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1. Section de Mathématiques.
Séance de la Société mathématique suisse.
‘ Mardi, 31 aofit 1920.

Président: Prof, L. CRELIER (Berne).
Secrétaire: Prof. F. GONSETH (Berne).

1. CH. WILLIGENS (Berne). — Sur Uinterprétation du lemps uni-
versel dans la théorie de la relativité.

Si dans la transformation de Lorentz
e=f @), w=p @), y=y, 2=+

%=—_cot ¥ == cot aco=—v pP=

1—a?
on pose .
» _u=cot’—|—-y u'_—_cot-—-—y
on trouve, tout calcul fait

. ,3— _

1. ' u--ﬁ;t**—-t—}—
,3 1'

af
Pour avoir une mterprétatlon du paramétre #, utilisons les inter-
prétations de la transformation de Lorentz domnoes par Sommerfeld.

2. ' w = cot’' — cot —

La premiére, obtenue en remplagant a par ai et co par —ico
représente une rotation des axes oz ou d'un angle ¢ tel que a=tggp
1 b—
en posant b= 1 + pr et abl == M léQuatlon 1. prend la forme
B 1 -} m?
3. t’orz_—ma:—-I— cotl__l_—m2
la droite 3. admet une enveloppe
' v:v——~ cot & m
l T a—mye
]c c—t1—4m’-—m4
T ==
0 0 I —m¥?

On voit que les courbes sont homothétiques entre elles et ¢ est
rapport d’homothétie. La droite 3. est paralléle & la bissectrice de
ox et o',

‘ Dans la seconde représentation, les axes ox’-ou’ sont des diamétres
conjugués de deux hyperboles équilatéres conjuguées, la longueur du demi
diamétre étant toujours prise comme unité. La droite 1. peut s’écrire
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2

’ 4. ' -Pot——/,ca'-+-60t1 | ,u2
qui enveloppe la courbe
‘ x ¢ t———————4 s
promm—ad o 5
(14 p?)
144p®— pt
= t
CoT Co (1 I ,u’) 2

La droite 4. découpe sur owu et ow' des segments égaux. La
_courbe qu’elle enveloppe est une hypocycloide A trois rebroussements.

2. G. PoLyA (Zurich). — Sur les fonctions entiéres.

Soit g (2) = ao —L a1 z —}—ae 2® 4 ... une fonction entiére, M () le
maximum de [g(z)| dans le cercle |z| < #» N(r) le nombre de zéros
de g (2) dans le mémse cercle, » (») l'indice du plus grand des termes

; m Wlg M(r)
a() | ’l al | r’ l 02 I rz’ ¢ o . A =7-li’zo “——l—g'T—*—-
_ I. D’un théoréme général sur les suites infinies découlent les inéga-
lités suivantes:

l’ordre apparent de g (2).

lim n(r) lim ()
= =gy =150 e
lim N () <

@ = Iy M (r) =
Il existe une fonctlon @ (4), s’annullant pour 4 —=0,1, 2,3, ...,
positive, quand A n’est pas entier, et telle que

N ()

7
3 i i =P
On a (P(_A):sinn/l

pour 0 < A<1
1
1 A21—4 yAd—1d y

(4 @—4A)Ad—1) aFfp4
0

: pour 1< A4 <2,

Les inégalités données ne sauraient &tre resserrées d’avantage, le
signe = étant valable pour certaines fonctions particuliéres. P. ex. les’
inégalités (2) et (3) se changent en égalités pour o (z) resp. pour
E(VY 2); o(2) désigne la fonction de Weierstrass, un carré étant pris
comme parallélogramme des périodes, & (2) désigne la fonction de Riemann.

2 2
1I. Si -}~ ... converge, le genre de g (2) est

2
a1
ao + ai + as
0 ou 1. La démonstration se base sur un théoréme d’algebre de
M. J. Schur. Une autre démonstration, se basant sur des considérations
moins particuliéres, serait désirable parce qu’elle devrait probablement

g’écarter des méthodes usuelles.

as as
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3. LeoN LicHTENSTEIN (Berlin). — Ueber die mathematischen
Probleme der Figur der Himmelskorper. ‘

Die Figur der Himmelskorper hat seit der Erfindung der Infini-
tesimalrechnung zahlreiche fiihrende Mathematiker beschiftigt, - im
XVIIIL. Jahrhundert Maclaurin, d’Alembert, Clairaut, Legendre und
pamentlich Laplace, der diesem Gegenstand den zweiten Band seiner
Mécanique Céleste widmete. Im XIX. Jahrhundert brachten zunichst
Untersuchungen von Dirichlet, Jacobi, Liouville und Riemann iiber
Fliissigkeitsellipsoide, spater namentlich Arbeiten von Poincaré (1885)
und Liapounoft (1884) einen weiteren Fortschritt.

In einer bekannten Arbeit in, den Acta mathematica (1885) spricht
Poincaré den folgenden Satz aus. Sei T eine zu dem Werte w der
Winkelgeschwindigkeit gehorige Gleichgewichtsfigur einer rotierenden
bomogenen Fliissigkeit. Im allgemeinen gehért zu jedem von w wenig
verschiedenen Werte w -} dw der Winkelgeschwindigkeit eine neue
Gleichgewichtsfigur 7% in der Umgebung von 7. In besonderen Fillen
kann indessen zu w -+ dw (Adw>>o0 oder 4w < o) mehr als eine oder
auch gar keine Figur gehoren, ,in 7' tritt eine Verzweigung der Gleich-
gewichtsfiguren ein.“ Der von Poincaré fiir seine grundlegenden Sitze
gegebene Beweis hat nur einen heuristischen Wert. In dem besonderen
Falle der Maclaurinschen und Jacobischen Ellipsoide ist der vollstindige
Beweis von Liapounoff in einer Reihe grundlegender Abhandlungen, die
in den Jahren 1903 bis 1916 erschienen sind, geliefert worden. Die
Arbeiten von Liapounoff enthalten daneben noch die vollstindige Er-
ledigung des Stabilitdtsproblems in der iiblichen Fassung, sowie zahl-
reiche Einzelbetrachtungen, — alles fiir die Fliissigkeitsellipsoide.

In zwei vor kurzem erschienenen Arbeiten [Mathematische Zeit-
schrift Bd. 1 (1918) und Bd. 7 (1920)] habe ich unter anderem die
Poincaréschen Satze fiir beliebige Gleichgewichtsfiguren bewiesen. Die
Beweismethode stellt zum Teil eine Verallgemeinerung und Vereinfachung
der Liapounoffschen dar, sie fithrt aber dariiber hinaus neue wesentliche
methodische Gedanken namentlich potentialtheoretischer Art ein. Die
nunmehr verfiigharen Hilfsmittel gestatten eine Anzahl klassischer Pro-
bleme einer exakten Losung zuzufuhren. Als das wichtigste Resultat
ist die strenge -Begriindung der Laplaceschen Theorie der Saturnringe
zu bezeichnen. Laplace hat als erster die moglichen (leichgewichts-
figuren eines um einen Zentralkdrper rotierenden, homogenen, -fliissigen
Ringes untersucht und gefunden, dass sein Querschnitt in einer ersten
Nuherung elliptisch ist. Spater hat Frau S. Kowalewski die Ann#herung
einen Schritt weiter getrieben. Die Existenz ringférmiger Gleichgewichts-
figuren ist durch diese Arbeiten ebensowenig wie durch spatere Arbeiten
von Poincaré wirklich bewiesen worden. Als ein weiteres Resultat sei
die Begriindung der Laplaceschen Theorie der Figur des Erdmondes
genannt. Auch diirfte jetzt unter anderem die Behandlung nicht not- -
wendig homogener, jnsbesondere gasférmiger Rlnge in verhiltnismissig
einfacher Weise moghch sein. :
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4. L.-G. Du PasQuier (Neuchitel) — Sur les idéaux de nombres
hypercomplexes.

En cherchant & étendre & tous les systémes de nombres complexes
les propriétés des nombres entiers, comme Gauss l'avait fait avee un
plein succés pour les nombres complexes ordinaires, les géométres dé-
couvrirent que certains systémes ne se prétent pas A cette généralisation.
Par exemple, la décomposition d’'un nombre complexe euntier en facteurs
premiers, décomposition toujours possible, n’est pas toujours univoque.
Il en résulte qu’un produit peut &tre divisible par un nombre entier
sans qu'aucun des facteurs ne le soit, et quantité d’autres irrégularités.
La théorie des idéaux, comme on le sait, fait tomber ces anomalies par
un heureux changement de méthode. En faisant intervenir les idéaux
de nombres, c. & d. certains ensembles de nombres entiers, & propriétés
caractéristiques bien déterminées, au lieu d’opérer sur les nombres
considérés isolément, Dedekind réussit & rétablir la simplicité arithno-
mique qui se manifeste dans l’arithmétique ordinaire. — Le domaine
ot la théorie des idéaux est applicable avec succés embrasse tous les
corps de nombres algébriques dont on s’est occupé jusqu’ici: d’une part
les systémes ou se maintient 1’ancienne théorie des nombres, qui ne fait
pas intervenir le concept d’idéal, d’autre part une infinité de systémes
ol cette ancienne arithmétique n’est pas valable. Aussi croyait-on la
théorie des idéaux d’une efficacité absolue, lorsqu’il s’agissait d’obtenir
une arithnomie réguliére. Or, il existe des systémes de nombres com-
plexes & multiplication associative, distributive et commutative, et con-
tenant les nombres réels comme sous-groupe, o méme la théorie des
idéaux ne conduit pas A une arithmétique simple comparable & la clas-

sique. — Soit, dans 'un de ces systémes, @ un idéal non principal.
Il peut arriver que la série de ses puissances successives:
a, a%, a® . ...... , A% L. ad infin.

ne contienne aucun idéal principal. L’un des fondements de la théorie
de Dedekind est ainsi détruit. Le conférencier décrit le systéme le
plus simple possible de nombres complexes ou cela se produit et ter-
mine sa communication en signalant quelques problémes nouveaux qui
surgissent de ce fait dans le domaine des nombres complexes généraux.

5. G. TiercY (Genéve). — Une nouvelle propriété des courbes
orbiformes. .

1. On appelle orbiformes des courbes fermées convexes, de largeur
constante. Leur équation polaire tangentielle s’écrit: .

p (w) =a[l 4 f(w)], avec f (w4 7) = — f (w).

Considérons un point M de contact se mouvant sur une orbiforme,
de telle maniére que ’angle polaire tangentiel augmente proportionnelle-
ment au temps:

w =— 0t -} wo;

la projection P du point M sur un axe est animée d’'un mouvement
- oscillatoire, auquel nous donnerons le nom de mouvement harmonique
d’orbiforme. '
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2. Considérons plusieurs mouvements harmoniques d’orbiformes,
d’amplitudes a; diftérentes, d’époques. tangentlelles g; différentes, mais
de méme période tangentlelle

_ pi=a; [t +fi ()], oi=ow+ &
Composons les normales i ; goient OS la résultante, O sa projection
sur I'axe des z, et ON sa projection sur 1'axe des Y. Puis, donnons
¥ - un accrmssement 7r; et composons les nouveaux rayons vecteurs
tax?gentiels pi (w; + 7); soient OF la résultante, UK’ et UN’ ses pro-

jections sur les axes de coordonnées. En posant:
2 a; cos &g = A cos a, 2 a; Singg == A Sin g,

on obtient:
R’R——2Acos(a)—|— €), NN——2ASm(w+
On trouve donc la propriété que voici: le segment de droite S

. est de longueur constante égale.ad 2 A; et I'angle qui 1'oriente résente
une différence constante ( ¢ — ¢ ) avec chacune des phases w; —

Drailleurs, le rayon vecteur tangentiel OS ne détermine pas une orbiforme.
3. On trouve facilement que la distance de l'origine & la droite

SV P (@)= Za[14fi]Sim (e — & );
or, il vient: P(w) + P(w + 7)) =o. .

La courbe enveloppe de la droite S5, est donc une courbe d’en-
vergure nulle, c’est-d<dire n’admettant. qu'une seule et unique tangente
paralléle & une direction donnée. Par conséquent, les courbes convexes
paralléles a la courbe P (w), et les ‘développantes convexes de cette
méme courbe, seront de nouvelles orbiformes. -

4. Dans les cas ou tous les & sont égaux, les rayons P sont portés

-par la- meme droite ; alors:
' ’ P (w)==o,

et la résultante OS5 des rayons p; définit directement une nouvelle orbi-
- forme, de largeur 2.4 =—=223aq; .

Si P est le point animé du mouvement harmonique d’orblforme
final, et 8i P; sont les points animés des mouvements harmoniques donnés,

on a en outre:
01’:2 Of'i .

-On remarquera que ’énoncé de ce théoréme est identique & celui
de la loi de Fresnel, -donnant la composition de plusieurs mouvements
harmonlques simples de- méme pérlode

6. Evca (Urbana U. S A). — Uber Inczdehzen von Geraden und
ebenen algebraischen Kurven im Rawme und die von thnen erzeugten Flichen.
Liiroth? hat Probleme dieser Art fir den einfachsten Fall von
Kegelschnitten "untersucht. Mit Hilfe einer systematischen Anwendung
einer eleganten Form von Incidenzformeln, gelingt es Emch, nicht nur

! Uber die Anzahl der Kegelschnitte, ‘welche acht Geraden im Raume
-schnelden Crelles Journal, 68 Band, S. 180——-192 (1868).
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alle Resultate Liiroths, sondern die allgemeinsten fiir Kurven »'¢r Ord-
nung, durch eine relativ einfache analytische Methode zu erhalten.
lmmge der hauptsichlichsten Resultate sind bier mitgeteilt:

n (n-|- 3)

1. Das System von Ebenen von welchen jede — -+ 1 un-

abhiingige Geraden im Raume in Punkten schneiden, welche auf einer

nd + 3 "2 + 2 71
3.

9. Die ebenen Kurven nter Ordnung, deren Ebenen durch eine feste

(n+ )

Kurve nter Ordnung liegen, bilden eine Fliche von der Klasse

Linie gehen, und

unabhingige Geraden im Raume schneiden,

n® 4 3n®-}2n
3.

3. Die ebenen Kurven #'* Ordnung, welche jede von

erzeugen eine Fliche von der Ordnun-g

n(n- 3)

—_—+2
5 T+

unabhingige Geraden im Raume einfach schneiden, bilden eine abwickel-

n®(2nt }-12n% | 1702 —3n 4 8)

bare Fliche von der Klasse

18.
4. Es gibt
nd (n? 4 8n A 2) (n' - 6n° | 4n®— 150 4 4)
27
Kurven #'** Ordnung, welche jede von n(n ;_—@ ~+ 3 unabhingige Ge-

raden im Raume schneiden.
5. und 6. Die Ebenen der ebenen Kurven #'** Ordnung, von
welchen jede eine feste ebene Kurve »'®* Ordnung, in » Punkten, und

n (n + 1) 41, respektive m (n + 1) —~+ 2 unabhingige Geraden im

Raume schneidet, bilden eine Flache (resp. eine abwickelbare Fliache)
von der Klasse:

e S 4 8 2 '
n(2n +3n—|—7), respektive (4nt 4 1208} 192 —]——241&—}—49)
6 . 36.
7. Es gibt:
n® (8n6—}—36n5-—1-66n4—-|—99n3+123n2+89n—}—343)

216
ebenc Kurven #'*™ Ordnung, welche eine feste ebene Kurve n** Ordnung

n (n —l—l)

in # Punkten und ~— 1~/ ~- 3 unabhingige Geraden im Raume schneiden.

7. S. Bays (Fribourg) — Sur les systémes cycliques de triples de
Steiner.

La question de déterminer le nombre des systémes de triples de
Steiner différents semble encore loin d’dtre résolue. White! (1915) a

! H. White. Transactions of the Amer. Mathem. Society vol. XXI (1)
1915, p. 18.
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montré que pour N =—231 déja le nombre des systémes de triples dif-
férents dépasse 37 >< 1012 Cole! avec White et Cummings (1916) ont
obtenu les systémes de triples différents pour N =—15; leur nmombre
est 80. Pour une classe particuliere de solutions du probléme des triples
de Steiner, les systémes de triples cycligues, la question parait déja
plus aisée. Pour N=6 n -} 1, premier (ou de la forme p%) j'ai une
méthode permettant d’obtenir les systémes cycliques de Steiner différents.
Elle est basée principalement sur I’emploi des substitutions métacycliques
(substitutions de la forme |#,a - S|, B premier avec N), et elle
donne en méme temps les groupes de substitutions qui appartiennent &
ces systémes. Jusqu’ici, & 2 exceptions prés, ces groupes ne sont jamais
que des diviseurs du groupe métacyclique. Dans un premier travail?,
j'avais obtenu les systémes cycliques différents pour les 17¢® valeurs de
N, jusqu'd N==231; jai depuis appliqué la méthode au cas N =37,
et je voulais également donner dans cette note le résultat pour N =— 43;
je n’ai pu terminer ma recherche dans le temps voulu. Pour N = 43,
le nombre S” dépasse 128; ce nombre S” est maintenant le nombre
intéressant du probléme; le nombre S des systdmes cycliques de Steiner
différents n’est plus qu’une fonction simple des systémes S’’. Mes résul-
tats sont contenus dans ce tableau.

S = nombre des systémes cycliques de

N|»|8]|8]S triples différents.

1 111 1 1| S =n. des systémes de caractéristiques.
13 9 1 1| 1| S"==n. des systémes de caractéristiques
19| 3 > | 4 4 irréductibles | und Vautreparlessubsti-
31 5 8| 64| 80 . tutions d’un groupe cyclique {Ix arl}
37| 6| 32 |455 820 ot j'entends par I'élément @, la va-
25 1 41 91 15! 12 leur absolue du plus petit reste posi-

tif ou négatif de a (mod. N).
J’entrevms actuellement une simplification dans la recherche des
systémes S” qui permettra d’effectuer encore la recherche pour le nombre
premier suivant N -=61, sans demander trop de temps. Peut-étre alors
les données seront-elles sufﬁsantes pour supposer la fonctlon 5" de N
(N premier). A

.8. F. GoNSETH (Berne). — Sur une application de l’é’quatwn de .
Fredholm.
Il s agit de déterminer une solution de 1’équation différentielle:
n—l

L te@ b @y =m )

avec différentes conditions limites. _
La méthode est exposée pour I’équation

dy .
1) d:v” + dxz b—~—+cy—_—: d,
1 F. N. Cole, L. D. Cummings et H. S. White. Proceedlngs of the National

Academy of Sciences vol III 1916, p. 197.
? Note des Comptes-Rendus t. 166, p. 548, 22 octobre 1917.
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' '
lorsque la fonction inconnue y prend pour x = x1, x2 et 3, les valeurs

données d’avance yi1, y2 et ys.
L3

Posant: (2) y:fA (@,s) f(s) ds 4 V(x), on A (z,s), en général con-

L1
04 o4
et — pre-

oz ¥ 4

sentant au méme endroit les discontinuités B(x) et y(x).
3

oz’
Dans ces conditions A4 (r1s) sera de la forme:

(3){ll(x—s)2—}—m1(x—s)+m pour s < &
le(x — 8) - me (x — 8) -} n2 pour s > z.

Les différences 2 (s) — l1 (s) .. etc. sont déterminées par les con-
ditions précédentes, et jouent seules un role. L’équation (2) dérivée
3 fois fournit:

¥+ al) f@) 4 [B (@) + 2a@)] /(@) + [y (@) + f (@) 4 y(@)] f(2) =V ().
L’identification de cette équation avec (1) détermine a(x), B(x) et y ().
On peut remplacer V(x) par I’expression

Vz)+ C1 (x —x2) (w—1x3) } Co 10 — x3) (x — @1) + Cs (¢ — 21) ( — 3).
Les conditions limites déterminent les C, une fois V(x) remplacée par

cette mouvelle expression, dans (2). Cette derniére prend la forme
- X3 ) ’

== fB (xs) f(s) ds + W ().

e
&1

Le point essentiel est que la fonction f ne joue aucun riole dans B(xs)
et W (x); de sorte que 1'équation de Fredholm

s

y (z) =[B (zs) y(s) ds + W(x) résout le probléeme.

tinue, a pour x = s une discontinuité égale 4 a(x),

De plus sera identiquement nulle.

e
X1

, 9, C. CatLLER (Gendve). — Sur un théoréme relatif a la série
hypergéométrique et sur la série de Kummer.
v M. C. Cailler donne diverses généralisations de la formule obtenue
par lui il y a quelques années. ‘
1 o

sz(l —2) T'F(a, B,y x2) F(, B, ¥, y(1 —2),de=—
g | | |
_ =Dl =D a—f , .

laquelle a lieu sous réserve des conditions’:

ata=p4 F=r+r.




— 163 —

Parmi ces extensions, citons les suivantes:
T _

y—1 Yt ropr '
fz (1 —2) F(a,ﬂ,y,xz)F(a,ﬂ,y,l—z)dz:::

=D =Dy — a——ﬁ 1)
Ty —d—D! 4y — (H—y

qui a- lleu moyennant la relatlon :

ﬂ+:3 '—_7+7) .

ﬂ,a,y-l—y—-a )

et :
1

‘ 7_‘1 r'—1 ' | ' P

fz 1—2) - F.(a,y;wz)F(a,‘y;y_(lmz))dz

: , | )" . S

_ == .
(y_i_y_l]' ¢ F(a) y+y’y $)

Dans cette dernlére formule, F est la fonction de Kumimer :

(a<1) 2
F(a,y,x)~1+ +‘;(‘;il) st

'10. CH. CATLLER (Gendve). — “Sur um théordme de Cinématique.

‘Mr. C. Cailler rappelle d’abord les définitions classiques pour la vitesse .
"d’un point, d’un plan et d’une droite.- Cette dernidre est une quantité
complexe formée & I'aide d’une unité ¢, telle que &?=—o ‘

. Une droite appartient & une axe a lorsqu’elle rencontre I’axe sous
un angle droxt un point et un plan appartiennent & une meme axe, si
le pomt ‘est sur cette axe, et sile plan le contient.
| Ces déﬁmtions étant admises, imaginons qu’un point p, un plan =
et une drmte & fassent partie d’un solide a auquel ils appartiennent
étant fixe. Nous avons alors le théoréme suivani, en 4 partxes, dont
seule .la 17 est classique:

1° La- prOJectlon sur @ de la vitesse d’un pomt P appartena.nt a

a est la méme quel que soit ce point. Soit g” cette projection constante.
2° La projection sur a de la vitesse angulaire .d’un plan est la
méme quel que soit ce plan. Soit ¢’ cette projection constante. '
3° La projection sur ¢ de la vitesse linéaire d’une droite appar-
tenant 4 a est la méme, quelle que 3011; ]a drmte Soit g cette projec-
tion constante

40 _ -g-:g—}—:;g :

~11. M. PrancHEREL (Fribourg) et Epw. STRASSLE (Stans). — Sur
Vintégrale de Poisson pour la sphére. . . ‘
Llintégrale de Poisson ' :
U (r,9 d5)=—1— u (¥, 45') 1= e
P 47 1—21cosa)—|—r’ :

[y

20
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définit, lorsque u (9, D) est intégrable au sens de Lebesgue sur la sur-
face sphérlque S de rayon 1, une fonction harmonique & l’'intérieur de
S et 1'on sait que U (r,®, D) —» u (¥, @) presque partout lorsque » —» 1,
en particulier aux points de continuité de wu.

Il ne semble pas que 1’étude de la limite pour » —>- 1 des dérlvees

2

Dp, q U(r,9, d) = %%j—% ait été faite. La méthode employée par
M. de la Vallée Poussin dans le cas du cercle me peut &tre utilisée sur
la sphére. On peut, il est vrai, étudier ces dérivées par une méthode
directe ; malheureusement les calculs deviennent immédiatement trés longs
et la méthode ne semble applicable avec succés que pour les petites va-
leurs de p -} ¢. Cette méthode a cependant ’avantage de conduire 2
des résultats trés généraux dans lesquels interviennent les dérivées
généralisées de w.

Une méthode plus simple repose sur la remarque suivante: Si dans
un domaine 2 de S,u est-une fonction analytique du point (9. D)
U(r, &, D) est prolongeable analytiquement & travers 2. De cette remarque
a conclure que dans le cas particulier ou % est analytique on a, dans
2, Dy q U(ry, @) —> D, 4 u(d.D) lorsque » —> 1, il n’y a qu’un pas.

Si u posséde au point (F, @) une différentielle totale d’ordre n =
p+ g, on décomposera & l’aide de la formule de Taylor « en deux
parties: w—=—u, | r, telles que wu, soit analytique et qu’au point (}, D)
dy 4y, —=d, u (v <n). U se décomposera d’une maniére corrélative en
deux parties: U= U, -} R,. On aura au point (3, ®) D, , U, —>
D, quyn =D, 4u. Or, on peut montrer, & I’aide des propriétés du fac-

: - | —r?

teur de discontinuité 1= Sresm £ que Dp, p Rn'—> 0 lorsque
r -—> 1. On obtient ainsi le théoréme.

En tout point (9, ®) on wu posséde une différentielle totale d’ordre
n=p-gq, on a D, , U(r,d DP)—> D, ,u (¢ D) lorsque r — 1.

Laissant de c6té un théoréme analogue concernant la convergence
uniforme de D, , U vers D, ,u mnous remarquerons, pour terminer,
que 8i v~ 2 X, (¥, 8) est le développement formel de « en série de
Laplace, on a U (r,,®¢) =2 " X,, (¥, &). Par conséquent, le procédé
de sommation de Poisson est applicable au calcul des dérivées de tout
ordre de %, 12 ou elles existent.

La méme méthode peut s’appliquer a Pétude des dérivées dans
d’autres procédés de sommation, tel celui dans lequel le facteur de
convergence 1™ de Poisson est remplacé par e —7?'t (t —» o).

12. MicHEL PLANCHEREL (Fribourg). — Une question d’Analyse.

Lors de recherches sur l'inscription d’un carré dans une courbe
plane fermée et d’un octaédre régulier dans une surface fermée, jai
¢té amené A résoudre dans un cas particulier le probléme suivant:

Soit y = f(x) une courbe continue et univoque dans }intervalle
a<xz<b, telle que dans cet ?nterval‘le f@) > 0 et que f(a)=/(h)
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== 0. Soient M;, Ms deux points mobiles sur cette courbe, assujettis
4 avoir & chaque instant ¢ les mémes ordonnées. A l’instant ¢ = O,
M, se trouve au point (a, O), Mz au point (b, 0). Peut-on coordonner les
mouvemsnts de cvs 2 points de maniére & ce qu'ils se rencontrent ?

Le probléme est équivalent & la détermination de deux fonctions
@Dy (t), D: () continues dans: intervalle O <t << 1, telles -.que pour
0<t<1 . . , _— S :
- a< Py (H<b a<D:(t) ),

[ (B ®)=f (2 ®)
®; (0)=1a, D2 (0)=D

et que, pour f==o
et pour {== , :
‘ K D; (1)=b, D2 (1) =a.

Si f(x) n’a qu’un nombre fini d’extrémas dans (a, b), la résolution du
‘probléme est immédiate. Il s’agirait de savoir si la .seule hypothése
de la continuité de.f(x) est suffisante pour assurer la possibilité du
probléme; si non, . quelles conditions supplémentaires devraient étre

aJoutées

13. R. WAVRE (Neuchatel) — Sur les developpements d’une fonc-
tion analytzque en série de polynomes.
Soit . (x) ___Z’an Zn
. n=0

une - fonction analythue déﬁnle par son développement de Taylor au .
voxsinage de z=—o.

.Un théoréme de Mittag Leffler permet de donner de 1 () un dé-
'veloppement en série de polyndmes représentant cette fonction dans tout
le plan, & l'exception de lignes joignant ses pomts smgullers au point -
Y I’inﬁnl - - . . :

"~ Soit M[fw] = 2' (Con @0 + c,,, a, x + e o Cnn @y )

n==0

un’ parell développement.

‘Monsieur Painlevé posait, dans sa note insérée dans les ,Legons
sur les fonctions de variables réelles“ de M* E. Borel la questlon smvante

Existe-t-il un développement M tel que pour toute f(x)

‘ | M [f@]=M[f'@].

La réponse est négative. Eii effet un pareil développement- serait

de la forme - :
Z(con q, + Co (n—-—l) (11 x"l"‘ +coo a, z" )

o=n

avec Z' Con == 1
' n=0

—

et -appliqué a la fonctioﬁ. il diverge pour |a:l >1
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