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1. Sezione di Matematica.
Beduta délia Società elvetica matematica.

Lunedi, 8 settembre 1919.

Présidente: Prof. Dr. M. Plancherel (Freiburg).
Segretario: Prof. Dr. 0. Spiess (Basel).

1. Ed. Guillaume (Bern). — Un nouvel algorithme : nles dérivées
homogènes" et une nouvelle opération spatiale V„aberration".

Autoreferat wird im Enseignement mathématique erscheinen.

2. G. Ferri (Lugano). — Linea dei punti hrillanti di sfere con-
centriche.

Punto luminoso A; punto di vista Ai ; centro delle sfere 0; punto
brillante (di riflessione) M nel loro piano.

Coordinate ortogonali coli'origine nel centro 0. Asse Ox per il
punto di mezzo délia AAi. Coordinate dei punti: A, p q; A%f pi — q

(p>pi); M, x y.

Coefficient di direzione delle rette A M\ - - ; Ai M, — ; 0 M, —.
X—p X pi X

Il coefficiente di direzione délia bisettrice dell'angolo A MA. eguagliato
a quello délia OM conduce air equazione délia linea dei punti di
riflessione ;

1) (^2 + y2) y—(p—pi) (x* — y2)q — 2 (q2—ppi)xy o.
Questa linea passa per A e Ai; poi due volte in 0.

Il polinomio di terzo grado rispetto ad y, per un dato +# am-
mette tre valori d'y; dei quali uno sempre reale e positivo. La linea

p—piha per assintoto la retta —: q parallelo o x.
P -hpi

Il polinomio di secondo grado rispetto ad ; per un dato -h y
ammette due valori di x; perö reali soltanto fin a quando

y < + \/(y+g8) (Pi2+g2>
P~\~Pl

Quando fosse 0 A 0 Ai il polinomio ridotto è soddisfatto da y — o

p2 -j- q 2

(asse ox) e da x*-\-y2 x o (circonferenza col centro

sulla ox e che passa in Ö).

Costruzione grafica délia linea} mediante le tangenti per A e per
Ai a delle circonferenze concentriche in 0. Per ogni circonferenza si
hanno due coppie di tangenti ed i loro quattro punti d'intersecazione
sono punti délia linea.
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Punti brillanti di una sfera. Si otterranno colle intersecazioni
della linea dei punti brillanti colla circonferenza della sfera nel piano
dei punti A A\ 0 ; cioè risolvendo le equazioni simultanée ;

0»2+ ^2)2/ — (P— Pi)(a:2—«/2) (g2— xy o-,
xi -f- y2ri. Si giunge per xed y a delle funzioni del quarto grado,
quindi a 4 coppie di coordinate. Si noti perö che due soltanto corris-
pondono ai punti di riflessione dei raggi fisici; l'uno sulla parte con-
vessa, l'altra sulla parte concava della sfera. Gli altri due punti ris-
pondono soltanto alia condizione geometrica della bisezione dell' angolo
supplementäre delle due rette per A ed ii.

3. K. Meez (Chur). — Massgeometrie in Ovalen algebraischer Kurven.
Das Innere eines Ovales werde durch eine quadratische

Transformation als Bild der unbegrenzten Ebene bestimmt. In dieser Ebene
gelte die euklidische Massgeometrie und die daraus entstehenden
Masszahlen für Strecken und Bogen werden ihren Bildern im Oval
zugeordnet. Damit entsteht im Innern des Ovales eine allgemein nichteuklidische

Massgeometrie, die in der Ebene ihre Verwirklichung besitzt.
1. Beispiel1: f=(x2—a2) (x—b)—y2 enthält für f—o ein Oval

innert —a x < + a wenn a<.b. Durch die Transformation £2 x2 : f\
fj2 — y2 : f werden den Punkten P (x y) im Innern des Ovales die Punkte
P' (Ç rj) der Ebene zugeordnet. Den Koordinatenstrecken y von P als
Abstände von den Achsen entsprechen in rj ein Bogen u einer Kurve
3. Ordnung und ein Hyperbelbogen die zu berechnen sind aus

dx- v=JV ifB
fworin fi=— u. h — —. Für das Linienelement d u2Jrd v2—2 du*dv*

x y
cos. (p ist noch <p zu entnehmen aus :

tg(p_ 2f[2f-x
2 f [x fa-f yfi]—+ y2) f\ ft

Die geodätischen Linien im Oval sind Bogen von Kurven 3. Ordnung.
2. Beispiel : f= (x2—a2) (x2—b2)—y2 ; a<b
Die Massfunktion für Strecken im Oval ist durch Bogen von Kurven

4. Ordnung zu bestimmen.

4. L.-G. Du Pasquieb. (Neuchâtel). — Sur un problème de
cinématique.

Ûn point mobile P parcourt une ellipse donnée l dite ellipse génératrice ;

simultanément, elle tourne dans son plan autour de l'un de ses foyers F.
La trajectoire de P est alors une courbe plane dite „courbe gpu dont
l'auteur résume quelques propriétés frappantes. Soient, à l'instant t
quelconque, x et y les coordonnées cartésiennes de P rapportées au système

1 S. d. Beispiel in den Verhandlungen 1917, II., S. 135.
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d'axes X 0 Y qui coïncide avec les axes de l'ellipse génératrice à,

l'instant £ 0. Soient u f(t) la fonction qui règle le mouvement
de circulation du point P sur l'ellipse l supposée immobile, et co (t)
la fonction qui règle le mouvement de rotation du grand axe de l autour
du foyer fixe F. Désignant par02a et 2b les longueurs des axes de

l'ellipse l et par 2 c la distance de ses foyers, on trouve comme équations
de la trajectoire : f

x c — c* cos co (t) + a* cos (t)' cos co (t) — b• sin f (t)* sin co (t)
y — c» sin co (t) + a- cos f(t)• sin co (t) + b• sin f (t)' cos co (t).

En coordonnées polaires r, 0, le point fixe F étant le pôle, on
trouve comme équation de la courbe gp:

p b2 '
•

_ c
où p — est le demi-paramètre et e —

1 + *. cos F (&y r— a a
l'excentricité numérique de l'ellipse génératrice L La fonction F (&)
dépend des fonctions f (t) et co (t) ci-dessus définies. Sous certaines
hypothèses, on peut supposer le mouvement rotatoire uniforme sans
restreindre par là la généralité. Il y a d'ailleurs lieu de distinguer deux

cas, suivant que les 2 mouvements en question se font dans le même

sens, ou en sens contraire.
Les courbes gp peuvent être engendrées cinématiquement encore

de deux autres manières simples.
L'auteur mentionne la généralisation du problème à l'espace et

étudie les cas où l'on obtient comme équation

_ P

1 + e - cos
n + 1

Il énumère une dizaine de propriétés de ces courbes, ainsi que 2
applications remarquables, l'une en cinématique pratique, l'autre en astronomie.
Il existe un moyen très simple de les construire par points et 2 autres
méthodes de les engendrer cinématiquement, permettant de les obtenir
par un trait continu. L'auteur envisage spécialement une courbe gp du
degré 25 077 602 et son application en astronomie. Ayant montré que
les orbites réelles des planètes sont des courbes gp, il termine par une
intéressante considération sur le centre du système solaire.

5. A. Speiser (Zürich). — Ueber geodätische Linien.
Betrachtet man die geodätischen Linien eines konvexen Körpers,

ausgehend von einem Punkt, bis zur Enveloppe, so erzeugen sie eine
Ueberlagerungsfläche, welche den Körper überall mindestens einfach
überdeckt. Betrachtet man die Fortsetzung dieser Linien bis zur zweiten
Enveloppe, so erhält man wiederum eine Ueberlagerungsfläche, welche
unter gewissen Bedingungen den ganzen Körper überdeckt. Daraus
folgt, dass es alsdann durch jeden Punkt des konvexen Körpers eine
geodätische Linie gibt, welche nach einmaliger Berührung der Enveloppe
in den Punkt zurückkehrt. Betrachtet man die Länge dieses Schleifens
und sucht denjenigen Punkt, für welchen sie im Minimum ist, so ergibt



— 72 —

die „formule aux limites" der Variationsrechnung, dass die Linie in
sich zurückläuft, d. h. den Satz von Poincaré, dass der Körper mindestens
eine geschlossene geodätische Linie enthält.

6. M. Planchebel (Fribourg). — Sur la méthode d}intêgration
de Rayleigh-Ritz.

Le procédé de Rayleigh-Ritz (Rayleigh: Phil. Mag. (5) 47 (1899),
p. 566 — 72 et (6) 22 (1911), p. 225—229; Ritz: Gött. Nachr. (1908),
p. 236—48. J. reine angew. Math. 135 (1908) p. 1—61. Ann. d.
Phys. (4) 28 (1909), p. 737—86. Oeuvres, p. 192—316) pour
l'intégration des équations linéaires aux dérivées partielles du type elliptique
qui résultent d'un problème du calcul des variations — prenons, pour
fixer les idées, l'équation des plaques vibrantes AAu — Xu — o — exprime
la solution u v-\-w au moyen d'une fonction connue v et d'une série

w — Xi (pi procédant suivant un système de fonctions données

(pi (système que nous supposerons orthogonal, fermé et normé, ce qui ne
restreint pas la généralité) et calcule les coefficients x% comme solutions,
au sens de la méthode des réduites, d'un système

Q>ik %k XXf fi (1)
k

d'une infinité d'équations linéaires à une infinité d'inconnues. La méthode
de Ritz ne démontre la légitimité du procédé que dans le cas ou A < o,

lorsque la forme aïk xk est définie positive. En supposant connues

l'existence et les propriétés des fonctions fondamentales de AAu — Aw=o,
il est cependant possible de prouver que le procédé de Ritz est applicable

pour toute valeur de A qui n'est pas une valeur fondamentale
et qu'il permet de calculer valeurs et fonctions fondamentales par la
résolution; au sens de la méthode des réduites, du système homogène
correspondant à (1). La démonstration se base sur l'étude de la forme

quadratique (non bornée) a^ Xi XjC et sur le fait que cette forme

possède une résolvante unique qui elle est une forme K (ju; x) bornée
sauf pour les valeurs de pi qui sont les inverses des valeurs
fondamentales. Ainsi se trouve justifiée l'application qu'a faite Ritz de son
procédé au calcul des vibrations transversales d'une plaque élastique
à bords libres (figures de Chladni).

7. R. Fueteb (Zürich). — Einige Sätze der Idealtheorie und deren
Beweismethoden.

Der Betrachtung werde ein beliebiger Ga/oisscher Zahlkörper K
zugrunde gelegt. Hilbert hat die Zerlegung jeder einzelnen Primzahl in
Primideale in K studiert. Man kann diese Betrachtung vervollständigen,
indem man statt von einer Primzahl auszugehen die Gesamtheit
derselben betrachtet. Da nämlich K stets relativ-zyklisch zum Zerlegungskörper

der zur Diskriminante teilerfremden Primzahlen ist, kann die von
mir entwickelte Theorie Abelscher Gleichungen in einem Grundbereich
verwendet werden. Grundlegend sind folgende Resultate : Es sei Tc der
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Grundkörper, K der relativ-zyklische Oberkörper, f sei ein Ideal von kr
das alle Primideale der Relativdiskriminante von K in bezug auf k
enthält, und zwar einfach, wenn es zum Relativgrad teilerfremd, zu
einer bestimmten Potenz, wenn es im Relativgrad enthalten ist. Mit f
als Führer bilde man den Strahl in k. Dann gelten u. a. die Sätze:

1. Satz : Alle Primideale einer Strahlklasse (mod. f) in k zerfallen
in K in gleicher Weise.

Zwei Ideale von k heissen äquivalent (mod. /), wenn ihr Quotient
durch Multiplikation mit Einheiten von k zu einer Zahl a gemacht
werden kann, die total positiv ist und der Bedingung genügt :

a 1 (mod. f)
2. Satz: Alle Ideale der Hauptstrahlklasse (mod. f) zerfallen in K

in so viele Primideale, als der Relativgrad beträgt.
Ich greife aus der Diskriminante des gegebenen GaZotsschen Körpers

K alle Primzahlen heraus und bilde, wie oben, aus demselben den Führer f.
Für alle nicht in f enthaltenen Primideale stimmt der Trägheitskörper
mit dem Körper R überein. Letzterer ist relativ-zyklisch vom Grade n
in bezug auf den Zerlegungskörper eines Primideals p (d. h. dessen
Norm ist pn). Die Zerlegungsgruppe (Relativgruppe) sei 1, z, z2 zn~l.
Aus den Folgerungen, die Satz 1 und 2 zulassen, greife ich folgende heraus :

Die Zerlegungsgruppe 1, z,. zn~1 ist Untergruppe der
Zerlegungsgruppe jedes Primideales des Zerlegungskörpers, das in letzterem
dem Primideal p (mod. f) äquivalent ist. Ist 1, z, z71"1 nicht
Untergruppe einer cyklischen Untergruppe der Galoisschen Gruppe, so haben
alle zu p (mod. f) äquivalenten Primideale des Zerlegungskörpers letztern
zum Zerlegungskörper. Ist n>l, so ist p niemals Hauptideal (mod. f)
im Zerlegungskörper.

Nimmt man also umgekehrt irgend eine Untergruppe 1, z,. .zn~1
der GWo&schen Körpergruppe, die „die grösste" ist, d. h. die nicht
Untergruppe einer andern zyklischen Untergruppe ist, so bilde man den

zu 1, z, zn~1 gehörigen Unterkörper k. Alle Primideale von k, die
nicht ersten Grades sind, zerfallen in K in n Primideale. Alle Primideale
derselben Strahlklasse (mod. f) in k besitzen denselben Zerlegungskörper.

Die Beweise der Sätze 1 und 2 sind bisher noch nicht allgemein
publiziert worden. Es können drei Methoden zum Ziele führen : Die
Furtwänglersche Methode der Reziprozitätsgesetze, meine Methode der
Klassenstrahlen und Einteilung in Geschlechter und die analytische
Methode von Hecke mit Hilfe seiner Funktionalgleichung.

8. S. Bays (Fribourg). — Une question de Gayley relative au problème
des triples de Steiner.1

1 Mathematical Papers I p. 481 ou Phil. Magazine 87 (1850) p. 50.
Voir aussi Netto Combinatorik p. 202—285 et partie, page 228.
Dans l'Enseignement Mathématique (n° 1/2, 1917), j'ai établi 2 solutions

différentes du problème de Cayley pour 9 éléments. J'ai donné précisément en
commençant la démonstration de Cayley pour 15 éléments, parce que intéressante

et simple, sans songer à douter de la prétention sur laquelle elle repose.
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Cayley a soulevé, relativement au problème des triples ou triades
de Steiner, une question intéressante et difficile, jusqu'ici neuve encore

j\r (N y) (jsf—2)
de toute recherche : Est-il possible de répartir les — — triples

6
de N éléments en N—2 systèmes de Steiner

Pour 7 éléments cette répartition n'est pas possible ; on peut écrire
2 systèmes de Steiner de 7 éléments, n'ayant pas de triples communs,
mais pas davantage. Cayley s'est demandé si par exemple les 455 triples de

15 éléments pourraient être disposés en 13 systèmes de Steiner. Il a
cru donner une démonstration très simple que si les 13 systèmes existent,
(et Cayley dit en terminant qu'il ne le pense pas), ils ne peuvent pas
se déduire de l'un d'entre eux par une permutation cyclique de 13 de

ces éléments. Mais sa démonstration repose sur une prétention qui se

trouve être entièrement fausse. Cayley prétend que dans ce rectangle
des couples des 13 éléments 0, 1, 2, 9, 0', 1' 2', disposés de la
manière suivante :

01 12 23 34 45 56 67 78 89 90' OT l'2' 2'0
02 13 24 35 46 57 68 79 80' 91' 0'2' l'O 2'1
03 14 25 36 47 58 69 70' 81' 92' O'O l'I 2'2
04 15 26 37 48 59 60' 71' 82' 90 O'I l'2 2'3
05 16 27 38 49 50' 61' 72' 80 91 0'2 l'3 2'4
06 17 28 39 40' 51' 62' 70 81 92 0'3 l'4 2'5

il n'existe qu'un seul système de 6 couples, ayant un couple dans chaque

ligne et renfermant les 12 éléments 1, 2, 1', 2', à savoir le
système suivant: 67, 2'1, 58, l'2, 49, 0f3. Or il en existe 144 autres,
remplissant les mêmes conditions ; ces systèmes vont par couples de
systèmes que j'appellerai conjugués} déductibles l'un de l'autre par la sub-

TV" 1 N+lstitution \x, N-x|. Le système 1, N—1; 2, N—•2. ; —;—, —-—
2 2

donné par Cayley, est le seul identique à son conjugué ou self-conjugué.
Pour 6 n-jr 3 éléments, lorsque 6 n + 1 est un nombre premier, (cas de

15 éléments de la démonstration de Cayley), et*pour£n+f éléments,
lorsque 6n—1 est un nombre premier de la forme 4x—1} je peux donner
un système général de couples, remplissant les conditions demandées par
Cayley, différent de son conjugué et donc autre que le système self-con-
jugué, au moyen d'une racine primitive a de + resp. de 6n—l.
Pour 9 éléments, ce système avec son conjugué et le système self-conjugué,

permettent de construire immédiatement le système de Steiner suivant :

780 713 726 745 815 823 846 016 025 034 124 356

que la substitution cyclique (0123456) transforme successivement en 6
autres systèmes de Steiner différents par tous les triples, et renfermant
donc avec le premier les 84 triples de 9 éléments.

Le manque de place ne me permet pas de développer davantage
jyr (ff i \ /$[ 2)

la question ; mais le problème de Cayley : Répartir les —
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triples de N éléments en N—2 systèmes de Steiner, ou en d'autres termes :

Trouver N—2 systèmes de Steiner de N éléments différents par tous les

triples, me paraît se poser au contraire d'une manière positive pour
N= 6 n + 1 et N=t6 n + 3 éléments, N=7 étant probablement le seul
cas pour lequel il manque de solution.

9. L. Oublier (Berne). — Interprétation géométrique rationelle des

quantités imaginaires.
1. Toutes les opérations de la géométrie analytique à deux dimensions

supposent que nous travaillons sur Yendroit du plan fondamental.
Si nous introduisons le concept de Yenvers du plan, nous aurons,

avec un axe commun, celui des x par exemple, de nouvelles ordonnées

qui correspondent aux valeurs l et —\J—l ou -f- i et — i.
2. Considérons maintenant une équation algébrique, p. ex. x* -f- y2

—16. A toutes les valeurs de x correspondent des valeurs de y;
entre — 4 et -|- 4 elles viennent sur l'endroit et forment un cercle ;

entre — oo et — 4 puis entre -j--4 et -)- oo elles viennent sur
l'envers et forment une hyperbole équilatère également comprise dans

l'équation.
8. Recherchons les points de coupe de la droite x 5 avec la

courbe x2 -|- y2 — 16. Nous trouvons (5, -(- 3i) et (5, — 3i).
Comme la droite est également représentable sur l'envers, les points de

coupe sont sur Venvers, sur V hyperbole.
4. Passons aux points de coupe de la même courbe avec la droite

32 4 16
y 2 x — 16. Nous trouvons x =—— zt-— y lit et y — —-

S t) t) o

zt—\Jlli. Pour trouver les images de. ces points nous avons deux
5

moyens :

a) Nous prenons comme nouvel axe des x le diamètre perpendiculaire

à la droite ; l'équation de la courbe ne change pas ; celle de la
16

droite devient x —\J5. D'après le raisonnement précédent nous
5

trouvons les deux points de coupe sur l'envers du plan et sur l'hyperbole

correspondante.
(32 16\

b) Ou bien nous déplaçons les axes jusqu'en —J comme

nouvelle origine et sur l'envers, à cause du déplacement des deux axes,

nous avons les coordonnées zt Ii i et zb ~\Jlli ou les points

(|v«ï f V'«') (-IV"7' - 1
5. On peut opérer de la même manière avec une conique

quelconque et nous arrivons aux conclusions suivantes:
a) Les points de coupe d'une conique avec une droite extérieure sont

les intersections de la droite sur Venvers du plan avec la conique associée
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qui admet la direction de la droite comme diamètre conjugué secondaire.
Le diamètre principal sert d'axe réel commun aux deux faces du plan.

b) Les valeurs analytiques x a + bi et y c zt di trouvées

comme solutions correspondent aux mêmes points; et et C sont les
coordonnées de la nouvelle origine, sur le centre du segment de droit entre les

points de coupe; b et — b sont les abscisses tandis que e et — sont
les ordonnées de ces points sur l'envers du plan fondamental.

10. G. Polya (Zürich). — Das wahrscheinlichkeitstheoretische Schema
der Irrfahrt.

Stellen wir uns sämtliche Gitterpuokte eines Raumes von d Dimensionen

vor und ihre sämtlichen Verbindungsgeraden, die einer der d
rechtwinkligen Koordinatenaxen parallel sind. An dem entstehenden
Geradennetz soll ein Punkt auf Geratewohl herumfahren. D. h. an jeden

neuen Knotenpunkt angelangt, soll er sich mit der Wahrscheinlichkeit
& a

für eine der möglichen 2d Richtungen entscheiden. Für d l haben
wir eine in gleiche Segmente geteilte unbegrenzte Gerade und die
geometrische Darstellung des „Wappen- oder Schrift"-Spiels vor uns, für
d — 2 die Irrfahrt eines Spaziergängers in einem Strassennetz, für
d — 3 die Irrfahrt einer Molekül, die in einem Kristall des regulären
Systems diffundiert.

An dieses Schema der Irrfahrt und an naheliegende Modifikationen
davon lassen sich die wichtigsten bekannten Probleme und Anwendungen
der Wahrscheinlichkeitsrechnung anschaulich anschliessen. Von den

mannigfaltigen neuen diesbezüglichen Problemen sei hier nur eins
erwähnt. Zwei auf die beschriebene Weise mit gleicher Geschwindigkeit
aber unabhängig voneinander herumirrende Punkte sind von dem gleichen
Knotenpunkt aufgebrochen. Die Wahrscheinlichkeit dafür, dass sie sich
in Zeitraum t wiederfinden, nimmt mit t zu. Strebt sie für t oo der
Sicherheit zu? Ja, für d=l, 2, nicht, für d — 3, 4, 5,.

11. W. H. Young (Lausanne et Aberystwyth). — Sur la notion
de l'aire.

Plusieurs mathématiciens de notre temps ont essayé de mettre au
clair la notion de l'aire d'une surface courbe, mais avec peu de succès.
L'auteur a construit une théorie qui s'applique non seulement aux
surfaces, mais aux variétés de n'importe quelles dimensions. La théorie
est fondée sur l'idée de l'aire d'une courbe gauche. L'aire d'un polygone
est la somme des moments de forces, représentées par les côtés du
polygone. Dans une courbe on inscrit un polygone, ayant tous ses
côtés inférieurs en longueur à ô : si, en faisant ô tendre vers zéro,
l'aire du polygone tend vers une limite unique, celle-ci est l'aire de la
courbe. Avec cette définition, par exemple, chaque courbe rectifiable
plane possède une aire, donnée par la formule
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Si notre courbe est l'image du périmètre du rectangle (a, b; a', b')
dans une correspondence continue

x x (u, v), y=-y (u, v), (a<x<a'), (b<y< b'),
le problème se pose de transformer l'expression obtenue dans l'intégrale
double bien connue

f«' P'^dud,J a J b d (u, v)

Prenons maintenant une correspondance continue et biunivoque
x x (u, v), y y (u, v), z — z (u, v)

et divisons le rectangle fondamental en rectangles partiels, dont les
côtés, parallèles à u o, v o, ne dépassent pas ô en longueur.

Ayant formé la somme ^ des aires des courbes images de ces

rectangles partiels, nous laissons ô tendre vers zéro. Si ^ a une limite

unique celle-ci est l'aire de la partie de la surface, image biunivoque
du rectangle fondamental.

Le théorème principal obtenu est le suivant: Si x (u, v), y (u,v),
z (uy v) sont des intégrales par rapport à u; ayant des dérivées partielles
par rapport à u qui sont, sauf pour un ensemble de valeurs de u de mesure
nulle, toutes inférieures à une fonction sommable de u, et si la même chose
est vraie quand nous changeons u en v et v en uy la surface image du
rectangle fondamental a une aire A donnée par la formule

a= fa' p\/7lMV + (lEild(x> dudv
J a J b V d (u> v)' (Uy v) J r \d (a, v) J

Dans certaines conditions l'auteur arrive au même but par une méthode
de triangulation. Il faut cependant introduire explicitement l'ordre double
de la surface, de même que dans l'approximation de la longueur d'une
courbe, il est nécessaire de tenir compte du sens de cette courbe. Notre
triangulation est obtenue en joignant convenablement par des lignes
droites les points de la surface images des sommets des rectangles
partiels de longueur <A et de hauteur < k dans le plan des (u, v).
Pour calculer l'aire nous laissons d'abord k et puis h tendre vers zéro,
et nous obtiendrons le résultat voulu dans certains cas intéressants.
Sans donner les conditions les plus générales, nous remarquons que, si
x (u, v), y (u, v) et z (u, v) sont des intégrales doubles, cette méthode
est valable, d'autant plus que la limite obtenue est dans ce cas
indépendante de la manière dont k et h tendent vers zéro.
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