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1. Section der Mathématiques
Séance de la Société Suisse de Mathématiques

Lundi, 30 août 1926

Président : Prof. Dr E. Gonseth (Berne)
Secrétaire: Dr P. Lambossy (Eribourg)

1. L.-G. Du Pasquier (Neuchâtel). — Sur les nombres premiers
dans les progressions arithmétiques du deuxième ordre.

Soit 7t2(a, ô, c\ oo) le nombre des nombres premiers < x
contenus dans la progression arithmétique: générale du deuxième ordre

f{n) an2 -f- bn 4* cr (1)
où a, ô, c sont trois nombres entiers, arbitrairement, choisis mais fixes,
tandis que n parcourt la suite illimitée des nombres naturels. Si l'on
pouvait démontrer que

7i2 (a, &, c ; x)—-v oo quand x. > oo, (2)
on aurait résolu un problème fameux qui intéresse beaucoup de
mathématiciens. L'auteur montre d'abord les trois conditions auxquelles a1 b
et c doivent satisfaire pour que (2) puisse avoir lieu, puis indique
pour ce nombre tv2. la formule asymptotique 1.

• Q' _
ri (x)— ô • —j='C'U\/xv (3)

où li z représente le logarithme intégral de z. La formule (3),
semblable à celle de MM. Hardy et Littlewood, entraînerait (2) ; mais comme
elle n'est pas démontrée en toute rigueur, il y a intérêt à la vérifier
expérimentalement. C'est ce que l'auteur a fait pour les six cas suivants :

i W =V-]-l ; f3 (n) loin2 + 20 n +1.; f5(n) 10 001 n2 + 200n + 1;
2(ri) n2 -f 1; AW 122n2 -j- 22n+ 1; f6 (n) 10 610 n*-f 206^ + 1-

La factorisation des nombres fi (ri) est poussée jusqu'à 225 000 000.
Grâce à cette limite élevée, l'auteur a pu constater l'inexactitude d'une

présomption de Gauss admise depuis plus d'un siècle {^n (x) <C Ux)
Après avoir introduit deux nouvelles notions: Pécart absolu de la
progression (1), savoir tz2 (a. b, c; x) — ri (x), et Vécart relatif de la
progression (1) savoir

tc2 (ayc; x) — ri (x) tc2 (x)
ri (x) ri (x) 1

l'auteur termine sa communication par six propositions relatives aux
nombres premiers contenus dans les, progressions arithmétiques du
deuxième ordre et présente plusieurs tableaux graphiques se rapportant
à ce sujet.
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2. E. Meissner (Zollikon-Zürich).— Über eine singuläre Differentialgleichungy

die in einem Problem der Seismologie auftritt.
Oberflächen -Querwellen in einem elastischen Halbraum

sollen diejenigen Wellen heissen, die horizontal und rechtwinklig zur
Ausbreitungsrichtung schwingen und die mit der Tiefe so rasch
abklingen, dass ihre Energie pro Oberflächeneinheit endlich ist.

Die mathematische Formulierung führt für solche Wellen in einem
Halbraum, dessen elastische Eigenschaften Funktionen der Tiefe z sind,
auf die Differentialgleichung :

L{u) -\- Xu — o L(u) —(p (x) • —
ddx

für die ein Integral so zu snchen ist, dass
oo

0

Dieses Problem ist yon H. Weyl (Math. Ann. 68, 1909) behandelt
worden. Die Gleichung gehört dem von ihm als Grenzpunkttypus
bezeichneten Fall an. Für das seismologische Problem wichtig ist dann
die Frage nach dem Punktspektrum des Frequenzparameters bei
vorgegebener Wellenlänge, das i. a. neben einem Streckenspektrum
auftritt. Jedem Eigenwert desselben entspricht eine Dispersionskurve der
Wellen. Existiert kein Punktspektrum, so gibt es keine Oberflächenwellen

(homogener Halbraum). In den seismologisch wichtigen Fällen
nimmt die Zahl der Punkte des Punktspektrums mit wachsender Wellenlänge

ab ; eine Dispersionskurve bricht ab. Verschiedene Dispersionskurven

gehören zu Wellen mit verschiedenzähligen „Knotenebenen".
Ausser den bis jetzt allein bekannten zwei Fällen, die Love und

der Vortragende publiziert haben, werden eine Reihe neuer Fälle
vorgeführt, deren Kenntnis erwünscht ist wegen der praktischen Anwendung
auf die Erforschung der äussersten Erdrinde von ca. 100 km Dicke.

3. L. Kollbos (Zurich). — Projection centrale et géométrie réglée.
En projection centrale, la droite est déterminée par sa trace T

sur le tableau n et par son point de fuite F. Une surface réglée est
représentée par «a trace t et sa ligne de fuite f ; les génératrices
établissent une correspondance ponctuelle entre ces deux courbes; si
les tangentes aux points homologues de t et de f sont parallèles, la
surface est développable.

Les droites d'une congruence déterminent une transformation
ponctuelle T^-F de tous les points de n ; on voit facilement1 qu'à une
affinité, une collinéation ou une inversion correspondent respectivement
des congruences (1,1), (3,1) ou (2,2).

Les droites d'un complexe donnent lieu à une correspondance
point—courbe : T—^f] f est la ligne de fuite du cône formé par les droites

1 Müllbe-Kruppa : Vorl. ü. darst. Geom. Bd. I: Die lin. Abbildungen.
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du complexe issues de T. Si le complexe est linéaire, f est la droite
de fuite du plan focal de T ; supposons que la droite à l'infini i de n
appartienne au complexe ; elle contient alors le foyer 0' du plan à l'infini

Q et celui 0" de n. Les faisceaux de droites 0" (dans Q) et 0'
(dans 7i) sont projectifs et le complexe linéaire est formé de toutes les
droites qui coupent deux rayons correspondants de ces faisceaux. En
projetant les droites 0" (Q) sur jt, on obtient iin faisceau perspectif
à Ö'(n), car ia droite i se correspond à elle-même; les rayons
homologues se coupent donc sur une droite x. Ainsi, les droites d'un
complexe linéaire sont représentées par dès paires de points TF situés sur
les rayons correspondants de deux faisceau perspectifs. Mais, si l'on
généralise convenablement la méthode de Monge (projections sur deux
plans), on voit qu'un point quelconque de l'espace est aussi déterminé
par une paire de points liés a deux faisceaux perspectifs ; cette double
interprétation d'une même paire de points établit une correspondance
entre les points du second espace et les droites d'un complexe linéaire
du premier. On peut alors montrer qu'aux points du premier espace
correspondent, dans le second, les droites qui coupent une conique o>,
de telle sorte que, à dés points en ligne droite, correspondent des

génératrices du même système d'un hyperboloïde passant par e> ; la
conique co est (avec la ligne de terre x) le lieu des points dont les
deux projections coïncident.

Si û) était l'ombilicale, cette correspondance serait identique à la
transformation de Lie (point—»-droite isotrope ; droite—»-sphère) intéressante

par ses applications à la théorie des surfaces et à celle des équations

aux dérivées partielles.

4. W. Sàxer (Aarau). — Über die Verteilung dèr Nullsteilen und
Pole von rationalen Funktionen konvergenter Folgen.

Erscheint in der „Mathematischen Zeitschrift" in Berlin.

5. Chr. Moser (Bern). -— Eine Folgerung aus dem Makeham'sehen
Gesetze.

Ordnet man die Zahlen der Lebenden einer Absterbeordnung nach
dem Alter X, so besteht für erwachsene Personen annäherungsweise
das bekannte Makeham'sche Gesetz :

fix) =*ks*gc''(1),

wo f (x) die Zahl der Personen des Alters x darstellt und &, s, g und
c konstante Grössen sind.

Ist e die Basis der natürlichen Logarithmen und wird g°x ez
gesetzt, so kann man durch geeignete Entwicklungen, in Anlehnung an
das Integral für die mittlere künftige Lebensdauer eines x-Jährigen,
unschwer auf Grund der Formel (1) eine Menge von Darstellungen für
ez ableiten. Wir heben daraus folgende Darstellung liervor, wo n null
oder eine ganze positive Zahl sein kann:

ez= ———— l -|_ 2" — + 3" — 4- é" — • (2).
-P<»,*)V ^1! 21 3! J
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Hierin bedeutet P(n,z) ein Polynom, das nur vom Grade n in z

ist und lauter ganze Koeffizienten besitzt. Für einen ganzzahligen Wert
von Z ist P(nf Z) daher stets eine ganze Zahl., Es ist P(0, Z). 1,

P(1> z) — l ^ z1 P(2, z) =1-1-3 Z -J- Z2 und so fort, so dass man
z. B. für n o ohne weiteres die bekannte Reihe für ez hat, ferner
etwa für n — 2, Z 1 die Reihe:

e l.(l + ± + ± + B + :.\
5 \ 1! 2! 3! /

Die Beispiele lassen sieh beliebig vermehren.
Setzt man abkürzend:

A + i A + i
,c. (_1> •
»e + (i + 2e)... (i' + (i + i)e)

(X, 0, 1, 2, n) und bildet stets die (n, -f- 1). Ableitung nach

g, ermittelt alsdann ihren Wert für g o und führt die Bezeichnung ein :

(«+«_dn+l{i°(>) /

^
so erhält P(n> $ die Form :

0 0 X — O

Der Ausdruck für P(n,z) liesse sich noch anders darstellen und
kann übrigens direkt, durch sukzessive Division von zwei Reihen (der
in Klammern stehenden Reihe in Gl. (2) durch die Reihe für n o)
erhalten werden.

Für negative Werte des Exponenten n ergibt sich ein etwas
modifiziertes Bildungsgesetz des Nenners P, und zwar in der Weise,
dass er nicht durch ein Polynom mit einer endlichen Zahl von Gliedern
darstellbar ist, sondern zu einer unendlichen Reihe wird.

Yon Interesse ist wohl wesentlich, dass die Makeham'sche Funktion
mit ihren vielen andern, in der Versicherungsmathematik bekannten
schönen Eigenschaften ebenfalls solche aufweist, die geeignet sind, den

engen Zusammenhang aufzuzeigen, der gemäss Gl. (2) jede beliebige Zahl
ez mit den Potenzen der Zahlen der natürlichen Zahlenreihe verbindet.

Handelt es sich darum, lauter Stammbrüche als Koeffizienten
einzuführen, so kann folgende Darstellung gewählt werden :

1
I

1 * i
1 32

I

0 0 -f-1
"

1 r 0 + 2
ez 4

* +G G {G -j- 1) G (G -J- 1) (O -|- 2)

Dabei ist es zulässig, den Anfangsstammbruch — nach Belieben
anzunehmen. 0
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6. B. Wavre (Genève). — Sur une classe de fonctionnelles
automorphes.

Voir le compte rendu de la séance de la Société Suisse de
Mathématiques, Fribourg 1926, qui paraîtra dans «l'Enseignement mathématique».

7. G. Juvet (Neuchâtel). — Sur une généralisation du théorème
de Jacobi.

L'auteur n'a pas envoyé de résumé de sa communication.

8. M» Plancherez (Zurich). — Le rôle de Vintégrale de Fourier
dans Vintégration de quelques problèmes relatifs à certaines équations
aux dérivées partielles du type hyperbolique ou parabolique.

Dans un travail trop peu remarqué [Normal coordinates in dynamical
systems, Proceedings London Math. Soc., 15 (1916), p. 401—448],
Mr. T. J. l'A» Bromwich a été amené par une méthode heuristique des
plus intéressantes à formuler sur l'intégration des problèmes mixtes
relatifs à, certaines équations aux dérivées partielles du type hyperbolique
ou parabolique quelques propositions dont la démonstration n'a pas
encore été donnée.

Cette démonstration peut être faite à l'aide de la théorie des
transformations intégrales de Fourier et de quelques théôrèmes de la
théorie des équations intégrales, comme l'auteur le montrera dans une
autre revue.

9. II. Krebs (Berne). — Représentation géométrique d'une
transformation d'équations aux dérivées partielles.

Nous considérons l'équation
S* X1 ô logAO, v)

(1) 7 IT *—& X(u,v)w=0.
ou ov 2 ou ov

Les suites de Laplace qui correspondent aux équations (1) intê-
grables comprennent un nombre pair d'équations et sont telles que deux
équations situées à égale distance des extrêmes ont les mêmes invariants
à l'ordre près.

Nous considérerons le réseau x déterminé par l'équation (1) et
une congruence yZ conjugée à ce réseau, les foyers de la droite passant
par le point x étant désignés par y et z. Si l'on désigne par as i une
solution de l'équation (1), le foyer y de la droite yz est déterminé
par la relation

/«x r j i
1 &xi àx

(2) y=jXlXdu+-~~dV.
Nous poserons

(3) =jx\du+ J
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Nous définirons un point œ de la droite y Z par la relation

(4)
x± xt

La formule (2) nous donne les relations

(5)

Ô Z-,ft)
—

xt àu a?!
'

Z t CO { 1 ÔXt \ Ô X— 1 Z, — Xi 1 *

5v x± \ X ôv ôv xx
Nous retrouvons les équations de la transformation de M. Goursat

qui permet de construire toutes les équations (1) intégrables et leurs
intégrales.

Si l'on élimine successivement co et x entre les équations (5) et
que l'on exprime X en fonction de Zt au moyen de la relation (3), on
obtient deux équations dont la seconde se déduit de la première en

remplaçant x par Ico et z ± par ——.
Zt

Le second foyer z de la droite yz est donné par une relation
que l'on peut mettre sous la forme

/fi\ 1
(6) z y --- x.

X ôv
L'élimination de x entre les formules (4) et (6) nous donne la

relation
'

1 ÔXi 1 ÔXt\m + V'~TX' ~u)y-
Les relations (6) et (7) nous montrent que lé rapport enharmonique

des points co, x1 Z et y est égal au rapport des coefficients de

^ X
et de — de la transformation de M. Goursat.

ôu xx ôv xt
Nous avons donc le théorème:
Si l'on prend pour rapport enharmonique le rapport des coefficients
ô X ô X

de et de de la transformation de M. Goursat, le
ôu xt ôv Xt

conjugué enharmonique d'un point du réseau défini par l'équation (1)
par rapport aux foyers de la droite passant par ce point d'une
congruence conjuguée à ce réseau décrit un réseau satisfaisant à l'équation
obtenue en remplaçant dans l'équation (1) dans laquelle la fonction
X(urv) est exprimée en fonction de z x au moyen de la relation (8),

1
Zt par

Zt
La représentation géométrique de la transformation de M. Goursat

que nous avons obtenue est donc semblable à celle qu'a donné
M. Koenigs de la transformation de Moutard.
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10. H. Bbandt (Aachen). — Zur Zahlentheorie der Quaternionen.
Der Vortragende geht aus von dem Begriff eines allgemeinen

Quaternionenkörpers und bespricht im besonderen diejenigen Körper,
deren Theorie im Zusammenhang steht mit der Theorie der Komposition
der quaternären quadratischen Formen. Ein derartiger Körper enthält
unendlich viele grösste Integritätsbereiche C, e', e" die man gleichzeitig

als Einheitsideale auffassen kann. Für jeden derartigen
Integritätsbereich wie e gibt es Linksideale und Rechtsideale, d. h. Gesamtheiten

von Quaternionen û, die mit a und a' auch a-\- a! enthalten,
und, falls jedes Quaternion aus e durch e bezeichnet wird, auch sa,
sa' im ersten Fall und as, a's im zweiten Fall. Man schreibt
in diesen beiden Fällen e a a bzw. a t a und nennt e linkes bzw.
rechtes Einheitsideal von ct.

Wenn man nicht nur den Integritätsbereich e, sondern auch alle
andern C', e" ins Auge» fasst und für jeden von ihnen die Linksund

Rechtsideale sucht, so sieht man, dass jedes Ideal gerade zweimal
auftritt, und zwar einmal als Linksideal und einmal als Rechtsideal,
aber im allgemeinen in verschiedenen Integritätsbereichen. Mit andern
Worten heisst das: Jedes Ideal hat ein eindeutig bestimmtes linkes und
ein eindeutig bestimmtes rechtes Einheitsideal.

Man kann für die Ideale eine Multiplikation definieren, welche
genau derjenigen der algebraischen Zahlkörper entspricht und nur durch
gewisse Bedingungen abweicht, welche für die Existenz des Produktes
erforderlich sind. Wenn nämlich zwei Ideale û und b gegeben sind,
so existiert ein drittes Ideal, das Produkt ab C, immer und nur dann,
wenn das rechte Einheitsideal von a zugleich linkes Einheitsideal
von b ist.

Für diese Art der Multiplikation der Ideale gilt das kommutätive
Gesetz natürlich nicht, da im allgemeinen, wenn ab C, das Produkt
ba garnicht existiert. Dagegen behält das assoziative Gesetz seine
Gültigkeit, wenn auch kompliziert durch die Fragen nach der Existenz
der Produkte. Die Menge aller Ideale des Körpers bildet in bezug
auf die Operation der Multiplikation ein Aggregat von Elementen, das
zwar keine Gruppe ist, aber doch ähnliche Eigenschaften hat und vom
Vortragenden in einer in den Mathematischen Annalen (Bd. 96)
erschienenen Note als Gruppoid bezeichnet worden ist.

Ähnlich wie in algebraischen Zahlkörpern lassen sich auch in
Quaternionenkörpelrn die Ideale in Klassen einteilen. Zwei Ideale a
und ûj werden dabei zu einer Klasse SC gerechnet oder als äquivalent
bezeichnet, wenn es zwei Quaternionen q und o gibt, so dass ûj Qdo.
Parallel der Multiplikation der Ideale läuft dann eine Komposition der
Klassen, für welche ganz ähnliche Gesetze gelten. Zu jeder Klasse
gehört eine linke und eine rechte Einheitsklasse, und zwei Klassen SC

und 83 lassen dann und nur dann eine Komposition zu, wenn die rechte
Einheitsklasse von SC zugleich linke Einheitsklasse von 83 ist.

Die Gesamtheit aller Klassen bildet in bezug auf diese Komposition

ebenfalls ein Gruppoid. Die Anzahl der Elemente dieses Gruppoids
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ist aber (jedenfalls bei den definiten Körpern und vermutlich auch bei
den indefiniten) eine endliche Zahl, welche sich nach den Dirichletschen
transzendenten Methoden bestimmen lässt.

11. Fräulein H. Staehelin (Fetan). — Abbildung des Tangenten-
komplexes* des Kegels zweiter Ordnung auf eine dreidimensionale
Punktmannigfaltigkeit.1

Die Gleichungen eines irreduziblen Kegels zweiter Ordnung, X2,
lassen sich bei geeigneter Wahl der homogenen projektiven Koordinaten
Xq : Xt : x2 - 003 in folgender Form darstellen:

00q Iqo -, x± x2 =' lx l2, x§ Z2

wo die Parameter l00 • h '• h nicht gleichzeitig null sein dürfen und
in dem Sinne als homogen erklärt werden, dass ein Wertesystem
Zoo : 'i : ^2 äquivalent ist mit g2l00 : : gl27 Q*o. Die gradlinigen
Erzeugenden haben Gleichungen der Form :

(1) alll ~~f~ a2^2 0'
Werden die Koordinaten l00 : lt : l2 als Funktionen eines

Parameters t aufgefasst, so berechnet man die Plückerschen Koordinaten
einer Tangente des K2, die nicht durch den Scheitelpunkt geht, als
die zweireihigen Determinanten der Matrix :

*00 l\ hh l\
^00 ^^1^1 ^1^2 + ^2^1 ^ ^2^2 *

Als Parameter der Tangenten können folgende homogene Grössen
dienen :

LI 11 {l 1 12 12 1
^ ^ -> L2 =: 12 (l± 12 • 12 l 4

iv3 2.1qqI^ ZiZ-oo, ^4 — 2/00 ^2 ^2^00 *

Diese genügen den Relationen

(2) L1:L2 l1:l2, Z/1L4— Z/2 X3 2/00 Z2 ^2^1) •

Man erhält so als Parameterdarstellung der Tangente :

<X*0J ^1 ^37 ^02 — ^1 7 ^03 ^2 ^47

X23 L* X31 - 2 Z,AZ* X12 L*

Deuten wir nun die Parameter Li als homogene Punktkoordinaten
£0 : £1 : £2 : £3 einer komplexen dreidimensionalen Punktmannigfaltigkeit,
so entspricht jeder Tangente, die nicht durch den Scheitelpunkt des K2
geht, umkehrbar eindeutig ein Punkt

£0 • £1 • £2 • £3 ===: Lx : Z/2 : -L3 : L±.
1 H. Stähelin, Die charakteristischen Zahlen analytischer Kurven auf dem

Kegel 2 • 0. und ihrer Studyschen Bildkurven. Basler Dissertation 1924; Math.
Ann. Bd. 93.
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Für die Erzeugenden ist zwar Lx 0 und 0. Es wird
^aber nach (1) und (2):

i L2 ' 1 \ • ^2 ' —' ^2 • und =lz=: Xj : —- ûg i

Bie Bildpunkte der Erzeugenden haben daher Koordinaten der Form :

l"o • l"i • £2 • £3 — 0 i 0 : - a% '• (x^

mit fo : fi — aa-: öj.
Biese Punkte liegen somit auf der Leitlinie der parabolischen Linien-
kongruenz : 0, Slt — Zos 0.

Man zeigt nun leicht, dass ein Tangentenbüschel bei unserer
Abbildung in eine Gerade übergeht, welche die Leitlinie dieser Kongruenz
schneidet, und die dann und nur dann der Kongruenz angehört, wenn
der Mittelpunkt des Tangentenbüschels ein regulärer Punkt der Fläche
ist. Jeder Geraden, die durch den Scheitelpunkt des K2 geht,
entsprechen 2 Punkte der Eirektrix. Eiese sind die Bildpunkte der
Erzeugenden, längs welchen die Tangentialebenen, die man durch diese
Gerade an den Kegel legen kann, diesen berühren ; sie fallen dann
und nur dann zusammen, wenn diese Gerade eine Erzeugende ist. Die
Zweideutigkeit, die sich bei der Abbildung des Tangentenkomplexes

-einer Fläche zweiter Ordnung mit nicht verschwindender Biskrirainante
ergibt,1 reduziert sich hiér auf diejenigen Tangenten, die durch den
Scheitelpunkt des Kegels gehen und die nicht Erzeugende sind. Schliesst
man diese uneigentlichen Tangenten aus, so entspricht jeder Tangente
umkehrbar eindeutig ein Punkt einer komplexen dreidimensionalen
Punktmannigfaltigkeit.

12. Madame Gb. Chisholm Young (La Conversion). — Pythagore:
Comment a-t-il trouvé son théorème

Ees deux scènes supposées, que la conférencière esquisse en quelques
mots, toutes deux placées à 25 siècles en arrière de nos jours, la première
se passe à Babylone. Le jeune Pythagore vient de faire la connaissance
du Triangle Cosmique, c'est-à-dire du triangle rectangle dont les côtés
comportent respectivement 3, 4 et 5 unités de longueur, ces nombres
étant liés par l'équation

32 -f 42 52.

Un vieux mage lui montre un poids du roi Nabuchadnezzar, copié
sur un modèle de plus de mille ans antérieur à lui. Le poids a la
forme d'un cône à base elliptique, dont le petit axe mesure deux
dixièmes du pied babylonien (un pied babylonien — 3,2 décimètres) ;
le grand et le petit axes étant dans le rapport 4 : 3.2

1 E. Study: Über die Geometrie der Kreise und Kugeln, Math. Ann. 86.
H. Jobin: Sur une généralisation de la transformation de Lie. Thèse. Zurich. E p f.

* Ces données sur la forme et les dimensions du poids — qui se trouve
actuellement au M isée britannique de Londres - obtenues tout récemment
par la conférencière, révèlent un emploi du Triangle Cosmique de beaucoup
antérieur à tout emploi certifié jusqu'ici. Quoiqu'au dire de Plutarque ce triangle
eût été utilisé en Egypte comm^. symbole sacré, on n'en avait pas jusqu'à
présent reconnu de trace dans l'ancienne Assyrie. Pour ce qui concerne la
connaissance de l'ellipse, on ne semblait pas avoir pu établir qu'elle appartient

-à une époque antérieure à Pythagore.
20
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La seconde scène se passe à Crotone, oîi »Pythagore avait fondé
son école. La tradition qui nous a été transmise nous présente Pythagore
raisonnant en arithméticien plutôt qu'en géomètre, et la conférencière
prétend que les théories avancées jusqu'ici sur la découverte du théorème
géométrique dit de Pythagore — théorème qui nous est parvenu comme
le I, 47 d'Euclidè, et dont la tradition a toujours attribué l'énoncé à
Pythagore, mais la démonstration à, Euclide lui-même — ont échoué
parce qu'elles n'ont pas tenu compte des tendances connues de celui
qui a enseigné à ses disciples les propriétés fondamentales des nombres.

Nous savons que Pythagore a trouvé la première série de triples
de nombres entiers, commençant par (8, 4, 5), le carré du plus grand
desquels est égal à la somme des carrés des deux autres ; mais, loin
de tenir compte de ce fait très caractéristique, on a cherché à deviner
comment inversement il eût tiré la formule des triples de son théorème
géométrique. D'autre part, passant sous silence les écrits que nous-
possédons sur la manière pythagorienne de raisonner, on a proposé
différentes démonstrations primitives de ce théorème géométrique, toute»
basées sur notre représentation du nombre par la longueur. La conférencière,

par contre, s'appuyant sur le caractère de Pythagore comme
fondateur de la théorie des nombres et sur sa manière connue de
représenter les nombres par des figures composées de cailloux ou de trous,
faits dans le sable, décrit la marche probable de sa pensée, passant
par ses découvertes indubitables des relations numériques

1 + 3 + 5 + + (2n — 1) n2,
et

(2 n — 1) + (n — l)2 n2,

à sa série de triples de nombres — ——-, ——j reliés par l'égalité-

fvn* — l\* fm2 + 1\2 f f. \m2 -f- < > < - > { m, entier impair >.

\ 2 / \ 2 / \ /
Reconnaissant que le premier de ces triples correspond au Triangle

Cosmique, Pythagore se demande s'il y a toujours une telle liaison
entre ses triples et des triangles rectangles. La démonstration que la
conférencière se figure naissant dans l'esprit du maître à l'aide de ses

rangées de trous dans le sable le conduit à, énoncer son théorème avee
parfaite généralité.

Cette démonstration, sous sa forme primitive, ne s'applique qu'aux
triples de Pythagore ; pour la rendre applicable, au cas général il faudrait
faire intervenir la théorie de la proportionalité, élaborée plus d'un
siècle plus tard. Mais c'est ainsi que les grands esprits parviennent à,

leurs découvertes ; il comporte à leurs disciples de trouver, comme pour
le théorème de Pythagore, une démonstration ou même une centaine
de démonstrations générales.

La conférence sera publiée dans l'Enseignement Mathématique.
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