbildungen.
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du complexe issues de 7. Si le complexe est linéaire, f est la droite
de fuite du plan focal de T'; supposons que la droite a l'infini ¢ de x
appartienne au complexe; elle contient alors le foyer O’ du plan a l'in-
fini 2 et celui O” de #. Les faisceaux de droites 0" (dans Q) et O'
(dans =) sont projectifs et le complexe linéaire est formé de toutes les
droites qui coupent deux rayons correspondants de ces faisceaux.  En
projetant les droites O” (£2) sur z, on obtient un faisceau perspectif
a O'(), car la- droite ¢ se correspond a elle-meme ; les rayons homo-
logues se coupent donc sur une droite . Ainsi, les droites d’un com-
plexe linéaire sont représentées par des paires de points TF situés sur
les rayons correspondants de deux faisceau perspectifs. Mais, si I’on
- généralise convenablement la méthode de Monge (projections sur deux
plans), on voit qu'un point quelconque de I’espace est aussi déterminé
par une paire de pomts liés & deux faisceaux perspectifs; cette double
interprétation d'une méme paire de points établit une correspondance
entre les points du second espace .et les droites d’un complexe linéaire
- du premier. On peut alors montrer qu’aux points du premier espace
correspondent, dans le second, les droites qui coupent une conique w,
de telle sorte que, a des points en ligne droite, correspondent des
génératrices du méme systéme d'un hyperboloide passant par w; la
conique w est (avec la ligne de terre z) le lieu des points dont les
deux projections coincident. .

Si @ était ’ombilicale, cette correspondance serait identique a la
transformation de Lie (point—»>droite isotrope; droite—>sphére) intéres-
_sante par ses applications & la théorie des surfaces et a celle des équa-
tions: aux dérivées partielles.

4. ‘W. SAXER (Aarau). — Uber die Verteilung dér Nullstellen und
Pole von rationalen Funktionen konvergenter Folgen.
Erscheint in der Mathematischen Zeitschrift“ in Berlin.

5. CHR. MOSER (Bern). — FEine Folgerung aus dem Makeham’schen
Gesetze.
Ordnet man die Zahlen der Lebenden einer Absterbeordnung nach
dem Alter o, so besteht fiir erwachsene Personen annaherungswelse
das bekannte Makeham’sche Gesetz:

[ () = ks”g ..... (1),
wo f (x) die Zahl der Personen des Alters x darstellt und %, s, g und
¢ konstante Grossen sind.

Ist ¢ die Basis der natiirlichen Logarlthmen und wird g’ =e*
gesetzt, so kann man durch geeignete Entwicklungen, in Anlehnung an
das Integral fir die mittlere kiinftige Lebensdauer eines a-Juhrigen,
 unschwer auf Grund der Formel (1) eine Menge von Darstellungen fiir
.e® ableiten. Wir heben daraus folgende Darstellung hervor, wo 7 null

oder eine ganze positive Zahl sein kann:

= R . 1 n 3 n 23
o= PW)(1+2 1,+3 2,+4 3'+...),..(2).
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. Hierin bedeutet P, ein Polynom, das nur vom Grade » in 2z
ist und lauter ganze Koeffizienten besitzt. Fiir einen ganzzahligen Wert
von z ist P, . daher stets eine ganze Zahl. Es ist Pg » = 1,
Py, =1 42, Pg o =143z - 2% und so fort, so dass man
Z, B. fiir # == 0. ohne weiteres die bekannte Reihe fir ez hat, ferner
etwa fir n.— 2, 2 = 1 die Reihe:

~+(t+ 5+t + )

Die Beispiele lassen s1ch beheblg vermehren
Setzt man abkiirzend :

S ; 1+ ik
- 277 T (140 (14 20) - (1+(H—1)9)
=0, 1, 2,. .wmmmmmummum+nAmm%mm

9, ermlttelt alsdann ihren Wert fiir o==o0 und fithrt die Bezeichnung ein:

ot d"“(l()@)‘ |
270 __'d'g”‘“ . e
(e = 0)
80- erhﬁlt P(n 2 “die Form:

(n+1) }.

Der Ausdruck fur P(n 2 hesse sich noch anders darstellen und
kann iibrigens direkt, durch sukzessive Division von zwei Reihen (der
in Klammern stehenden Reihe in Gl. (2) durch die Relhe fir n=0)
erhalten werden.

Fiir negative Werte des Exponenten " - erglbt sich ein etwas
modifiziertes Bildungsgesetz des Nenners P, und zwar in der Weise,
dass er nicht durch ein Polynom mit einer endlichen Zahl von Gliedern
darstellbar ist, sondern zu einer unendlichen Reihe wird. .

Von Interesse ist wohl wesentlich, dass die Makeham’sche Funktion
mit ihren vielen andern, in der Versicherungsmathematik bekannten
schonen Eigenschaften ebenfalls solche aufweist, die geeignet sind, den
engen Zusammenhang aufzuzeigen, der gemiss Gl. (2) jede beliebige Zahl
e¢? mit den Potenzen der Zahlen der natiirlichen Zahlenreihe verbindet.

Handelt es sich darum, lauter Stammbriiche als Koeffizienten ein-
~ zufithren, so kann tolgende Darstellung gewihlt werden:

/~2

?—i— G—{—l .ﬁ—“{_o+2 2!+“.
1

_— 1 1 2
o 0(0—{——17z+o(0+1) (0+2)Z,

" .
~ Dabei ist es zulissig, den Anfangcsta,mmbruch — mnach Belieben
anzunehmen. - @ .

e% —
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6. R. WaAVRE (Geneve) — Sm' une classe de fonctionnelles auto-
morphes. :

Voir le compte rendu de la séance de la Société Suisse de Mathé-
‘matiques, Fribourg 1926, qui paraitra dans «I’Enseignement mathéma-
tique». .

7. G. Juver (Neuchatel). — Sur une généralisation du théoréme
de Jacobi.

L’auteur n’a pas envoyé de résumé de sa communication.

8. M. PLANCHEREL (Zurich). — Le role de l’mte’grale de Fourier
dans Vintégration de quelques problémes relatifs & certaines équatzons
aux dérivées partielles du type hyperbolique ou parabolique.

v Dans un travail trop peu remarqué [Normal coordinates in dynamlcal

systems, Proceedings London Math. Soc., 15 (1916), p. 401—448],
Mr., T. J. I’A. Bromwich a été amené par une méthode heuristique des
plus intéressantes & formuler sur l’intégration des problémes mixtes
relatifs & certaines équations aux dérivées partielles du type hyperbolique
ou parabolique quelques propositions dont la démonstration n’a pas
encore été donnée.

Cette démonstration peut étre faite a I’alde de la théorle des
transformations intégrales de Fourier et de quelques théoréemes de la
théorie des équations intégrales, comme l’auteur le montrera dans une-
autre revue.

9. H. KreBs (Berne). — Représentation géome’tmque A’ une trcms—
formation d’équations aux dérivées partielles.

Nous considérons 1’équation
) 2 1 dlogA(u, v) dx
ou dv 2 ou ov

Les suites de L.aplace qui correspondent aux équations (1) inté-
grables comprennent un nombre pair d’équations et sont telles que deux
équations situées & égale distance des extrémes ont les mémes invariants
a Dordre prés.

Nous considérerons le réseau x déterminé par 1’équation (1) et
une congruence Y3 conjugée a ce réseau, les foyers de la droite passant
par le point o étant désignés par y et 3. Si l'on désigne par a¢, une
solution de 1’équation (1), le foyer y de la droite 3 est déterminé
par la relation

— A(w, v) &= 0.

, 1 dx, O
et du + — —+1 —— d
(2) Y x, x du T o0 S0 v

Nous poserons

3) 25 ——fwidu+ (5“1) do.
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Nous définirons un point w de la droite .y 2 par la relation
Zl w Zl @ ‘

(4) - — Y.
La formule (2) nous donne les relations
0 zZ,0 0 x
5) bu x, | bu x’
’ _c?_zla): ’z -—-—1-90 6901) 0 x
dv x, ( Yoot dw ) v

Nous retrouvons les équations de la transformation de M. Goursat
qui permet de construire toutes les équations (1) intégrables et leurs
intégrales. ’

Si 'on élimine successivement w et x entre les équations (5) et
que l’on” exprime 4 en fonction de 2, au moyen de la relation (3), on
obtient deux équations dont la seconde se déduit de la premiére en

remplacant & par w et 2z, par

. } :
Le second foyer 2 de la droite y 2 est donné par une relation
que 'on peut mettre sous la forme

6 =Y — —
(6) Yy 7 8w
L’élimination de a2 entre les formules (4) et (6) nous donne la
relation '
1 o 1 dx
n —z Lw=—2,2 2, — !
(7 7 %1 50 3y +<1 7 6@)?]
Les relations (6) et (7) nous montrent que le rapport enharmo-
nique des points w, &, z et y est égal au rapport des coefficients de

g wetdei—w

ou x4 ov @,
Nous avons donc le théoréme:
Si 'on prend pour rapport enharmonique le rapport des coefficients

de‘—é— w et dei— d
ou x, dv a,

conjugué enharmonique d’un point du réseau défini par l’équation (1)
par rapport aux foyers de la droite passant par ce point d’une con-
gruence conjuguée & ce réseau décrit un réseau satisfaisant & 1’équation
obtenue en remplacant dans 1’équation (1) dans laguelle la fonction
A(u, v) est exprimée en fonction de 2z, au moyen de la relation (3),

de la transformation de M. Goursat.

de la transformation de M. Goursat, le

1
Z, par .
24 -
La représentation géométrique de la transformation de M. Goursat
que mnous avons obtenue est donc semblable & celle qu’a donné
M. Koenigs de la transformation de Moutard. :
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10. H. BraNDT (Aachen). — Zur Zahlentheorie der Quaternionen.

~Der Vortragende geht aus von dem Begriff eines allgemeinen
Quaternionenkdrpers und bespricht im- bhesonderen diejenigen Korper,
deren Theorie im Zusammenhang steht mit der Theorie der Komposition
"der quaterniiren quadratischen Formen. Ein derartiger Koérper enthilt
unendlich viele grisste Integrititsbereiche ¢, e’, e” .., die man gleich-
zeitig als Einheitsideale auffassen kann. Fiir jeden derartigen Integri-
tutsbereich wie e gibt es Linksideale und Rechtsideale, d. h. Gesamt-
heiten von Quaternionen @, die mit ¢ und o’ auch a+ o' enthalten,
‘und, falls jedes Quaternion aus e durch & bezeichnet wird, auch ea,
ga’ .. im ersten Fall und ae, a’s.. im zweiten Fall. Man schreibt
in dlesen beiden Fallen ea--a bzw. ae=aq und nennt e linkes bzw
rechtes Einheitsideal von a.

Wenn man nicht nur den Integritidtsbereich e, sondern auch alle
andern ¢, ¢’ ... ins Auge fasst und fiir jeden von ihnen die Links-
und Rechtsideale sucht, so sieht man, dass jedes Ideal gerade zweimal
auftritt, und zwar einmal als Linksideal und einmal als Rechtsideal,
aber im allgemeinen in verschiedenen Integrititsbereichen. Mit andern
Worten heisst das: Jedes Ideal hat ein eindeutig bestimmtes linkes und
ein eindeutig bestimmtes rechtes Einheitsideal.

Man kann fiir die Ideale eine Multiplikation deﬁmeren, welche
genau derjenigen der algebraischen Zahlkirper entspricht und nur durch
~ gewisse Bedingungen abweicht, welche fiir die Existenz des Produktes
erforderlich sind. Wenn namlich zwei Ideale a und b gegeben sind,
so ‘existiert ein drittes Ideal, das Produkt ah =, immer und nur da.nn,
wenn das rechte Elnhelts1deal von a zugleich linkes Einheitsideal
von b ist.

" Tir diese Art der Multiplikation der Ideale gilt das kommutative
Gesetz natiirlich nicht, da im allgemeinen, wenn ab=—¢, das Produkt
ba garnicht existiert. Dagegen behalt das assoziative Gesetz seine
Giiltigkeit, wenn auch kompliziert durch die Fragen nach der Existenz
der Produkte. Die Menge aller Ideale des Korpers bildet in bezug
auf die Operation der Multiplikation ein Aggregat von Elementen, das
zwar keine Gruppe ist, aber doch #hnliche Eigenschaften hat und vom
Vortragenden in einer in den Mathematischen Annalen (Bd. 96) er-
schienenen Note als Gruppoid bezeichnet worden ist.

Ahnlich wie in algebraischen Zahlkorpern lassen sich auch in
Quaternionenkdrpern die Ideale in Klassen einteilen. Zwei Ideale a
und a, werden dabei zu einer Klasse Y gerechnet oder als- #quivalent
bezeichnet, wenn es zwei Quaternionen ¢ und ¢ gibt, so dass a, —pao.
Parallel . der Multiplikation der Ideale lauft dann eine Komposition der
Klassen, fir welche ganz #hnliche Gesetze gelten. Zu jeder Klasse
gehort eine linke und eine rechte Einheitsklasse, und zwei Klassen oA
und P lassen dann und nur dann’ eine Kompositlon zu, wenn die rechte
Einheitsklasse von 9 zugleich linke Einheitsklasse von B ist.

Die Gesamtheit aller Klassen bildet in bezug auf diese Kompo-
sition ebenfalls ein Gruppoid. Die Anzahl der Elemente dieses Gruppoids -
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ist aber (jedenfalls bei den definiten Kdorpern und vermutlich auch bei
den indefiniten) eine endliche Zahl, welche sich nach den Dirichletschen
transzendenten Methoden bestimmen lisst.

11. Fraulein H. STaAEHELIN (Fetan). — Abbildung des Tangenten-
komplexes' des Kegels zweiter Ordnung auf eine dreidimensionale Punkt-
mannigfaltigkeit.!

Die Gleichungen eines irreduziblen Kegels zweiter Ordnung, K,,
lassen sich bei geeigneter Wahl der homogenen projektiven Koordinaten
Ko :Xy: Xy : g in folgender Form darstellen:

Lo = loo, X1 = lia Xy =111y, 3= lza
wo die Parameter [,,: [/, : I, nicht gleichzeitig null sein diirfen und
in dem Sinne als homogen erklirt werden, dass ein Wertesystem
loo : ¢y : 1y dquivalent ist mit o2l : 0/, : 0y, o#0. Die gradlinigen
Erzeugenden haben Gleichungen der Form: '
(@) asly + azly = 0.
Werden die Koordinaten [, :Z, : [, als Funktionen eines Para-
meters ¢ aufgefasst, so berechnet man die Pliickerschen Koordinaten

einer Tangente des K,, die nicht durch den Scheitelpunkt geht, als
die zweireihigen Determinanten der Matrix:

loo 12 1,1, I
Iy 20,0, Ul 0,0, 21,1

Als Parameter der Tangenten konnen folgende homogene Grossen
dienen:

Ly=1,(1,1,— 1,0}), Ly=1s(l,1, — 1:1})
L3-ﬁ2lool Iilyyy Ly=210501 — 121y,
Diese geniigen den Relationen
@) Ly:Ly=1,:1y, LiLy— LyLy=21Lo(l,l;— 1,1})>
Man erhilt so als Parameterdarstellung der Tangente:

. ; 1
X01 - L1L37 X02:‘§<L1L4 + L2L3)7 X03 - Lz L47
X23=L27 X3y =—2L, Ly, X12:L?-

Deuten wir nun die Parameter L; als homogene Punktkoordinaten
&y 1 & 1 & : & einer komplexen dreidimensionalen Punktmannigfaltigkeit,
so entspricht jeder Tangente, die nicht durch den Scheitelpunkt des K,
geht umkehrbar eindeutig ein Punkt

E 51 EZ 59 - L L2 . IJ : L4
' H. Stahelm Die charakteristischen Zahlen analytlscher Kurven auf dem

Kegel 2 - 0. und ihrer Studyschen Bildkurven. Basler Dissertation 1924 ; Math.
Ann. Bd. 93.
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Fiir die Erzeuggnden ist zwar L; =0 und L, = 0. Es' wird
aber nach (1) und (2): .
L12L2=11212——:—a2 a4 und L3 L4-—-L1 Lzz”—az:al.
Die Bildpunkte der Erzeugenden haben daher Koordinaten der Form :

§0:61:89:83=0:0:—uay:0y
mit 60 51 = — Qg I Qy. ‘
‘Diese Punkte liegen somit auf der Leitlinie der parabohschen Linjen-

kongruenz : He1==0, 813 — Zg5=10.

Man zeigt nun leicht, dass ein Tangentenbiischel bei unserer Ab-
.bildung in eine Gerade iibergeht, welche die Leitlinie dieser Kongruenz
schneidet, und die dann und nur dann der Kongruenz angehort, wenn
-der Mittelpunkt des Tangentenbiischels ein regulirer Punkt der Flache
ist. Jeder Geraden, die durch den Scheitelpunkt des K, geht, ent-
:sprechen 2 Punkte der Direktrix. Diese sind die Bildpunkte der Er-
_zeugenden, lings welchen die Tangentialebenen, die man durch diese
Gerade an den Kegel legen kann, diesen beriihren; sie fa,llen dann
und nur dann zusammen, wenn diese Gerade eine Erzeugende ist. Die
Zweideutigkeit, die sich bei der Abbildung des Tanoentenkomplexes
.einer Fliche zweiter Ordnung mit nicht verschwindender Diskriminante
.ergibt,! reduziert sich hiér auf diejenigen Tangenten, die durch den
Scheitelpunkt des Kegels gehen und die nicht Erzeugende sind. Schliesst
‘man diese uneigentlichen Tangenten aus, so entspricht jeder Tangente
umkehrbar eindeutig ein Punkt einer komplexen dreidimensionalen Punkt-
‘mannigfaltigkeit. '

12. Madame GR. CarsHOLM YOUNG (La Conversmn) — Pythagore
~-Comment a-t-il trouvé son théoréme?

Des deux scénes supposées, que la conférenciére esqulsse en quelques
mots, toutes deux placées & 25 siécles en arriére de nos jours, la premieére
8¢ passe & Babylone. Le jeune Pythagore vient de faire la connaissance
du Triangle Cosmique, c’est-a-dire du triangle rectangle dont les cotés
-comportent respectivement 3, 4 et 5 unités de longueur, ces nombres
-6tant liés par 1’équation

32 _I__ 42 —_ 52

Un vieux mage lui montre un poids du roi Nabuchadnezzar, copié .
:sur un modsle de plus de mille ans antérieur & lui. Le poids a la
forme d’un cone & base elliptique, dont le petit axe mesure deux
dixiemes du pied babylonien (un pied babylonien == 3,2 démmetres),
le grand et le petit axes étant dans le rapport 4: 3.2 '

! E. Stady: Uber die Gerometrie der Kreise und Kugeln, Math. Ann. 86.
H.Jobin: Sar une généralisation de la transformation de Lie. Thése. Zurich. E p. 1.

* (es données sur la forme et les dimensions du poids — qui se trouve
.actuellement au Musée britannique de Londres — obtenues tout récemment
par la conférencitre, révélent un emp101 du [riangle Cosmique de beaucoup
-antérieur & tout emploi certifié jusqa’ici. Quoigqu’an dire de Plutarque ce triangle
-efit 6té utilisé en Egypte comm: symbole sacré, on n’en avait pas jusqu’a
présent reconnu de trace dans l'ancienne Assyrle Pour 'ce qul concerne la
-connaissance de l'ellipse, on ne semblait pas avoir pu établir qu’elle appartient
-4 une époque antérieure a Pythagore.
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La seconde scéne se passe & Crotone, ol -Pythagore avait fondé
son école. l.a tradition qui nous a été transmise nous présente Pythagore
- raisonnant en arithméticien plutét qu’en géométre, et la conférenciére
prétend que les théories avancées jusqu’ici sur la découverte du théoréme
géométrique dit de Pythagore — théoréme qui nous est parvenu comme
le I, 47 d’Euclidé, et dont la tradition a toujours attribué 1’énoncé a
Pythagore, mais la démonstration & Fuclide lui-méme —- ont échoué
- parce qu’elles n’ont pas tenu compte des tendances connues de celui
qui a enseigné & ses disciples les propriétés fondamentales des nombres.

Nous savons que Pythagore a trouvé la premieére série de triples
de nombres entiers, commencant par (3, 4, 5), le carré du plus grand
desquels est égal & la somme des carrés des deux autres; mais, loin
de tenir compte de ce fait trés caractéristique, on a cherché a deviner
comment inversement il elit tiré la formule des triples de son théoréme
géométrique. D’autre part, passant sous silence les écrits que nous
possédons sur la maniére pythagorienne de raisonner, on a proposé
diftérentes démonstrations primitives de ce théoréme géométrique, toutes
basées sur notre représentation du nombre par la longueur. La conféren-
ciére, par contre, s’appuyant sur le caractére de Pythagore comme
fondateur de la théorie des nombres et sur sa maniére connue de repré-
senter les nombres par des figures composées de cailloux ou de trous
faits dans le sable, décrit la marche probable de sa pensée, passant
par ses découvertes indubitables des relations numériques

148454+..... 4@ — 1) = n?
2n — 1) 4 (n — 1) = n?

2 ___
m 5 1, m? + }reliéspar I’égalité

mz_-112 [m4 1 [ tier impair |
R e e - I

Reconnaissant que le premier de ces triples correspond au Triangle
Cosmique, Pythagore se demande s’il y a toujours une telle liaison
entre ses triples et des triangles rectangles. La démonstration que la
conférenciére se figure naissant dans l’esprit du maitre & 1’aide de ses
rangées de trous dans le sable le conduit & énoncer son théoréme avec
parfaite généralité.

Cette démonstration, sous sa forme pr1m1t1ve ne s’applique qu’aux
triples de Pythagore; pour la rendre applicable au cas général il faudrait
faire intervenir la théorie de la proportionalité, élaborée plus d’un
siecle plus tard. Mais c’est ainsi que les grands esprits parviennent a
leurs découvertes; il comporte & leurs disciples de trouver, comme pour
le théoréme de Pythagore, une démonstration ou méme une centaine
de démonstrations générales.

La conférence sera publiée dans 1’Enseignement Mathématique.

et

a sa série de triples de nombres {m,
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