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1. Section de Mathématiques.
Séance de la Société mathématique suisse.

Mardi, 31 août 1920.

Président: Prof. L. Crelier (Berne).
Secrétaire: Prof. F. Gonseth (Berne).

1. Ch. WiiiLiGENS (Berne). — Sur Vinterprétation du temps
universel dans la théorie de la relativité.

Si dans la transformation de Lorentz

x —ß{x'-{-'au'), u — ß(a*'4-«'), y y',

u cor u' cor' aco v ß2 - -1—a2
on pose

u Co t' -j- y iï Co t — y
on trouve, tout calcul fait

i Co
* i ß

o ^
2. u' CoT Cot -—— X

aß
Pour avoir une interprétation du paramètre t, utilisons les

interprétations de la transformation de Lorentz données par Sommerfeld.
La première, obtenue en remplaçant a par ai et co par — ico

représente une rotation des axes ox ou d'un angle cp tel que a=tg<p

en posant h2 =——- et -—= m l'équation 1. prend la forme
1 a2 ab

,—14-m23. Co t mx 4- co t -—1 -
1 — m2

la droite 3. admej; une enveloppe
— 4 m

x — cot -

(1 - m2)

— 1 — 4 m2 — m4
c0r cot— ——

(1 —m2)2
On voit que les courbes eont homothétiques entre elles et t est

rapport d'homothétie. La droite 3. est parallèle à la bissectrice de

ox et ox'.
Dans la secondé représentation, les axes ox'-ou' sont des diamètres

conjugués de deux hyperboles équilatères conjuguées, la longueur du demi
diamètre étant toujours prise comme unité. La droite 1. peut s'écrire
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4.

qui enveloppe la courbe

cor jux -j- cot
1 + /«2

Cot ïfl
(1 + fL*)2

1 + 4^ — ^C°T C°^
/1 I 2\ 2(1 + /*

La droite 4. découpe sur ou et ou' des segments égaux. La
courbe qu'elle enveloppe est une hypocycloïde à trois rebroussements.

2. G. Polya (Zurich). — Sur les fonctions entières.
Soit g (z) ao -]- ai z -\-a% z2 -f- une fonction entière, M (r) le

maximum de [ g (z) | dans le cercle | z j < r, N (r) le nombre de zéros
de g (z) dans le même cercle, n (r) l'indice du plus grand des termes

a° li! I ri I 021 • • • A — l'ordre apparent de g (z).
r~oo lg r

I. D'un théorème général sur les suites infinies découlent les inégalités

suivantes :

(1)

(2)

lim » (r) - < A < lim n (r)
r — oo lg M (r) — —

lim N (r)
— oo lg M (r)

A.
r oo lg M (r) — '

Il existe une fonction cp (A), s'annullant pour A ö 0, 1, 2, 8, «

positive, quand A n'est pas entier, et telle que
N (r) ^ <p(3)

On a

lim
lg M (r)

cp {A) -

A 2 1~A

sin n A
pour 0 < A < 1

<p(A) (2 — A1)

1

/ (1 + x)A

pour 1 < A < 2.
Les inégalités données ne sauraient être resserrées d'avantage, le

signe étant valable pour certaines fonctions particulières. P. ex. les
inégalités (2) et (3) se changent en égalités pour o (z) resp. pour

f V z î o (z) désigne la fonction de Weierstrass, un carré étant pris
comme parallélogramme des périodes, f (z) désigne la fonction de Riemann.

II. Si —
ao

0 ou 1. La démonstration se base sur un théorème d'algèbre de
M. J. Schur. Une autre démonstration, se basant sur des considérations
moins particulières, serait désirable parce qu'elle devrait probablement
s'écarter des méthodes usuelles.

2

-f ai
2

+ a3

ai a 2

H- converge, le genre de g (z) est
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3. Leon Lichtenstein (Berlin). — Ueber die mathematischen
Probleme der Figur der Himmelskörper.

Die Figur der Himmelskörper hat seit der Erfindung der
Infinitesimalrechnung zahlreiche führende Mathematiker beschäftigt, im
XVIII. Jahrhundert Maclaurin, d'Alembert, Clairaüt, Legendre und
namentlich Laplace, der diesem Gegenstand den zweiten Band seiner
Mécanique Céleste widmete. Im XIX. Jahrhundert brachten zunächst
Untersuchungen von Dirichlet, Jacobi, Liouville und Riemann über
Flüssigkeitsellipsoide, später namentlich Arbeiten von Poincaré (1885)
und Liapounoft (1884) einen weiteren Fortschritt.

In einer bekannten Arbeit in. den Acta mathematica (1885) spricht
Poincaré den folgenden Satz aus. Sei T eine zu dem Werte cd'der
Winkelgeschwindigkeit gehörige Gleichgewichtsfigur einer rotierenden
homogenen Flüssigkeit. Im allgemeinen gehört zu jedem von co wenig
verschiedenen Werte co-f-Aco der Winkelgeschwindigkeit eine neue
Gleichgewichtsfigur Ti in der Umgebung von T. In besonderen Fällen
kann indessen zu co-J-zfco (Aco^>o oder Aco<^o) mehr als eine oder
auch gar keine Figur gehören, „in T tritt eine Verzweigung der
Gleichgewichtsfiguren ein." Der von Poincaré für seine grundlegenden Sätze
gegebene Beweis hat nur einen heuristischen Wert. In dem besonderen
Falle der Maclaurinschen und Jacobischen Ellipsoïde ist der vollständige
Beweis von Liapounoff in einer Reihe grundlegender Abhandlungen, die
in den Jahren 1903 bis 1916 erschienen sind, geliefert worden. Die
Arbeiten von Liapounoff enthalten daneben noch die vollständige
Erledigung des Stabilitätsproblems in der üblichen Fassung, sowie
zahlreiche Einzelbetrachtungen, — alles für die Flüssigkeitsellipsoide.

In zwei vor kurzem erschienenen Arbeiten [Mathematische
Zeitschrift Bd. 1 (1918) und Bd. 7 (1920)] habe ich unter anderem die
Poincaréschen Sätze für beliebige Gleichgewichtsfiguren bewiesen. Die
Beweismethode stellt zum Teil eine Verallgemeinerung und Vereinfachung
der Liapounoffschen dar, sie führt aber darüber hinaus neue wesentliche
methodische Gedanken namentlich potentialtheoretischer Art ein. Die
nunmehr verfügbaren Hilfsmittel gestatten eine Anzahl klassischer
Probleme einer exakten Lösung zuzuführen. Als das wichtigste Resultat
ist die strenge Begründung der Laplaceschen Theorie der Saturnringe
zu bezeichnen. Laplace hat als erster die möglichen J&leichgewichts-
figuren eines um einen Zentralkörper rotierenden, homogenen, flüssigen
Ringes untersucht und gefunden, dass sein Querschnitt in einer ersten
Näherung elliptisch ist. Später hat Frau S. Kowalewski die Annäherung
einen Schritt weiter getrieben. Die Existenz ringförmiger Gleichgewichtsfiguren

ist durch diese Arbeiten ebensowenig wie durch spätere Arbeiten
von Poincaré wirklich bewiesen worden. Als ein weiteres Resultat sei
die Begründung der Laplaceschen Theorie der Figur des Erdmondes
genannt. Auch dürfte jetzt unter anderem die Behandlung nicht
notwendig homogener, insbesondere gasförmiger Ringe in verhältnismässig
einfacher Weise möglich sein.
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4. L.-G. Du Pasquier (Neuchâtel) — Sur les idéaux de nombres
h ypercomplexes.

En cherchant à étendre à tous les systèmes de nombres complexes
les propriétés des nombres entiers, comme Gauss l'avait fait avec un
plein succès pour les nombres complexes ordinaires, les géomètres
découvrirent que certains systèmes ne se prêtent pas à cette généralisation.
Par exemple, la décomposition d'un nombre complexe entier en facteurs
premiers, décomposition toujours possible, n'est pas toujours univoque.
Il en résulte qu'un produit peut être divisible par un nombre entier
sans qu'aucun des facteurs ne le soit, et quantité d'autres irrégularités.
La théorie des idéaux, comme on le sait, fait tomber ces anomalies par
un heureux changement de méthode. En faisant intervenir les idéaux
de nombres, c. à d. certains ensembles de nombres entiers, à propriétés
caractéristiques bien déterminées, au lieu d'opérer sur les nombres
considérés isolément, Dedekind réussit à rétablir la simplicité arithno-
mique qui se manifeste dans l'arithmétique ordinaire. — Le domaine
où la théorie des idéaux est applicable avec succès embrasse tous les

corps de nombres algébriques dont on s'est occupé jusqu'ici : d'une part
les systèmes ou se maintient l'ancienne théorie des nombres, qui ne fait
pas intervenir le concept d'idéal, d'autre part une infinité de systèmes
où cette ancienne arithmétique n'est pas valable. Aussi croyait-on la
théorie des idéaux d'une efficacité absolue, lorsqu'il s'agissait d'obtenir
une arithnomie régulière. Or, il existe des systèmes de nombres
complexes à multiplication associative, distributive et commutative, et
contenant les nombres réels comme sous-groupe, où même la théorie des

idéaux ne conduit pas à une arithmétique simple comparable à la
classique. — Soit, dans l'un de ces systèmes, a un idéal non principal.
Il peut arriver que la série de ses puissances successives:

a, a2? a3, an, ad infin.
ne contienne aucun idéal principal. L'un des fondements de la théorie
de Dedekind est ainsi détruit. Le conférencier décrit le système le
plus simple possible de nombres complexes où cela se produit et
termine sa communication en signalant quelques problèmes nouveaux qui
surgissent de ce fait dans le domaine des nombres complexes généraux.

5. G. Tiercy (Genève). — Une nouvelle propriété des courbes
orbiformes.

1. On appelle orbiformes des courbes fermées convexes, de largeur
constante. Leur équation polaire tangentielle s'écrit:

p(co)a[1-j- f(eo)],avec f (con) — — f (co).
Considérons un point M de contact se mouvant sur une orbiforme,

de telle manière que l'angle polaire tangentiel augmente proportionnellement

au temps:
co ôt -f- coo ;

la projection P du point M sur un axe est animée d'un mouvement
oscillatoire, auquel nous donnerons le nom de mouvement harmonique
d'orbiforme.
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2 Considérons plusieurs mouvements harmoniques d'orbiformes,
d'amplitudes différentes, x d'époques tangentiales et différentes, mais
de même période tangentielle :

Pi«i [1 + fi OH )], <0 + £ù_
Composons les normales p( ; soient OS la résultante, OR sa projection

sur l'axe des 'a?, et ON sa projection sur l'axe des Y. Piiis, donnons

à co un accroissement jr; et composons les nouveaux rayons vecteurs

tangentiels pi (coi -j- n) ; soient OS' la résultante, OR' et ON' ses

projections sur les axes de coordonnées. En posant:
2 ai cos i A cos s, 2 ai Sin et — A Sin e,

on obtient:
R'R 2 A cos (co -j- e), N'N — 2 A Sin (co -{- e).

On trouve donc la propriété que voici : le segment de droite Ss'
est de Longueur constante égale.à 2 A; et l'angle qui l'oriente présente
une différence constante e — a* avec chacune des phases cûi —
D'ailleurs, le rayon vecteur tangentiel OS ne détermine pas une oiHbiforme.

3. On trouve facilement que la distance de l'origine à la droite
8S vaut. P (m) 2 at [ \ f( — e» ;

or, il vient : P (co) -}- P (co -f- n) — o.

La courbe enveloppe de la droite SS\ est donc une courbe
d'envergure nulle, c'est-à-dire n'admettant qu'une seule et unique tangente
parallèle à une direction donnée. Par conséquent, les courbes convexes
parallèles à la courbe P(co), et les développantes convexes de cette
même courbe, seront de nouvelles orbiformes.

4. Dans les cas où tous les i sont égaux, les rayons sont portés
par la même droite; alors:

P (co) o,
et la résultante OS des rayons pi définit directement une nouvelle orbi-
forme, de largeur 2 A —2.

Si P est le point animé du mouvement harmonique d'orbiforme
final, et si Pi sont les points animés des mouvements harmoniques donnés,
on a en outre:

0P 2 0Pi,
On remarquera que l'énoncé de ce théorème est identique à celui

de la loi de Fresnel, donnant la composition de plusieurs mouvements
harmoniques simples de même période.

6. EaTch (Urbana U. S. A.). — Über IncidéHzen von Geraden und
ebenen algebraischen Kurven im Räume und die von ihnen erzeugten Flächen.

Lüroth1 hat Probleme dieser Art für den einfachsten Fall von
Kegelschnitten untersucht. Mit Hilfe einer systematischen Anwendung
çiner eleganten Form von Incidenzformeln, gelingt es Emch, nicht nur

1 Über die Anzahl der Kegelschnitte, welche acht Oeraden im Baume
schneiden. Crelles Journal, 68. Band, S. 185—192 (1868).
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alle Resultate Lüroths, sondern die allgemeinsten für Kurven nter

Ordnung, durch eine relativ einfache analytische Methode zu erhalten.
Einige der hauptsächlichsten Resultate sind hier mitgeteilt:

1. Das System von Ebenen, von welchen jede ——-(- 1 un-
d

abhängige Geraden im Räume in Punkten schneiden, welche auf einer
ns _L_ 3„2 i 2n

Kurve wter Ordnung liegen, bilden eine Fläche von der Klasse !—
o.

2. Die ebenen Kurven nter Ordnung, deren Ebenen durch eine feste
ft (n I 31

Linie gehen, und unabhängige Geraden im Räume schneiden,

ft 3 1 0 ft^ I 2 ft
erzeugen eine Fläche von der Ordnung —-——

ü<

ft (ft 1 Uj
3. Die ebenen Kurven nter Ordnung, welche jedé von 1- 2

d

unabhängige Geraden im Räume einfach schneiden, bilden eine abwickel-

u n2(2^ + 12n34-17n2 — 3n + 8)
bare Fläche von der Klasse — ' —

18.
4. Es gibt

n3 (n2 -f- 3n -[- 2) {rt4, -|- 6n3 -|- 4n2 — 15n -j- 4.)

27
^ I 0 \

Kurven nter Ordnung, welche jede von — (- 3 unabhängige Ge-
d

raden im Räume schneiden.
5. und 6. Die Ebenen der ebenen Kurven nter Ordnung, von

welchen jede eine feste ebene Kurve nter Ordnung, in n Punkten, und
Yl (ft _1_ ft (ft _1_

-1 (— 1, respektive —1 \-2 unabhängige Geraden im
dt d

Räume schneidet, bilden eine Fläche (resp. eine abwickelbare Fläche)
von der Klasse :

w(2n2-)-3n + 7)
^ {,

n2 (4»4 -j- 12n3 19n2 -f- 24» -|- 49)
> respektive — ;

7. Es gibt:
ft3 (8ft6 36ft5 _J_ 66n4 + 99n3 -f- 123n2 + 89n -f- 343)

216
ebene Kurven nter Ordnung, welche eine feste ebene Kurve nter Ordnung

ft (ft _}_ i)in n Punkten und 1~— 1- 3 unabhängige Geraden im Räume schneiden.
di

7. S. Bats (Fribourg) — Sur les systèmes cycliques de triples de

Steiner.
La question de déterminer le nombre des systèmes de triples de

Steiner différents semble encore loin d'être résolue. White1 (1915) a

1 H. White. Transactions of the Amer. Mathem. Society vol. XXI (I)
1915. p. 18.
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montré que pour N 31 déjà „le nombre des systèmes de triples
différents dépasse 87 X 1012. Cole1 avec White et Cummings (1916) ont
obtenu les systèmes de triples différents pour JV=15-; leur nombre
est 80. Pour une classe particulière de solutions du problème des triples
de Steiner, les systèmes de triples cycliques, la question paraît déjà
plus aisée. Pour N—6 n-[-1, premier (ou de la forme pa j'ai une
méthode permettant d'obtenir les systèmes cycliques de Steiner différents.
Elle est basée principalement sur l'emploi des substitutions métacycliques
(substitutions de la forme | x, a -f- ßx |, ß premier avec W), et elle
donne en même temps les groupes de substitutions qui appartiennent à
ces systèmes. Jusqu'ici, à 2 exceptions près, ces groupes ne sont jamais
que des diviseurs du groupe métacyclique. Dans un premier travail2,
j'avais obtenu les systèmes cycliques différents pour les lres valeurs de
JV, jusqu'à N— 31; j'ai depuis'appliqué la méthode au cas # 37,
et je voulais également donner dans cette note le résultat pour N 43 ;

je n'ai pu terminer ma recherche dans le temps voulu. Pour #=43,
le nombre S" dépasse 128; ce nombre S" est maintenant le nombre
intéressant du problème; le nombre S des systèmes cycliques de Steiner
différents n'est plus qu'une fonction simple des systèmes S". Mes résultats

sont contenus dans ce tableau.
S — nombre des systèmes cycliques de

triples différents.
S' n. des systèmes de caractéristiques.
S" n. des systèmes de caractéristiques

irréductibles l un à Vautreparles
substitutions d'un groupe cyclique ||a\ ar
où j'entends par l'élément a, la
valeur absolue du plus petit reste positif

ou négatif de a (mod. #).
J'entrevois actuellement une simplification dans la recherche des

systèmes S" qui permettra d'effectuer encore la recherche pour le nombre
premier suivant # 61, sans demander trop de temps. Peut-êti^e alors
les données seront-elles suffisantes pour supposer la fonction b" de #•
(# premier).

8. F. Gtonseth (Berne). — Sur une application de Véquation de
Fredholm.

Il s'agit de déterminer une solution de l'équation différentielle :

dn y dn-*y+ +-•••• +!Wj,=,n(r) •

avec différentes conditions limites.
La méthode est exposée pour l'équation

/i\ d*y i d*yii, dyi^^ dx*+ad^+hTx+Cy-d'
1 F. N. Çole, L. D. Cummings et H. S. White. Proceedings of the National

Academy of Sciences vol III 1916, p. 197.
2 Note des Comptes-Rendus t. 165, p. 543, 22 octobre 1917.

N n S" S' S

7 1 1 1 1
18 2 1 1 1

19 3 2 4 4
31 5 8 64 80
37 6 32 455 820
25 4 2 15 12



lorsque la fonction inconnue y prend pour x x\, X2 et #3, les valeurs
données d'avance yi, y2 et t/3.

Posant:(2) y (#,s) f(s) ds -f- ^0*0, où A(x,s), en général con-

ô A ô2 A
tinue, a pour x s une discontinuité égale à a (x), — et -r—=- pré-

o x u x
sentant au même endroit les discontinuités ß(x) et y(x).

ô* A
De plus -r—5- sera identiquement nulle.

ox3
Dans ces conditions A (x\ s) sera de la forme :

(3) {h (x — s)2 m\(x — s) -j- m pour s < x
h (x —» (x — s)2 -j- W2 (x — 5) -j- n2 pour s "> x.

Les différences h (s) — l\ (s) etc. sont déterminées par les
conditions précédentes, et jouent seules un rôle. L'équation (2) dérivée
3 fois fournit:
ttt tt t t ttt ut
y-\-afx) /"(x) + iß(x) + 2a (x)] /(x)-f (x) -\- -\- y(x)] f(x) V(x).
L'identification de cette équation avec (1) détermine a(pc), ß{x) et y(x).
On peut remplacer V(x) par l'expression
V(x) -j- Ci (X X2) (x^-xs) -f- C2 m — ^3) (x — xi) Cs (x — Xl) (X — X2).

Les conditions limites déterminent les C, une fois V{x) remplacée par
cette nouvelle expression, dans (2). Cette dernière prend la forme

y —j*B(xs)f(s) ds -f- W(x).

Xi
Le point essentiel est que La fonction f ne joue aucun rôle dans B{xs)
et W (x) ; de sorte que l'équation de Fredholm

y (x) — J*B(xs) y (s) ds -j- W (x) résout le problème.

"9. C. Cailler (Genève). — Sur un théorème relatif à la série
hypergéométrique et sur la série de Kummer.

M. C. Cailler donne diverses généralisations de la formule obtenue

par lui il y a quelques années.
1

j'z 71

(1 — z) 1F(a,ß,y, xz) F (a', ß', y, 3/(1 — z), dz

Ô

(y l) j (y' 1)1 a — ß'

x v 111 O — y)
(r + 7 — i)!

laquelle a lieu sous réserve des conditions:
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Parmi ces extensions, citons les suivantes:
î

/ 1(1 — z) 1F(a, ß, yxz) F (a', ß', 1/•
(ya'—U! (Kqui a lieu moyennant la relation

ß + P y + y',
et

1

f z
1

(1-—Z)7
1

F (a, y, xz) F(a',y'\ (1—z)) dz

Dans cette dernière formule, F est la fonction de Kunimer:

vr ' \il a i a Ca+ 1) x*

10. Ch. Cailler (Genève). — Sur un théorème de Cinématique.

Mr. C. Cailler rappelle d'abord les définitions classiques pour la vitesse
d'un point, d'un plan et d'une droite. Cette dernière est une quantité
complexe formée à l'aide d'une unité e, telle que e2=o

Une droite appartient à une axe a lorsqu'elle rencontre l'axe sous
un angle droit ; un point et un plan appartiennent à une même axe, si
le point est sur cette axe, et si le plan le contient.

Ces définitions étant admises, imaginons qu'un point p, un plan n
et un^ droite # fassent partie d'un solide a auquel ils appartiennent
étant fixe. Nous avons alors le théorème suivant, en 4 parties, dont
Seule la lre est classique :

1° La projection sur a de la vitesse d'un point j» appartenant à

a est la même quel que soit ce point. Soit g" cette projection constante.
2° La projection sur a de la vitesse angulaire d'un plan est la

même quel que soit ce plan. Soit gf cette projection constante.
3° La projection sur a de la vitesse linéaire d'une droite appartenant

à a est la même, quelle que soit la droite. Soit g cette projection

constante.
4° 9—9'+*9"-

11. M. Plancherel (Fribourg) et Ebw. SträSsle (Stans). — Sur
l'intégrale de Poisson pour la sphère.

L'intégrale de Poisson

£7(r,= u{p i t4 ~ ' 1 — 2 r cos co -f- r"

20
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définit, lorsque u (#, 0) est intégrable au sens de Lebesgue sur la
surface spliérique S de rayon 1, une fonction harmonique à l'intérieur de

S et Ton sait que U (r,#, 0) —y u (#, 0) presque partout lorsque r 1,
en particulier aux points de continuité de u.

Il ne semble pas que l'étude de la limite pour ?—1 des dérivées
dv + <i U

DPf q U (r, #, 0) — dßp çi 0q
été5 faite. La méthode employée par

M. de la. Vallée Poussin dans le cas du cercle ne peut être utilisée sur
la sphère. On peut, il est vrai, étudier ces dérivées par une méthode
directe ; malheureusement le's calculs deviennent immédiatement très longs
et la méthode ne semble applicable avec succès que pour les petites
valeurs de p -J- q. Cette méthode a cependant l'avantage de conduire à
des résultats très généraux dans lesquels interviennent les dérivées
généralisées de u.

Une méthode plus simple repose sur la remarque suivante : Si dans

un domaine 2 de S, u est une fonction analytique du point (#. 0)
U (r, #, 0) est prolongeable analytiquement à travers 2. De cette remarque
à conclure que dans le cas particulier où u est analytique on a, dans

ftp, q U ftp, q u (#- &) lorsque r —1, il n'y a qu'un pas.
Si u possède au point (#, 0) une différentielle totale d'ordre n

P ~h 2* 011 décomposera à l'aide de la formule de Taylor H en deux

parties: u un rn telles que un soit analytique et qu'au point (fi,#)
dv un dv u (y <«). U se décomposera d'une manière corrélative en
deux parties: U Un -}- Rn On aura "au point (#, 0) DPi q Un —>
Dp. q un Dp q u. Or, on peut montrer, à l'aide des propriétés du fac-

1 — r2
leur de discontinuité ; que Dv a Rn —>- 0 lorsque

1 — 2 r eus (o -|- r2

r —v 1. On obtient ainsi le théorème.
En tout point (û, 0) où u possède une différentielle totale d1ordre

n p -)- q, on a DPf q U (r, 0) —I)p q u (#. 0) lorsque r -> 1.

Laissant de côté un théorème analogue concernant la convergence
uniforme de Dp> q U vers Dp q u nous remarquerons, pour terminer,
que si uc^2Xn (#, #) est le développement formel de u en série de

Laplace, on a U (r, #, #) 2 >71 Xn (#, #). Par conséquent, le procédé
de sommation de Poisson est applicable au calcul des dérivées de tout
ordre de u, là où elles existent.

La même méthode peut s'appliquer à l'étude des dérivées dans
d'autres procédés de sommation, tel celui dans lequel le facteur de

convergence in de Poisson est remplacé par e~ntt (t~^o).
12. Michel Plancherel (Fribourg). — Une question d'Analyse.
Lors de recherches sur l'inscription d'un carré dans une courbe

plane fermée et d'un octaèdre régulier dans une surface fermée, j'ai
été amené à résoudre dans un cas particulier le problème suivant:

Soit y f(x) une courbe continue et univoque dans 4'intervalle
telle que dans cet intervalle f (pc) > O et que f(a)=f(b)



- 165 —

0. Soient Mi, Ms deux points mobiles sur cette courbe, assujettis
à avoir à chaque instant t les mêmes ordonnées. A l'instant t — 0,
Mi se trouve au point {a, 0), Ms au point (b, 0). Peut-on coordonner les
mouvements de eis 2 points de manière à ce qu'ils se rencontrent?

Le problème est équivalent à la détermination de deux fonctions
(0, 0s {t) continues dans l'intervalle 0<t<zl, telles que pour

0<t<l
a <0i (t) <b, a < 02 (t) <b,

'f($i (*))= fOw)
et que, pour t o

0i(O)==: a, 02 (0) b

et pour t 1

(l) b, 0s (l) a.
Si f (x) n'a qu'un nombre fini d'extrémàs dans (a, b), la résolution du

problème est immédiate. Il s'agirait de savoir si la seule hypothèse
de la continuité de.f(x) est suffisante pour assurer la possibilité du
problème ; si non, quelles conditions supplémentaires devraient être
ajoutées.

13. R. Wavbe (Neuchâtel). — Sur les développements d'une fonction

analytique en série de polynômes.

^oit f (x) — 2 anxn
n—o

une fonction analytique définie par son développement de Taylor au
voisinage de a?=o.

Un théorème de Mittag Leffler permet de donner de f (x) un
développement en série de polynômes représentant cette fonction dans tout
le plan, à l'exception de lignes joignant ses points singuliers au point
à l'infini.

' S oi t M̂ 2 (con o0ctn at x-^ .-\-cnnanxn)
n—o

un pareil développement.
Monsieur Painlevé posait, dans sa note insérée dans les „Leçons

sur les fonctions de variables réelles" de M* E. Boref, la question suivante :

Existe-t-il un développement M tel que pour toute f(x)
JA' [fix)] M [f\x)].

La réponse est négative. En, eifet un pareil développement serait
de la forme \

oo2( GonOo + C0(„_!)ai -|- +>„„ a,j
o—n

oo

avec 2 Con — 1
n—o

et appliqué à la fonction —^— il diverge pour | a > 1
1 — x
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