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1. Sezione di Matematica.
Seduta della Societd elvetica matematica.
Lunedi, 8 settembre 1919.

Presidente : Prof. Dr. M. PLANCHEREL (Freiburg).
Segretario: Prof. Dr. O. Spiess (Basel).

1. Ep. GuinLaAuME (Bern). — Un nouvel algorithme : ,les dérivées
homogénes“ et une mouvelle opération spatiale U, aberration“.

Autoreferat wird im Enseignement mathématique erscheinen.

2. G. FERRI (Lugano). — Linea dei punti brillanti di sfere con-
centriche.

Punto luminoso A4; punto di vista 4;; centro delle sfere O; punto
brillante (di riflessione) M nel loro piano. '

Coordinate ortogonali coll’ origine nel centro O. Asse Ox per il
punto di mezzo della 44,. Coordinate dei punti: 4, p q; 41, pr —¢q

(p>m); M, 2 y.

Coefficienti di direzione delle rette 4 M, ¥y~ 1 ; A1 M, —y—j:g ; OM, £,

T—p r—m z

I1 coefficiente di direzione della bisettrice dell’ angolo 4 M A. eguagliato
a quello della OM conduce all’ equazione della linea dei punti di
riflessione ;

(p4p) @y y— (p—p1) @*—y®) g —2 (P—pp1) Ty =o.
Questa linea passa per 4 e Ai; poi due volte in O.

Il polinomio di terzo grado rispetto ad y, per un dato -+ x am-
mette tre valori d’y; dei quali uno sempre reale e positivo. La linea

‘ha per assintoto la retta y, . q parallelo o z.

»+m

Il polinomio di secondo grado rispetto ad x; per un dato + y
ammette due valori di x; perd reali soltanto fin a quando

y< TV@+a) (n*+e)
P+

Quando fosse O A — O A4; il polinomio ridotto & soddisfatto da y=—=o

2 2
(asse ox) e da x2+y2_p ;,;q

x = o (circonferenza col centro

sulla oxr e che passa in O).

Costruzione grafica della linea, mediante le tangenti per A e per
A1 a delle circonferenze concentriche in O. Per ogni circonferenza si
hanno due coppie di tangenti ed i loro quattro punti d’intersecazione
sono punti della linea. : :
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Punti brillanti di wuna sfera. Si otterranno colle intersecazioni
della linea dei punti brillanti colla circonferenza della sfera nel piano
dei punti 4 41 O; cioé risolvendo le equazioni simultanee;

(2 +p1) (w2+y2) y— (p—mp) (@*—y%) ¢—2 (¢ —10101) TYy=0;
x® -} y* = % Si giunge per x ed y a delle funzioni del quarto grado,
quindi a 4 coppie di coordinate. Si noti perd che due soltanto corris-
pondono ai punti di riflessione dei raggi fisici; 1’'uno sulla parte con-
vessa, 'altra sulla parte concava della sfera. Gli altri due punti ris-
pondono soltanto alla condizione geometrica della bisezione dell’ angolo
supplementare delle due rette per 4 ed 4.

‘3. K. Merz (Chur). — Massgeomelrie in Ovalen algebraischer Kurven.

Das Innere eines Ovales werde durch eine quadratische Trans-
formation als Bild der unbegrenzten Ebene bestimmt. In dieser Ebene
gelte die euklidische Massgeometrie und die daraus entstehenden Mass-
zahlen fiir Strecken und Bogen werden ihren Bildern im Oval zuge-
ordnet. Damit entsteht im Innern des Ovales eine allgemein nichteukli-
dische Massgeometrie, die in der Ebene ihre Verwirklichung besitzt.

1. Beispiel!: f= (#>—a?) (#—b)—y? enthilt fiir f==0 ein Oval
innert ——a <z <-a wenn a<<b. Durch die Transformation £2=22:f;
=y f “werden den Punkten P (z y) im Innern des Ovales die Punkte
P’ (£n) der Ebene zugeordnet. Den Koordinatenstrecken 2, y von P als
Abstiinde von den Achsen entsprechen in &, # ein Bogen u einer Kurve
3. Ordnung und ein Hyperbelbogen », die zu berechnen sind aus

u: f\/4f(f—xf1)+<x2+y2>f12 dos v f \/4f(f—yfe>+<r2+y%>f2 dy
473 47°

worin fi1 — = u. fo— 7 Fiir das Linienelement d >+ d v*—2dwu-dv.

cos. @ ist moch ¢ zu entnehmen aus:
g = 2f[2f—=fi—y el
2flwhtyhl—@+yfifo |
Die geoditischen Linien im Oval sind Bogen von Kurven 3. Ordnung.
2. Beispiel: f= (2?—a?) (2*—b%)—y?; a <<b.
Die Massfunktion fiir Strecken im Oval ist durch Bogen von Kurven
4. Ordnung zu bestimmen.

4. L.-G. Du PasQuier. (Neuchatel). — Sur un probléme de ciné-
matique.

Un point mobile P parcourt une ellipse donnée ! dite ellipse génératrice;
simultanément, elle tourne dans son plan autour de 'un de ses foyers F.
La trajectoire de P est alors une courbe plane dite ,courbe gp“ dont
Pauteur résume quelques propriétés frappantes. Soient, i 1'instant ¢ quel-
conque, z et y les coordonnées cartésiennes de P rapportées au systéme

! 8. d. Beispiel in den Verhandlungen 1917, IL, 8. 185.
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d’axes X O Y qui coincide avec les axes de 1'ellipse génératrice a
I'instant £=0. Soient »=—7f(t) la fonction qui régle le mouvement
de circulation du point P sur 1'ellipse ! supposée immobile, et w ()
la fonction qui régle le mouvement de rotation du grand axe de / autour
du foyer fixe F. Désignant par, 2a et 2b les longueurs des axes de
I'ellipse [ et par 2 ¢ la distance de ses foyers, on trouve comme équations
de la trajectoire : '
x=c¢c—c cos w (t)ta cos (¢) cos w (t) —b- sin f (%) sin w (¢)
y = — ¢ sin w (t) + a- cos f(t)- sin w (t)+b- sinf (1) cos w (1).

En coordonnées polaires », @, le point fixe F étant le pble, on
trouve comme équation de la courbe gp:

P ol pe—"" est lo demi \ c.

T 1F¢- cos F ()’ ou p———; est le demi-parametre et e =
I’excentricité numérique de Il'ellipse génératrice I. La fonction F (O)
dépend des fonctions f (¢?) et w (¢) ci-dessus définies. Sous certaines
hypothéses, on peut supposer le mouvement rotatoire uniforme sans
restreindre par 13 la généralité. Il y a d’ailleurs lieu de distinguer deux
cas, suivant que les 2 mouvements en question se font dans le méme
sens, ou en sens contraire. , '

Les courbes gp peuvent &tre engendrées cinématiquement encore
de deux autres maniéres. simples. »

‘L’auteur mentionne la généralisation du probléme & l’espace et
étudie les cas ou 'on obtient comme équation

p
‘1+e . cos

r

Yy —

n. @
n+1

Il énumére une dizaine de propriétés de ces courbes, ainsi que 2 appli-
cations remarquables, I'une en cinématique pratique, I'autre en astronomie.
Il existe un moyen trés simple de les construire par points et 2 autres
méthodes de les engendrer cinématiquement, permettant de les obtenir
par un trait continu. L’auteur envisage spécialement une courbe gp du
degré 25077 602 et son application en astronomies. Ayant montré que
les orbites réelles des plandtes sont des courbes gp, il termine par une
intéressante considération sur le centre du systéme solaire.

5. A. SPEISER (Ziirich). — Ueber geoddtische Linien.

Betrachtet man die geoditischen Linien eines konvexen Korpers,
ausgehend von einem Punkt, bis zur Enveloppe, so erzeugen sie eine
Ueberlagerungsfliche, welche den Korper iiberall mindestens einfach
iiberdeckt. Betrachtet man die Fortsetzung dieser Linien bis zur zweiten
Enveloppe, so erhilt man wiederum eine Ueberlagerungsfliche, welche
unter gewissen Bedingungen den ganzen Korper iiberdeckt. Daraus
folgt, dass es alsdann durch jeden Punkt des konvexen Korpers eine
geodatische Linie gibt, welche nach einmaliger Beriihrung der Enveloppe
in den Punkt zuriickkehrt. Betrachtet man die Linge dieses Schleifens
und sucht denjenigen Punkt, fiir welchen sie im Minimum ist, so ergibt
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die ,formule aux limites® der Variationsrechnung, dass die Linie in
gich zuriicklduft, d.h. den Satz von Poincaré, dass der Korper mindestens
eine geschlossene geoditische Linie enthilt.

6. M. PranceEEREL (Fribourg). — Sur la méthode d’intégration
de Rayleigh-Ritz.

Le procédé de Rayleigh-Ritz (Rayleigh: Phil. Mag. (5) 47 (1899),
p. 566—1T2 et (6) 22 (1911), p. 225—229; Ritz: Gott. Nachr. (1908),
p. 236—48. J. reine angew. Math. 135 (1908) p. 1—61. Ann. d.
Phys. (4) 28 (1909), p. 7837—86. Oeuvres, p. 192—316) pour I'inté-
gration des équations linéaires aux dérivées partielles du type elliptique
qui résultent d’'un probléme du calcul des variations — prenons, pour
fixer les idées, I’équation des plaques vibrantes 44u — Au=—=0 — exprime
la solution w=v-}-w au moyen d’'une fonction connue v et d’une série

W = 2 x; @; procédant suivant un systéme de fonctions données

@; (systéme que nous supposerons orthogonal, fermé et normé, ce qui ne
restreint pas la généralité) et calcule les coefficients x; comme solutions,
au sens de la méthode des réduites, d’un systéme

Zaz’kxk——lwz‘ = [ (1)

k
d’une infinité d’équations linéaires A une infinité d’inconnues. La méthode

de Ritz ne démontre la légitimité du procédé que danms le cas ou A <o,
lorsque la forme 2 a; x; x; est définie positive. En supposant connues

I'existence et les propriétés des fonctions fondamentales de Adu — Au=—o,
il est cependant possible de prouver que le procédé de Ritz est appli-
cable pour toute valeur de A qui n’est pas une valeur fondamentale
et qu’il permet de calculer valeurs et fonctions fondamentales par la
résolution, au sens de la méthode des réduites, du systéme homogéne
correspondant & (1). La démonstration se base sur 1'étude de la forme

quadratique (non bornée) Z air z; z et sur le fait que cette forme

posséde une résolvante unique qui elle est une forme K (u; ) bornée
sauf pour les valeurs de u qui sont les inverses des valeurs fonda-
mentales. Ainsi se trouve justifiée 1’application qu’a faite Ritz de son
procédé au . calcul des vibrations transversales d’une plaque élastique
‘a4 bords libres (figures de Chladni).

1. R. Fuerer (Zirich). — FEinige Sitze der Idealtheorie und deren
Beweismethoden.

Der Betrachtung werde ein beliebiger Galoisscher Zahlkorper K
zugrunde gelegt. Hilbert hat die Zerlegung jeder einzelnen Primzahl in
Primideale in K studiert. Man kann diese Betrachtung vervollstindigen,
indem man statt von einer Primzahl auszugehen die Gesamtheit der-
selben betrachtet. Da ndmlich K stets relativ-zyklisch zum Zerlegungs-
korper der zur Diskriminante teilerfremden Primzahlen ist, kann die von
mir entwickelte Theorie Abelscher Gleichungen in einem Grundbereich
verwendet werden. Grundlegend sind folgende Resultate: Es sei & der
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Grundkérper, K der relativ-zyklische Oberkorper, f sei ein Ideal von &,
das alle Primideale der Relativdiskriminante von K in bezug auf &
enthilt, und zwar einfach, wenn es zum Relativgrad teilerfremd, zu
einer bestimmten Potenz, wenn es im Relativgrad enthalten ist. Mit f
als Fiihrer bilde man den .Strakl in k. Dann gelten u. a. die Sitze:

1. Satz: Alle Primideale einer Strahlklasse (mod. f) in k zerfallen
in K in gleicher Weise.

Zwei Ideale von k heissen d#quivalent (mod. f), wenn ihr Quotient
durch Multiplikation mit Einheiten von % zu einer Zahl a gemacht

werden kann, die total positiv ist und der Bedingung geniigt:
a=1 (mod. f)

2. Satz: Alle Ideale der Hauptstrahlklasse (mod. f) zerfallen in K
in 8o vicle Primideale, als der Relativgrad betrdgt.

Ich greife aus der Diskriminante des gegebenen Galoisschen Korpers
K alle Primzahlen heraus und bilde, wie oben, aus demselben den Fiihrer f.
Fiir alle nicht in f enthaltenen Primideale stimmt der Trigheitskorper
mit dem Korper K iiberein. Letzterer ist relativ-zyklisch vom Grade »
in bezug auf den Zerlegungskorper eines Primideals p (d. h. dessen
Norm ist p?). Die Zerlegungsgruppe (Relativgruppe) sei 1, 2, 22 ... 2" 1,
Aus den Folgerungen, die Satz 1 und 2 zulassen, greife ich folgende heraus:

Die Zerlegungsgruppe 1, 2,... 2" ist Untergruppe der Zerle-
gungsgruppe jedes Primideales des Zerlegungskérpers, das in letzterem
dem Primideal p (mod. f) dquivalent ist. Ist 7, 2, ... 2% nicht Unter-
. gruppe einer cyklischen Untergruppe der Galoisschen Gruppe, so haben

alle zu p (mod. f) #quivalenten Primideale des Zerlegungskorpers letztern
- zum Zerlegungskorper. Ist » > 1, so ist p niemals Hauptideal (mod. f)
- im Zerlegungskorper. :

Nimmt man also umgekehrt irgend eine Untergruppe I, z,...2" 1
der Galoisschen Xorpergruppe, die ,die grosste“ ist, d. h. die nicht
Untergruppe einer andern zyklischen Untergruppe ist, so bilde man den
zu 1, z,...2"1 gehorigen Unterkérper k. Alle Primideale von k&, die
nicht ersten Grades sind, zerfallen in K in » Primideale. Alle Primideale
derselben Strahlklasse (mod. [) in k besitzen denselben Zerlegungskorper.

Die Beweise der Sidtze 1 und 2 sind bisher noch nicht allgemein
publiziert worden. Es konnen drei Methoden zum Ziele fiihren: Die
Furtwinglersche Methode der Reziprozititsgesetze, meine Methode der
Klassenstrahlen und Einteilung in Geschlechter und die  analytische
Methode von Hecke mit Hilfe seiner Funktionalgleichung.

8. S. Bays (Fribourg). — Une question de Cayley relative au probléme
des triples de Steiner.!

! Mathematical Papers I p. 481 ou Phil. Magazine 37 (1850) p. 50.

Voir aussi Netto Combinatorik p. 202—235 et partic. page 228.

Dans I’Enseignement Mathématique (n° 1/2, 1917), j'ai établi 2 solutions
différentes du probleme de Cayley pour 9 éléments. J’ai donné précisément en
commeng¢ant la démonstration de Cayley pour 15 éléments, parce que intéres-
sante et simple, sans songer & douter de la prétention sur laquelle elle repose.



Cayley a soulevé, relativement au probléme des ¢riples ou triades
de Steiner, une question intéressante et difficile, jusqu’ici neuve encore

N(N—1)(N—2)

de toute recherche : Est-il possible de répartir les 6 ~— triples

de N éléments en N — 2 systémes de Steiner 2

Pour 7 éléments cette répartition n’est pas possible; on peut écrire
2 systémes de Steiner de 7 éléments, n’ayant pas de triples communs,
mais pas davantage. Cayley s’est demandé si par exemple les 455 triples de
15 éléments pourraient &tre disposés en 13 systémes de Steiner. Il a
cru donner une démonstration trés simple que si les 13 systémes existent,
(et Cayley dit en terminant qu’il ne le pense pas), ils ne peuvent pas
se déduire de I'un d’entre eux par une permutation cyclique de 13 de
ces éléments. Mais sa démonstration repose sur une prétention qui se
trouve é&tre entiérement fausse. Cayley prétend que dans ce rectangle
des couples des 13 éléments 0,1, 2, ...., 9, 0', 1’ 2/ disposés de la
maniére suivante : \

01 12 23 34 45 56 67 78 89 90" 01 12" 20
02 13 24 385 46 57 68 79 80 91" 02 10 21
03 14 25 36 47 58 69 707 81 92" 00 11 272
04 15 26 37 48 59 60" T1° 82" 90 01 12 2'3
0h 16 27 38 49 50 61" 72" 80 91 02 13 24
06 17 28 39 40 51" 62" 70 81 92 03 14 25

il n’existe qu’un seul systéme de 6 couples, ayant un couple dans cha-
que ligne et renfermant les 12 éléments 1, 2, ... 1", 2', & savoir le
systéme suivant: 67, 2'1, 58, 1'2, 49, 0'3. Or il en existe 144 autres,
remplissant les mémes conditions; ces systémes vont par couples de sys-
témes que j'appellerai comjugués, déductibles 1’un de l'autre par la sub-
stitution |z, N-x|. Le systétme I, N—1; 2, N—2;...; N—Zwl—, N _2‘_1
donné par Cayley, est le seul identique & son conjugué ou self-conjugusé.
Pour 6 n+ 3 éléments, lorsque 6 n + 1 est un nombre premier, (cas de
15 éléments de la démonstration de Cayley), et-pour 6# - 1 éléments,
lorsque 67—1 est un nombre premier de la forme 4 x—1, je peux donner
un systéme général de couples, remplissant les conditions demandées par
Cayley, différent de son conjugué et donc autre que le systéme self-con-
jugué, au moyen d’'une racine primitive a de 6n - 1, resp. de 6n—1.
Pour 9 éléments, ce systéme avec son conjugué et le systéme self-conju-
gué, permettent de construire immédiatement le systéme de Steiner suivant :

780 713 726 745 815 823 846 016 025 034 124 356

que la substitution cyclique (0123456) transforme successivement en 6
autres systémes de Steiner différents par tous les triples, et renfermant
donc avec le premier les 84 triples de 9 éléments.

Le manque de place ne me permet pas de développer davantage
N(N—1) (N—2)
6

la question; mais le probleme de Cayley: Répartir les
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triples de N éléments en N—2 systémes de Steiner, ou en d’autres termes:
Trouver N—2 systémes de Steiner de N éléments différents par tous les
triples, me -parait se poser au contraire d'une maniére positive pour
N=6n-+1 et N=—=6n -+ 3 éléments, N=—"7 étant probablement le seul
cas pour lequel il manque de solution.

9. L. CRELIER (Berne). — Interpre’tatwn géométrique rationelle des
quantités imagyinaires.
, 1. Toutes les opérations de la géométrle analytique & deux dimen-
sions supposent que nous travaillons sur l'endroit du plan fondamental.
Si nous introduisons le concept de l’emvers du plan, nous auroms,
_avec un axe commun, celui des x par exemple, de nouvelles ordonnées

qui correspondent aux valeurs -\ —2 et —\/—1 ou - i et — i.

2. Considérons maintenant une équation algébrique, p. ex. 2* -4 y®
—16. A toutes les valeurs de z correspondent des valeurs de y;
entre — 4 et -+ 4 elles viennent sur l’endroit et forment un cercle;
entre — oo et — 4 puis entre —|— 4 et —|— oo elles viennent sur
l’envers et forment une hyperbole équilatére également comprise dans
P’équation.

8. Recherchons les points de coupe de la droite z = 5 avec la
courbe 2 -} y® — 16. Nous trouvons (5, -} 37) et (5, — 3i).
Comme la droite est également représentable sur ’envers, les points de
coupe sont sur Uenvers, sur U hyperbole.

4. Passons aux points de coupe de la méme courbe avec la droite

32 16
y = 2 x — 16. Nous trouvons z ———5——1“ \/111 et y=—7

:L:——\/ 114i. Pour trouver les images de ces points nous avons deux

moyens :
a) Nous prenons comme nouvel axe des x le diamétre perpendicu-
laire & la droite; 1’équation de la courbe ne change pas; celle de la

. ‘ 16 ,— :
droite devient * — ——\/5 D’aprés le raisonnement précédent nous

trouvons les deux points de coupe sur l'envers du plan et sur I’hyper-
bole correspondante

| 32 16
b) Ou bien nous déplagons les axes jusqu’en (?, — 5 commse
nouvelle origine et sur l’envers, & cause du déplacement des deux axes,

_ 4 — 8 j——
nous avons les coordonnées —t ?\/111' et ig\/lli ou les points

4 —— 8 )— 4 — 8  J—.
(3\/111, 3\/11z) ot (—g\/u i — \/11:).
5. On peut opérer de la méme maniére avec une conique quel-
conque et nous arrivons aux conclusions suivantes:

a) Les points de coupe d’une conique avec une droite extérieure sont
les intersections ‘de la droite sur Venvers du plan avec la conique associée
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qui admet la direction de la droite comme diamélre conjugué secondaire.
Le diamétre principal sert d’axe réel commun aux deux faces du plan.

b) Les valeurs analytiques x = a —= bi et y == ¢ == di trouvées
comme solutions correspondent aux mémes poinis; a et € sont les coor-
données de la nouvelle origine, sur le centre du segment de droit entre les
points de coupe; b et — b sont les abscisses tandis que ¢ et — ¢ sont
les ordonnées de ces points sur Venvers du plan fondamental.

10. G. PorLyA (Ziirich). — Das wahrscheinlichkeitstheoretische Schema
der Irrfahrt. '

Stellen wir uns simtliche Gitterpunkte eines Raumes von d Dimen-
sionen vor und ihre simtlichen Verbindungsgeraden, die einer der d
rechtwinkligen Koordinatenaxen parallel sind. An dem entstehenden
Geradennetz soll ein Punkt auf Geratewohl herumfahren. D. h. an jeden
neuen Knotenpunkt angelangt, soll er sich mit der Wahrscheinlichkeit 2%
fiir eine der moglichen 2d Richtungen entscheiden. Fiir d = 1 haben
wir eine in gleiche Segmente geteilte unbegrenzte Gerade und die geo-
metrische Darstellung des ,Wappen- oder Schrift“-Spiels vor uns, fiir
d=—2 die Irrfahrt eines Spaziergingers in einem Strassennetz, fiir
d — 3 die Irrfahrt einer Molekiil, die in einem Kristall des reguliren
Systems diftundiert.

An dieses Schema der Irrfahrt und an naheliegende Modifikationen
davon lassen sich die wichtigsten bekannten Probleme und Anwendungen
der Wahrscheinlichkeitsrechnung anschaulich anschliessen. Von den
mannigfaltigen neuen diesbeziiglichen Problemen sei hier nur eins er-
wihnt. Zwei auf die beschriebene Weise mit gleicher Geschwindigkeit
aber unabhingig voneinander herumirrende Punkte sind von dem gleichen
Knotenpunkt aufgebrochen. Die Wahrscheinlichkeit dafiir, dass sie sich
in Zeitraum ¢ wiederfinden, nimmt mit ¢ zu. Strebt sie fiir { = oo der
Sicherheit zu? Jea, fir d =1, 2, nicht, fiir d =3, 4, 5,...

11. W. H. Youna (Lausanne et Aberystwyth). — Sur la notion
de Daire. . ]

Plusieurs mathématiciens de notre temps ont essayé de mettre au
clair la notion de l’aire d’une surface courbe, mais avec peu de succes.
L’auteur a construit une théorie qui s’applique non seulement aux sur-
faces, mais aux variétés de n’importe quelles dimensions. La théorie
est fondée sur l'idée de Vaire d’une courbe gauche. L’aire d’un polygone
est la somme des moments de forces, représentées par les cotés du
polygone. Dans une courbe on inscrit un polygone, ayant tous ses
cotés inférieurs en longueur A J: si, en faisant J tendre vers zéro,
I’aire du polygone tend vers une limite unique, celle-ci est Vaire de la
courbe. Avec cette définition, par exemple, chayue courbe rectifiable
plane posséde une aire, donnée par la formule

1
A=§f{w(%) ay (w) — y (u) dx(u)}
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Si notre courbe est l'image du périmétre du rectangle (a, b; o', b))
dans une correspondence continue '

r=2x (u, v), y=y (4, v), (e<ax<d), (b<y<YV),
le probléme se pose de transformer l’expression obtenue dans l'intégrale

double bien connue
v d (z, y)
— du
A= f fb a(u, o) "

Prenons maintenant une correspondance continue et biunivoque

r=uw (4, v), y=y (¥, v), 2=2 (4, v)
et divisons le rectangle fondamental en rectangles partiels, dont les
cOtés, paralléles & w=—=o0, v=10, ne dépassent pas & en longueur.

AYant formé la somme 2 5 des aires des courbes images de ces rec-
tangles partiels, nous laissons J tendre vers zéro. Si 2 § & une limite
unique 2 celle-ci est I’aire de la partie de la surface, image biunivoque

du rectangle fondamental.

Le théordme principal obtenu est le suivant: Si @ (u, v), ¥ (u,v),
2 (u, v) sont des intégrales par rapport & u, ayant des dérivées partzelles
par rapport & u qui sont, sauf pour un ensemble de valeurs de w de mesure
nulle, toules inférieures & une fonction sommable de u, el si la méme chose
est vrate quand nous changeons u en v et v en u, la surface image du
rectangle fondamental a une aire A donnée par la formule

A—f f \/ d (Y, z) + (d (2, x)\)g _+_ (d (x, ?/))2 du dv
ad (u, v) d (u, v). d(a, v)

Dans certaines conditions 1'auteur arrive au méme but par une méthode

de triangulation. Il faut cependant introduire explicitement 1’ordre double

de la surface, de méme que dans 1’approximation de la longueur d’une

courbe, il est nécessaire de tenir compte du sens de cette courbe. Notre

triangulation est obtenue en joignant convenablement par des lignes
droites les points de la surface images des sommets des rectangles
partiels de longueur <<% et de hauteur <<k dans le plan des (%, v).
Pour calculer I’aire nous laissons d’abord k£ et puis % tendre vers zéro,
et nous obtiendrons le résultat voulu dans certains cas intéressants.
Sans donner les conditions les plus générales, nous remarquons que, si
x (u,v), y (u, v) et z (u, v) sont des intégrales doubles, cette méthode
est valable, d’autant plus que la limite obtenue est dans ce cas indé-

pendante de la maniére dont & et % tendent vers zéro.
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