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1. Sektion fiir Mathematik

Sitzung der Schweizerischen Mathematischen Gesellschaft
Donnerstag, den 2. Oktober 1924

Prisident : Prof. Dr. A. SPEISER (Ziirich)
Aktuar : Prof. Dr. S. Bays (Freiburg)

1. A. HEYER (St. Gallen). — Uber einige geometrische Orter an
Kegelschnitten. '

I. Gesucht ist der geometrische Ort des Hohenschnittpunktes des
Dreiecks, welches bestimmt ist durch einen Hauptscheitel, den zuge-
horigen Fokus und einen beliebigen E1lipsen punkt.

Wenn der Fokus als Ursprung genommen wird, lautet die Gleichung :

ax x+a—c

b a+t+c—=x
L#sst man die Ellipse in einen Kreis iibergehen, indem man b = a
und ¢ = o setzt, so wird

a—x

(Gerade Strophoide. Siehe Loria Bd. I, S. 63, 2. Fussnote.).
Fir die Parabel lautet die Gleichung:

%=i£V&j£

2 P

1I. Die Endpunkte einer Fokussehne einer Ellipse seien mit dem
zugehorigen Scheitel verbunden. In dem so entstandenen Dreieck seien
die Hohen gezogen. Gesucht ist der geometrische Ort des Hohenschnitt-
punktes.

Man erhilt eine Ellipse, welche mit der gegebenen #dhnlich ist
und die mit ihrem Nebenscheitel die gegebene Ellipse im Hauptscheitel
von aussen beriihrt. Die Halbachsen der gefundenen Ellipse sind:

(¢ — ¢)(2a —+ ¢)
2b

(a — ¢)(2a + ¢)
2a

Fir die Parabel degeneriert die Ellipse in zwei parallele, zur
Achse senkrechte Geraden

y ==

Grosse Halbachse =— ¢

Kleine Halbachse — ¢

3
x — o0 und x_——"——pa

2
bezogen auf den Scheitel als Ursprung.
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III. In den Endpunkten einer Fokussehne einer Ellipse sind die
Parallelen zu den Achsen gezogen. Gesucht ist der geometrische Ort
der beiden andern Ecken des so entstandenen Rechtecks:

) — b3 \/a2 __ x®
a(a? 4 c? — 2¢cx)
Der Maximalpunkt hat die Koordinaten

2a?c
T mar — ’ag '+' R Y max — b

Die gefundene Kurve und die Ellipse schneiden sich in den KEnd-
punkten des Parameters, und zwar so, dass die dort angelegten Tan-
genten entgegengesetzte Richtungskoeffizienten besitzen. Sie schneiden
2ac

b2
Fiir die Hyperbel lautet derselbe Ort:
y— b ‘b3\/x2— 2z

a(a? -4 c? — 2cx)

Die Kurve besteht aus vier getrennten Stiicken mit drei Asym-
ptoten. Die Gleichungen der letzteren lauten:

2 2 ’ b3
x:g~+c und y = =
2¢ . 2ac

Fiir die Parabel lautet die Gleichung:

3
Yy == \/ _22)_ (kubische Hyperbel).
x

Diese Kurve schneidet die Parabel senkrecht.

ist.

- sich unter einem Winkel, dessen fg @ —

2. L.-G. Du PasQuier (Neuchitel). — Une classe particuliére
d’équations différentielles d’ordire- quelconque. .

Certaines recherches sur les équations différentielles conduisent
au probleme suivant: quand on sait qu'une fonction # (x) satisfait a
une équation différentielle donnée, trouver a quelle équation différentielle
‘satisfait une fonction y (2) qui, en plus des singularités de #, a encore
p podles simples ou multiples aux points by, by, ..., b, du plan com-
plexe, distincts ou non. Par une méthode qui s’applique & des cas
beaucoup plus généraux, l’auteur démontre la proposition suivante.
Supposons que #(x) soit 'intégrale générale de 1’équation diftérentielle
linéaire du niéme ordre

uM(zy=a -u+a;-u +ag-u"+....4Fap-u® (1)
ou les a, a,, ag, . ..., ap, représentent des fonctions dérivables de
x, d’ailleurs quelconques et pouvant se réduire & des constantes et ol
le nombre naturel % est inférieur & ». La nouvelle fonction
L u(x)

(@ —by) (g —by)....(x —by)

Yy
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satisfait alors a une équation différentielle ordinaire de ’ordre = —|—— P
et du degré p -} 1, savoir D = o, dont elle est méme l'intégrale gé-
nérale. Son premier membre, D, peut se mettre sous forme d’un déter-
minant : ' :

f]lv f121 f137 A flp
f21a f22a f233 RS f2l’

.................

D —
fpiv fpz, fp37 cetey fl"}’

que ’on peut écrire immédiatement en appliquant les régles suivantes:
1° Tout élément f; 4.4, k+l1 qui ne se trouve pas dans la premiére
ligne (¢ > 0) est la somme de la dérivée de 1’élément immédiate-
ment au-dessus de lui et de 1’6lément immédiatement a gauche

de ce dernier; formule:

(4
fivt,e+1="Tie4+1+ 1 x-

2° Les éléments de la premiére colonne de gauche, fi;, se déduisent
du premier, f,,, par dérivations successives. (¢ =2,3,....,p.)

3° Les éléments de la premiére ligne, f,;, sont:

fll:l'?/(n)“a'?/—“al-?/'—-az-y"——ag‘y"'——....-— ak°?/(k)
fa= (1) 90D ay g 2agey —Bageg” — ... —(£)ap-y*
fis=(%) - y»—2 — ay ey —Bag-y — ... — (E) - ap-y®D
fia= (%) - y»—3 ey -y — — (%) - ag - y =D
fin=_,24) - y»—2+0D — Oy 1 Y — (%) - ag - yF—2+D

L’intégration de D = o se raméne donc immédiatement & celle
de (1). En étendant cette proposition aux cas susmentionnés ou les sin-
gularités additionnelles sont plus compliquées, on en déduit une exten-
sion importante de la méthode de ramener l'intégration d’une équation
différentielle donnée & celle d’une autre plus simple.

3. A. Staemprrr (Cernier - Neuchatel). — Transformation paor
poloconiques.

Considérons un tétraédre 4, 4, A; A,. Toutes les quadriques qui
admettent ce tétraedre comme tétraédre conjugué forment un systéme
linéaire a trois dimensions ou buisson. Dans ce buisson, nous choisissons
un réseau de quadriques de facon arbitraire.

A chaque point P, nous faisons correspondre le point P’, intersection
des plans polaires de P par rapport a toutes les quadriques du réseau.

Nous déterminons ainsi une transformation ponctuelle involutive
du troisiéme ordre, qui n’est qu'un cas particulier de la transformation
cubique birationnelle générale déterminée analytiquement par trois équa-
tions bilinéaires entre les coordonnées de deux points P et P’.
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En général, & un point P correspond un et un seul point P’, mais
il existe des points singuliers situés sur le tétraedre: les quatre som-
mets et les points des arétes.

Il est facile de vérifier que foute quadrique passant par les quatre
sommets du tétraédre fondamental est transformée en une quadrique passant
par ces mémes quatre points.

Ces quadriques forment naturellement un systéme linéaire de dimen-
sion cing, qui est transformé en lui-méme par la transformation cubique
définie plus haut.

Cinqg étant justement la dimension du systéme linéaire de toutes
les coniques d’un plan, il est naturel de couper ce systéme de quadriques
par un plan arbitraire z et d’étudier les coniques obtenues par cette
intersection.

Nous dirons que deux coniques de st sont correspondantes, si elles
proviennent de deux quadriques transformées 1’'une de 1’autre.

Ainsi est donc définie, dans un plan 7z arbitraire, une transformation
de coniques en coniques, 1’élément de la transformation étant la conique
et non les points de cette conique.

Cette transformation peut étre nommée: Transformation par polo-
coniques réciproques suivant une certaine cubique C;. Elle fait corre-
spondre & toute conique sa poloconique par rapport & une courbe du
troisiéme ordre.

La poloconique, elle, est définie comme suit: Le liew des poles des
coniques polaires qui, étant considérées comme coniques de seconde classe,
sont apolaires & une conique fixe arbitraire C, de second ordre, est une
conique 02' nommée la poloconique de la conique fixe C,.

Cette représentation géométrique de la transformation par polo-
coniques, intéressante en elle-méme, apparait en outre comme trés féconde:
elle permet de vérifier promptement les propriétés connues des polo-
coniques et de déduire quelques nouvelles propriétés.

(Voir Démonstrations et applications: Transformation par poloconi-
ques et généralisation. Chapitre II et III. These Ecole polytechnique
fédérale, Zurich 1924.)

4. G. Juver (Neuchatel). — Sur les géométries différentielles.

On sait que la notion de déplacement parallele due & M. Levi-
Yivita 1 a été généralisée par MM. Weyl,? Eddington ? et Schouten.*
La généralisation de M. Schouten comprend d’ailleurs tous les autres
cas. Nous avions obtenu en 1921 des formules qui correspondent aux
formules de Frenet et cela pour la géométrie de M. Weyl.? Cette année-
ci, nous avons donné les formules de Frenet pour la géométrie différen-
tielle la plus générale, celle qui correspond au déplacement de M. Schou-

! Levi-Civira: Rendiconti del Circolo mat. di Palermo, 1917.
? WryL: Raum, Zeit, Materie. be éd., p. 122.

3 EDDINGTON: The mathematical Theory of Relativity, p. 214.
* Scuouren: Mathematische Zeitschrift, Bd. 13, 1922.

5 Juver: C. R. Ac. des Sc., Paris 1921 (1er semestre).



— 101 —

ten.! Dans son livre récemment paru, M. Schouten® fait remarquer que
les formules que j’ai obtenues pour la géométrie de Weyl, ne corres-
pondent pas & la géométrie la plus générale de Weyl, mais & une
particularisation de celle-ci, qu’on obtient en fixant le tenseur métrique
¢ir- Cette remarque vaut aussi pour les formules de Frenet relatives
a la géométrie de Schouten. Il convient tout d’abord de répondre &
cela par le fait suivant: les formules de Frenet que je cherchais n’ont
de sens que pour autant que la métrique est déterminée; de plus leur
but est de donner un sens géométrique aux formules du déplacement
paralléle en faisant voir comment un #-édre attaché & une courbe se
déplace le long de cette courbe; c’est 13, nous semble-t-il, un des pre-
miers problemes de la géométrie diftérentielle. Cependant, si ’on arrive
4 des formules qui sont invariantes pour les transformations de coor-
données, on peut se demander comment elles seront altérées lorsqu’on
changera la métrique. -

C’est de quoi nous nous occuperons ici, mais seulement pour le
cas, relativement simple, de la géométrie de M. Weyl. On sait que
pour une telle géométrie les g;; ne sont définis qu’a un facteur 4 preés;
A étant une fonction de point dans la variété considérée.

Rappelons ce que nous avons obtenu avec une métrique déterminée
et donnée par les coefficients g;; de la forme quadratique et par les
coefficients ¢; de la forme linéaire de M. Weyl. A chaque point d’une
courbe x; = x;(s), on attache un =n-édre orthogonal et normé, on
passe de 1'un de ces n-édres a celui qui est infiniment voisin par une
suite de trois opérations:

1° On déplace le n-édre parallelement a lui-méme.

2° On lui fait subir une rotation dont les composantes sont au

(p=1,2..n—1) de la courbe au

signe prés, les courbures
- . Q(p)

oint. considéré.

¥ 2 @;dx

3° On lui fait subir une homothétie de rapport » — 1 4 = 5

Cela étant, le corps de vecteurs attaché au premier point est venu
s’appliquer sur le corps de vecteurs attaché au point voisin, ‘les vecteurs
du premier corps étant venus se confondre avec ceux du second qui
ont les mémes composantes. Ces nombres g, et % sont des invariants
pour tous les changements de coordonnées; qu’arrive-t-il si I’on change
1 64
A dx;
Les deux points P et P’ correspondent & des valeurs de s différant
de ds — Ads. Le déplacement paralléle d’un vecteur de P en P’ s’ex-
prime par des formules qui font intervenir 1; les Q—(i) sont aussi dé-
pendants de 4; on trouve apres d’assez longs calculs:

Jik en‘-g—z-k = Ag;x? On sait que @; se change en E,: Qi —

1 Juver: C. R. Ac. des Sc., Paris 1924 (1°r semestre); et Bulletin de la
Soc. Math. de France (sous presse).
? ScaouTen: Der Ricci-Kalkiil, p. 236.
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Q@ = \/T Q) _
et I'on a bien évidemment pour le rapport d’homothétie A:

— 1 1 64 1 1 04
== 1 — j — dr;—h— — Y% — — dr;.
+22(9”’ i Sa; )“’ 0 i ] bm; T
=h—dlog\[].
En résumé, % et les p(;) sont des invariants pour les transforma-
tions de coordonnées; mais lorsqu’on change de métrique, en multipliant

les g;x_par 4, les g(;) sont multipliés par \/l et h est diminué de

d log \/l. On peut dire encore que les invariants de la courbe vis-a-
vis de toute transformation, et des coordonnées, et de la métrique, sont
les rapports

ou 7&—

Q1) 0(): -+ 0n—1)-

5. H. BRaxDT (Aachen). — Uber die Komposition der quaterniren
quadratischen Formen.

Es wird der Begriff der Komposition fiir die quaterniren quadra-
tischen Formen definiert. Unter Beschrinkung auf den Fall primitiver
Formen gleicher Diskriminante werden dann die beiden Fundamental-
probleme erortert: 1. zu entscheiden, ob zwei Formen 4 und B kom-
poniert werden konnen, 2. wenn das der Fall ist, alle daraus kompo-
nierten Formen anzugeben.

“Das erste Problem wird durch den Satz gelost: 4 und B sind in
dieser Reihenfolge dann und nur dann komponierbar, wenn die der
Form A4 rechts zugehorige Hauptklasse mit der der Form B links zu-
gehorigen identisch ist.

Die Losung des zweiten Problems fiihrt auf ein quadratisches
Schema von Klassen, welches in einer Diagonale die Hauptklassen ent-
hilt,” wihrend Felder, die spiegelbildlich zu dieser Diagonale stehen,
entweder dieselbe ambige Klasse oder zwei entgegengesetzte Klassen
enthalten. Alle Klassen einer Zeile haben dieselbe rechts zugehdrige,
alle Klassen einer Spalte dieselbe links zugehirige Hauptklasse. Wihlt
man irgendwie zwei Felder so aus, dass die Zeile des ersten und die
Spalte des zweiten sich in einem Hauptklassenfeld treffen, so ist aus
den betreffenden Klassen in der genannten Reihenfolge diejenige Klasse
komponiert, welche sich in dem Feld befindet, wo sich die Spalte des
ersten und die Zeile des zweiten Feldes treffen.

6.. G. Hunziker (Reinach). — Uber das Kartenfirbungsproblem.

Vom sogenannten geographischen Vierfarbensatz konnte bisher nur
bewiesen werden, dass vier Farben notwendig sind; ob auch hinreichend,
ist nicht bewiesen, sondern dies ist erst fiir fiinf Farben der Fall.

Zunichst arbeitete ich nun ein Verfahren aus (dasselbe ist, wie
alles Folgende, in meiner bei Leemann & Co. in Ziirich, 1924, erschienenen
Dissertation naher ausgefithrt), mit dem fiir vorgelegte Karten syste-
matisch untersucht werden kann, ob es -wirklich Viertdrbungen gibt und
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welche. Dasselbe bringt zugleich eine gewisse Ordnung in die sonst fast
unitbersehbare Mannigfaltigkeit aller méglichen Farbungen.

Dann suchte ich die oben genannten, von unzusammenhingenden
Gesichtspunkten aus gewonnenen Resultate einheitlich abzuleiten, was
auch gelang auf Grund einer Funktion ¢, = f (¢,), worin e, die An-
zahl der Grenzlinien und e, die der Staaten bedeutet. Nimmt man Be-
zug auf Karten, in denen moglichst viele Staaten Nachbarn sind, so
findet man dafiir e; = 3 e, — 6; d. h. die Anzahl der Benachbarungen
wichst um 3, wenn die der Staaten um 1. Deshalb miissen bei dem
~erwihnten systematischen Vierfirbungsverfahren bei jedem Staat nor-
malerweise nur 3 Nachbarn beriicksichtigt werden, sodass 4 Farben
hinreichend zu sein scheinen. Miissen aber doch einmal mehr als 3 Farben
in Betracht gezogen werden, so mussten es vorher entsprechend weniger
als 3 sein. Und da man es einrichten kann, dass es nie weniger als
2 sind, musste man gerade so oft die Moglichkeit haben, zwischen zwei
Farben zu wihlen. Es gilt nun nachzuweisen, dass dadurch mehr
Féarbungsmoglichkeiten entstehen, als sich nachher als in Wirklichkeit
unmoglich herausstellen koénnen. Ein Anfang dazu ist gemacht. Im all-
gemeinen Fall jedoch ist diese Idee noch nicht iibersichtlich genug
durchzufithren, um iiberzeugend zu sein.

Fiir Flichen von hoherem Geschlecht ist der Kern des Vierfarben-
satzes, nidmlich der Satz, dass jeweils so viele Farben notwendig und
hinreichend seien, als Staaten auf der betreffenden Fldche alle unter
einander Nachbarn sein konnen, leicht zu beweisen, weil hier die grosst-
mogliche Anzahl solcher Nachbarn gleich oder grosser ist als die um
1 vermehrte durchschnittliche Nachbarnzahl. (Nur weil dies bei der
Kugelfliche nicht der Fall ist, verlangt dieser scheinbar einfachste Fall
tatsdchlich doch das tiefste Eingehen auf das Problem.)

Dieser verallgemeinerte , Vier“farbensatz ist auch in allen andern
erledigten Fillen zutreffend und wird um so wahrscheinlicher auch fiir
die Kugelfliche gelten.

7. L. CRELIER (Berne). — Sur quelques équations intégrales simples.

Nous avons étudié avec une de nos éleves, MYe D A. von Fischer,
les équations intégrales simples suivantes:

Equations de

Volterra: 1. (p(m):q—{——px—{—lj(ax—-}—bs)(p(s) ds
‘ (]

2. (p(x):q-{-p;ﬂ—kl[(aiz—}—bs?)qo(s) ds

o
€

8. ¢(x)=9q+px+ 21| (ax®*+bxs—+ cs2) @(s)ds

0o
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X

4. p(x) =1 + lfe”‘*‘** @ (s) ds

o
€X

5. p(z) =14} 3x+/1fem‘3<p(s) ds

0
. 1
Equations de

Fredholm: 6. @(x) =1 -} lf(aac -+ bs) @(s) ds

o

1
7. ¢(m):q+px+lf(aaﬂ—l—bs?—l—c)(p(g)ds
1 ° |

8. () =1 -} lfe”‘*‘-‘(p(s) as

o
1

9. (p(x)::1~|-3x—|—/1fe”“s<p(s) ds

o
T

2

10. p(z)=1-+ 2x—|—l[sinxcoss-(p(s) ds

Ces équations se prétent facilement & l’application de la méthode
des approximations successives et permettent ensuite de calculer les
noyaux itérés K™ (x. s) et la résolvante I'(z, s; 4).

Les équations de Fredholm donnent ensuite des fonctions D (1)

et D(if / 1) faciles & calculer. D’une maniére générale de tels exemples

permettent de suivre pas & pas les développements parfois difficiles de
la théorie des équations intégrales.

8. S. Bays (Fribourg). — Sur le nombre des systémes cycliques
différents de triples de Steiner pour N = 6n - 1 premier (ou puissance
de nombre premier).

Soient les N éléments 0. 1, 2, ..., N — 1, N étant de la forme
67 -} 1 et premier (ou puissance de nombre premier). Le groupe méta-
cyclique est 1’ensemble des permutations [z, ¢ } az|, ou ¢ =0, 1,
2, ..., N—1 et a parcourt les ¢ (XN) entiers premiers avec N.
Il est engendré par les permutations |z, 1 -4 z| et |z, ax|, ou a
est une racine primitive de N; il se note par suite {|x, 1}z,
|z, a z| }

Un systéme cyclique de triples de Steiner posséde le groupe cyclique
{Ix, 14 xl}, ou un autre sous-groupe plus étendu du groupe méta-
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cyclique. Deux systémes cycliques équivalents sont déductibles 'un de
Pautre par une permutation métacyclique. Cette proposition, importante
dans notre recherche et que nous avions dii admettre sans démonstration
dans deux mémoires précédents!, en faisant naturellement la réserve
qu’elle restait a établir, est maintenant démontrée par M. P. Lambossy.
Par suite les résultats des deux mémoires indiqués  sont maintenant
définitifs, de sorte que nous avons jusqu’ici:
1° le nombre des systémes cycliques différents de triples de Steiner
pour les premiéres valeurs de N = 6#» -} 1 jusqu'a N = 48;
2°¢ théoriquement une méthode pour obtenir tous les systémes cycliques
différents pour N = 6n - 1 premier (ou puissance de nombre
premier); pratiquement son application &4 N = 49, 61 ou 67
demanderait déja un temps considérable;
3° une borne inférieure, et une borne supérieure du méme ordre
de grandeur, du nombre des systémes de caractéristiques différents
d’une certaine classe (les systémes de caractéristiques différents
sont les souches de familles de systémes cycliques différents avec
symétrie propre). Ces deux bornes sont des sommes constituées
de la méme facon d’expressions semblables, expressions dont nous
ne donnerons que la premiére et la plus simple:

pour la borne inférieure:

7 — ) (n—14 —7) (n— —2

pour la borne supérieure:

1 ) — n—1) (n—2) (n—3
("*2){1"'"2 + 2).(? 2)"'.( )3.’3.4)(" )+"'}

Chacun de ces systémes de caractéristiques, dont nous connaissons
non seulement le nombre approché, mais que nous sommes 3 méme de
donner d’une fagon presque immédiate, dés que nous avons une racine

n—1

primitive de N, détermine au moins [ ] systémes cycliques diffé-

rents de triples de Steiner, systémes qui possédent uniquement le groupe
cyclique {|z, 1 4 z|} ou le sous-groupe métacyclique { |z, 1 4 |,
|, aznxl} et que nous sommes & méme aussi, ayant le systéme de
caractéristiques, de donner d’une facon immédiate.

! L'un a paru dans le Journ. de math. pures et appliquées, t.2, 1923,
fasc. 1, p. 73 & 98. L’autre paraitra prochainement dans les Annales de la
Faculté des Sciences de Toulouse. Ses résultats sont contenus en partie dans
une Note aux Comptes-Rendus Acad. Sc. Paris, t. 175, p. 936, séance du 20 no-
vembre 1922.
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