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1. Sektion für Mathematik
Zugleich Versammlung der schweizerischen mathematischen Gesell¬

schaft

Dienstag, den 11. September 1917.

Einführende : Prof. * Dr. F. Rudio (Zürich),
Prof. Dr. R. Fueter (Zürich).

Präsident: Prof. Dr. M. Grossmann (Zürich).
Sekretär: Prof. Dr. L. Crelier (Biel).

1. A. Emch (Urbana U. S. A.). — Über ebene Kurven, welche
die nten Einheitswurzeln in der komplexen Ebene zu reellen
Brennpunkten haben.

2. G. PôiiYA (Zürich). — Über arithmetische Eigenschaften
der Reihenentwicklungen rationaler Funktionen.

I. Wenn das Integral einer rationalen Funktion nicht rational
ausfällt, so kann seine Potenzreihe nicht lauter ganzzählige
Koeffizienten besitzen.

II. Wenn die Potenzreihe einer rationalen Funktion rationale
Koeffizienten besitzt, so gehen in den Nennern dieser Koeffizienten
nur endlich viele Primzahlen auf (trivialer Fall eines E i s e

list ein sehen Satzes). Wann sind auch die Zähler nur aus endlich

vielen Primfaktoren zusammengesetzt?
Die Antwort lässt sich durch Kombination der einfachsten

Sätze der Idealtheorie mit Konvergenzbetrachtungen erbringen
und lautet so: alle fraglichen Reihen lassen sich aus der
geometrischen Reihe durch wiederholte Anwendung folgender 5 Operationen

ableiten:
1. Addition eines Polynoms zu der Reihe,
2. Multiplikation der Reihe mit axr,
3. Variablenvertauschung # | ax,
4. Variablenvertauschung x \ xmf
5. Addition „exponen ten fremder" Reihen.
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3. Ferd. Gonseth (Ziirich). — Un théorème relatif à deux
ellipsoïdes confocaux.

Le théorème dont il s'agit est une extension du th. connu de

Graves: Si l'on tend un fil passé autour d'une ellipse par une
pointe, celle-ci peut décrire une ellipse confocale à la première.
L'analogue s'énonce:

Théorème. On mène de le cône tangent à un
ellipsoïde; l'intégrale de la courbure moyenne sur
la surface formée du cône jusqu'aux points de
contact et de la portion d'ellipsoïde qui fait suite est
constante si P reste sur un ellipsoïde confocal au
premier. La méthode de démonstration est exposée pour le th. de

Graves. L'intégrale ff dp dcp étendue à un ensemble de

droites x cos (p -(- y sin <p —p o est (Cr of ton) la mesure
de l'ensemble. Les sécantes d'une courbe convexe fermée ont une
mesure égale au périmètre de la courbe. — Les mêmes droites
étant ux -|- wy + 1 — o la mesure est aussi égale à la surface

non euclidienne de l'ensemble des points de coordonnées cartésiennes.

(1) x — u\ y v.
dans un plan où la conique absolue est x2 + y9- o.

Deux ellipses confocales Ëï et E« sont transformées par les
formules (1) en deux ellipses E'ietLe théorème de Graves
sera exact si l'aire non euclidienne de la portion de plan située à

l'extérieur de la courbe fermée, formée par et une tangente
à E'1, est constante lorsque cette tangente varie. On mènera une

tangente voisine, et il suffira de démontrer l'égalité (sens
non-euclidien) de deux triangles infiniment petits. Dans l'espace on
définira semblablement la mesure d'un ensemble de plans

x cos a-f- ycos /? -fcos — o

ou bien ux-\-vy-\-w
qui sera égale au volume non euclidien de l'ensemble des

points de coord, rect. x —u;y— v, w; dans un espace
dont la quadrique absolue est xi + y* + z* o.

En particulier, les plans coupant une surface convexe fermée
ont pour mesure l'intégrale de la largeur, c'est-à-dire (d'après une
formule de Minkowski), l'intégrale de la courbure moyenne sur
cette surface. La démonstration se calque, dès ici, sur la précédente.
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4. L. KoiiLBOs (Zürich). — Propriétés métriques des courbes
algébriques.

Toute propriété métrique peut être considérée comme
projective si l'on fait intervenir les éléments absolus. On peut donc
transformer les propriétés métriques par une collinéation ou une
réciprocité. Ainsi le théorème de C a r n o t sur les courbes
algébriques planes coupées par un triangle, devient — par une
réciprocité dans laquelle les points cycliques correspondent à 2 côtés

du triangle — le théorème suivant de Laguerre: Si par un
point, on même les n tangentes à une courbe algébrique plane de

classe n et si l'on joint ce point aux n foyers réels de la courbe,
les 2 faisceaux de droites ainsi obtenus ont même orientation.1

D'autre part, à un théorème où un système de droites
variables a une orientation constante, on peut, par
un raisonnement simple, faire correspondre un théorème

où un système de points variables a un centre de
gravité fixe, de telle sorte qu'à un foyer de la
première figure corresponde une asymptote de la seconde.

Exemples 1. Au théorème de Laguerre cité plus haut,
correspond le suivant : L e centre de gravité des points de
rencontre d'une droite avec une courbe du nme ordre
est le même que celui des points d'intersection delà
droite avec les asymptotes de la courbe.

2. Les systèmes de tangentes Les centres de gravité des 2

menées d'un même point à deux
courbes de même classe ont même
•orientation si le point est foyer
d'une des courbes du faisceau
tangentiel déterminé par les deux
premières. (Humbert.)

3. L'orientation du système des

m n-tan gentes communes à deux
courbes algébriques ne varie pas
quand on remplace l'une des deux

par une courbe qui lui est homo-
focale. (Laguerre.)

systèmes de points de rencontre
de deux courbes algébriques de

même ordre par une asymptote
d'une courbe du faisceau ponctuel

déterminé par les deùx
premières coïncident.

Le Centre de gravité des points
de rencontre de 2 courbes
algébriques ne varie pas quand on
remplace l'une des deux par una
autre qui a les mêmes asymptotes.

1 Deux systèmes de n droites ont même orientation lorsque la somme
des angles que font les » droites avec un axe fixe est la même pour les 2
systèmes (à un multiple de .t près).
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5. 0. Spiess (Basel). — Ein Satz über rationale Funktionen.
Lie hat die Vermutung ausgesprochen, dass jede analytische

Funktion f (x)durch Iteration einer Infinitesimalsubstitution
x-\-g(x) dterzeugt werden könne und also Bestandteil einer

kontinuierlichen Transformationsgruppe sei. Es ist indess bisher nicht
gelungen, diesen Satz zu beweisen, selbst nicht für die viel engere
Klasse der algebraischen Funktionen. Hier soll nun die Lie'sche
Vermutung wenigstens für.die rationalen Funktionen
als richtig erwiesen werden.

Das Problem lässt sich zurückführen auf die Aufgabe, zu einem

gegebenen f(x) eine Funktion <P zu bestimmen, die der Gleichung
genügt

(1) & [f(xj] —q & (x)
Die erzeugende Infinitesimalsubstitution ist dann nämlich

bestimmt durch g (x) 0:Nun haben Koenigs, Grévy und

Le au seit langem gezeigt, dass in der Umgebung gewisser
Fixpunkte von f(x) Lösungen von (1) existieren. Ist speziell f (x)
rational, so versagen diese Methoden nur dann, wenn für jeden
Fixpunkt a*

(2) ek — f'(ax) e__ irrational) ist.
Bloss falls f(x) linear ist, existiert auch dann eine Lösimg, nämlich

0 x. Die Lie'sche Behauptung ist also für rationale Funktionen

erwiesen, wenn gezeigt wird:
Satz: Eine rationale Funktion, deren sämtliche Fixpunkte

die Eigenschaft (2) haben, ist notwendig linear.
Y* (x)Beweis: Die Fixpunkte at • • • an von f(x)= (die wir
S (x)

alle im Endlichen annehmen dürfen), sind Wurzeln der Gleichung
W xs — r o. Es folgt sofort

«s: f'(ak)I — J [wegen (2)}

Die Zahlen coj;= —= tÎI? sind ebenso wiedieefc^tö, i, oo und
l-ek V (a-k)

also gilt nach Lagrange _ y
W /

n
daraus ergibt sich :

Xcok—
1

/0\ a) i Wn A
n n
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Nun liegen nach (2) die Punkte et auf dem Einheitskreis um
O, und also die Punkte co& auf der zur reellen Axe senkrechten
Geraden durch den Punkt xDa aber nach (3) der Schwerpunkt

der a>icinoc — j^ liegt, muss 2 sein, und somit f fx)
linear, q. e. d.

6. À. Htjbwitz (Zürich). — Verallgemeinerung des Pohlheschen
Satzes (aus einem Brief an Herrn Kollros).

Sind 2 Tetraeder gegeben, so kann man sie immer
— indem man eines derselben ähnlich verändert — in
eine solche Lage bringen, dass die Verbindungsgeraden

entsprechender Spitzen untereinander pa-
r a 11 e 1 s i n d.

Sind nämlich A B C D und A' B' C D' die gegebenen Te-

selben geht die Kugel K, welche umschrieben ist, in ein
Ellipsoid K über, welches A' B' C' D' umschrieben ist. Jetzt
bestimme man einen Kreisschnitt c' des Ellipsoides K'. Dem Kreise c'
entspricht in der Affinität ein Kreis c auf der Kugel K. Das
Tetraeder A B C D mit der Kugel K und dem daraufliegenden
Kreis c dilatiere man in solchem Maßstabe, dass der Kreis c in
einen dem Kreise c' gleichen Kreis ci übergeht.

Nun bringe man das zu A B CDähnlicheTetraeder i Br
Ci Lh in eine solche Lage, dass der Kreis Ci mit dem Kreis c'
Punkt für Punkt zur Deckung kommt. Dann sind die beiden affinen
Räume in Perspektive Lage gebracht und die 4 Geraden Ai A',
Bi B', Ci C',DiD' sind untereinander parallel.

Entsprechend den zwei Scharen von Kreisschnitten des Elip-
soids K' gibt es zwei wesentlich verschiedene Lösungen des
Problems.

Wenn die 4 Punkte A B CDinderselben Ebene liegen und
A' B' G D' von drei durch eine Ecke gehenden Würfelkanten
gebildet ist, so findet man den Pohlkeschen Satz als Spezialfall.

7. C. Cabathéodoby (Göttingen). — Uber die geometrische
Behandlung der Extrema von Doppelintegralen.

Neben den Randwertproblemen, denen die Variationsrechnung
ihr Dasein verdankt und dem von Lagrange erfundenen Variations-

traeder, so betrachte man Vermöge der-
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kalköl, dessen Bedeutung für alle mögliehen Anwendungsgebiete
immer grösser wird, spielt seit fast hundert Jahren die aus der
Optik und der Mechanik hervorgegangene Hamilton-Jacobische
Theorie eine gleich wichtige Rolle.

Der Versuch, diese Theorie auf Doppelintegrale zu erweitern,
ist vor einigen Jahren gemacht worden1 ; hier will ich skizzieren,
wie man das Wesentliche der Hamilton-Jacobischen Resultate mit
ganz einfachen Mitteln erhalten kann, wenn man für die gesuchte
Lösung keine Randwerte von vornherein vorschreibt und daher
die spezifischen Schwierigkeiten des Randwertproblems vermeidet.

Es sei

(1) J JJ*fix, ydxdy
das zu untersuchende Doppelintegral. Wir betrachten eine zwei-
parametrige Schar

,2ï s (x> y> z)1

T (oc, y, z) y,
von beliebigen Kurven, die den Kaum durchsetzen und die man
als ein Bündel von unendlich dünnen Köhren auffassen kann. Auf
jeder beliebigen Fläche z z (x, y) schneidet eine dieser Köhren
ein Flächenelement aus, für welches man den Wert des Integrals
(1) folgendermassen berechnen kann.

Man setze

s (x,y) S y, z (x, y))
T (x, y) T (x, y, z (x, y))

und bilde die Funktionaldeterminante

^ / d ($ T)
(3)

4 <*• »• ''

Dann ist nach (1), (2) und (8)

-//
Sx Sz ' Sy Ses '

Tx -f- Tz • zx Ty-\-Tz>

J I I dl dy
A

und der gesuchte Wert von J für das ausgeschnittene Flächenelement

(4) / dl d/u.

1 G. Prange. Die Hamilton-Jacobische Theorie für Doppelintegrale.
Inaug.-Diss., Göttingen 1915.
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Dieser Wert, der von zx und zy, d. h. von der Stellung der
Tangentialebene der gegebenen Fläche abhängt, ist
am kleinsten, wenn die Gleichungen

(5)
A-f -zx zx

f -f.A =0J z J
y y

erfüllt sind und wenn ausserdem das Minimum von / : als Funktion

von zx, zy für die durch (5) errechneten Werte dieser letzten
Grössen gesichert ist (Legendre'sche bzw. Weier stras s'sche

Bedingung).
Den Minimalwert des Ausdrucks (4) nennen wir den

Querschnitt der betrachteten Röhre in ihrem Schnittpunkte mit der
Fläche z — z (x, y).

Nun verlangen wir von der Kurvenschar (2), dass sie lauter
Röhren konstanten Querschnitts enthalte. Dies liefert die Gleichung

2 y
wo y> (1, y) zunächst eine willkürliche Funktion bedeutet. Bemerkt
man aber, dass man stets durch eine geeignete Transformation der
Parameter A, u die Funktion y ju) 1 setzen kann, so erhält
man schliesslich das Gleichungssystem

/
A A(6) zx zx

f =àJ z z
y y

aus dem man die ganze Variationsrechnung für Doppelintegrale
mit geringer Mühe entwickeln kann.

8. D. Hilbert (Göttingen). — Axiomatisches Denken.
Wenn wir die Tatsachen eines bestimmten Wissensgebietes

zusammenstellen, so bemerken wir, dass dieselben einer Ordnung
fähig sind. Diese Ordnung erfolgt mit Hilfe eines gewissen
Fachwerkes von Begriffen in der Weise, dass dem einzelnen Gegenstande
des Wissensgebietes ein Begriff dieses Fachwerkes und jeder
Tatsache innerhalb des Wissensgebietes eine logische Beziehung
zwischen den Begriffen entspricht. Das Fachwerk der Begriffe
heisst die Theorie des Wissensgebietes. Weiter erkennen wir, dass

9
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der Konstruktion des Fachwerkes einige wenige ausgezeichnete
Sätze des Wissensgebietes zu Grunde liegen und diese dann allein
ausreichen, um aus ihnen nach logischen Prinzipien das ganze
Fachwerk aufzubauen. Diese grundlegenden Sätze können von
einem ersten Standpunkt aus als die Axiome der einzelnen Wissensgebiete

angesehen werden. Das Bestreben, diese Axiome ihrerseits
zu erklären, führt meist zu einem neuen System von Axiomen,
d. h. zu einer tiefer liegenden Axiomsschicht. Das Verfahren
der axiomatischen Methode kommt also einer Tieferlegung der
Fundamente der einzelnen Wissensgebiete gleich.

Soll nun die Theorie eines Wissensgebietes durch das sie

darstellende Fachwerk der Begriffe dem Zweck, nämlich der
Orientierung und Ordnung dienen, so muss es vornehmlich zwei
Anforderungen genügen: erstens soll es einen Überblick über die

Abhängigkeit, bzw. Unabhängigkeit und zweitens eine Gewähr
für die Widerspruchslosigkeit der Axiome der Theorie bieten. Von
besonderer Wichtigkeit ist es, die Widerspruchslosigkeit za prüfen,
weil das Vorhandensein eines Widerspruchs offenbar den Bestand
der ganzen Theorie gefährdet. Der Nachweis der Widerspruchslosigkeit

gelingt im allgemeinen in den geometrischen und
physikalischen Theorien durch Zurückführen auf das Problem der
Widerspruchslosigkeit der arithmetischen Axiome. Im Falle der
Axiome der Arithmetik ist dieser Weg der Zurückführung auf ein
anderes spezielleres Wissensgebiet offenbar nicht gangbar, weil es

ausser der Logik überhaupt keine Disziplin mehr gibt, auf die
alsdann eine Berufung möglich wäre. Es-scheint somit nötig, die

Logik selbst zu axiomatisieren und zu zeigen, dass die Arithmetik
nur ein Teil der Logik ist. Dieser Weg ist seit langem vorbereitet
und am erfolgreichsten durch den scharfsinnigen mathematischen

Logiker Bussell eingeschlagen worden. Die Axiomatisierung der

Logik ist ein grosszügiges Unternehmen, das mit einer Beihe

prinzipieller spezifisch mathematischer Fragen zusammenhängt. Sie

bildet das wichtigste und schwierigste Problem der logisch
mathematischen Erkenntnistheorie.

9. A. Speiser (Zürich). — Gleichungen 5. Grades.
Die alternierende Gruppe von 5 Variabein ist bekanntlich

isomorph mit den 60 Drehungen des Jcosaeders. Sie gestattet daher
eine Darstellung durch ternäre lineare Substitutionen :
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S U) ^H1'2'3 S E,A, B...
sowie durch lineare gebrochene Substitutionen:

si x 4-- S2 v

rp;
S8CC + S4

Ist ça eine erzeugende Zahl eines Körpers mit dieser Gruppe
und sind co — coe,coA, -cos, die konjugierten, so erfahren
die drei Zahlen

12su coS,Ae — ^sucoS,A3=2sibcoS
Al~s S s

beim Übergang zu der konjugierten ternären Substitutionen und

— Ai±V Ai2 — 4 Ai
a __

erfährt dabei die gebrochenen linearen Substitutionen. Damit ist
das Problem der Gleichung 5. Grades auf ein einparametriges
zurückgeführt in der allgemeinsten Weise.

10. S. Bats (Fribourg). — Sur les systèmes de triples de IS
éléments.

La preuve que pour 13 éléments le système cyclique de Netto,
et le système donné par Kirkmann,Reiss,deVries, sont les 2
seuls systèmes de triples de Steiner différents possibles,

peut être faite, sans l'aide d'aucune notion particulière et
d'une manière assez simple, en construisant directement les systèmes
de triples de 13 éléments qui ne contiennent pas un triple
fixé abc. Un système de triples de Steiner qui ne contient
pas le triple abc, contient les 3 triples: ab y
(a, ß,y4= a, b,cetentre eux) où a, ß, y peuvent être tous les
arrangements de 10 éléments 3 à 3. Pour un arrangement a, /?, y,
fixé, il n'y a que 2 possibilités, qui donnent, pour la construction
du système, les seules dispositions suivantes qui s'écrivent aisément:

Ier cas. Le triple a ß y est contenu dans le système.
aaa a.. aß' ay' a aß* ay a'ß'y
bßß' ba b by' ßa' ß ß/ (40)
cyy ca' cß'. c 7«'. yß' • y • •

IIe cas. Le triple aß y n'est pas contenu dans le système
ß y a! y a ß a ß y

a)

§ g aam aa'n aß'p ay q aa'. a., a'ß'y'
1. bß. ba'. bß'. by' ßß'. ß.. (8)

§|» cy ca'. cß' cy'. yy' y
a> aaa' a aß' ay' a a.. a'ß'y'
3 2: bßm ba'n bß'p by'q ßß'. ß.. a' (8)

"ö ^ cy ca' cß' cy' yy' y..
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00 o>
CÖ —<

OQ

S
00 CO
<X> ""Ö

b)
Z3 m

- B fc»

<*3» Ö
"ö o

aaa' a aßy a.. a a a'ß'm
1. bß ba'p bß" by'. ßß'. ß • a'y'n

cy ca'q cß> cy'. n' y

aam aa'n aß'p ay'q aa' a ß'y'
2. bß b bß'a' by'. ßß\ ß.. a'

cy c cß'. cy'a' yy' y - -

(12)

(24) pour aa'n
(20) pour ba'n ou

ca'n.

Dans chacune de ces dispositions, les éléments a, ß, différents
entre eux et des éléments a, b, a, ß, ,peuvent être tous les

arrangements des 7 éléments restants 3 à 8 ; pour chaque arrangement

a, ß',y'-m,n,p,qpeuvent être toutes les permutations des

4 derniers éléments. Pour un arrangement a, ',y' et une permutation

' m,n,p, q, fixés, chacune des dispositions se complète par
les éléments m, n,p, q (et cela sans y mettre beaucoup' de temps),
du nombre de manière que j'ai indiqué à droite, c'est-à-dire donne

ce nombre de systèmes. En tenant compte des dispositions où les
2 éléments ß' et / ont à prendre le même rôle que a', nous ob-

tenous donc:
A,o. A*. Pt. (40 —(— 8 —(— 3.8 —j— 3.12 —j— 3 [24 + 2 20]) 10! 300.

systèmes de triples, ne contenant pas le triple abc, et par suite

10! 330 systèmes de triples de 13 éléments, qui

diffèrent entre eux au moins par l'un de leurs triples. Or les ordres
des groupes qui transforment en eux-mêmes le système cyclique

13! 13!
de Netto et celui de Kirkmann, sont 39 et 6 ; —-|—— 10! 330.

Ot7 O

Par conséquent le système de Netto et celui de Kirkmann sont
les 2 seuls systèmes de triples de Steiner différents
pour 13 éléments.

11. L. G. Du Pasquiee (Neuchâtel). — Sur un point de la
théorie des nombres hypercomplexes.

Envisageons le corps de nombres [ft] formé par l'ensemble
des nombres hypercomplexes x h x„ e0 + xi & + xn e„ à

coordonnées x xtoutes rationnelles. Les complexes x0 -j- xi j, où j
est un symbole défini par j21, fournissent l'exemple le plus
simple montrant combien la définition „lipschitzienne" du nombre

hypercomplexe entier est peu appropriée pour servir de base à

une arithnomie. Par exemple, le produit (3 -f-y) (5—3 j) 12—4
est divisible par 2 sans qu'aucun des facteurs ne le soit. On fait
tomber cette irrégularité et d'autres encore, en adoptant la défini-
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tion „hurwitzienne" d'après laquelle est réputé entier tout
complexe x appartenant au domaine holoïde maximal du corps [R] ;

Ib b
dans ce système particulier : tout complexe de la forme -f- — -|- ^i, dt

où a, b désignent des nombres rationnels entiers quelconques. Alors
chacun des 2 facteurs du produit cité est divisible par 2, puisque
8 j 5 B
— et — j sont maintenant des complexes „entiers".
2 2« 2 2

Or, il existe des systèmes de nombres hypercomplexes sans
domaine holoïde maximal, où par conséquent la définition „hur-
witzienne" est inapplicable. On peut les caractériser par la notion
de nombre nilpotent, ou racine de zéro. On appelle ainsi
tout nombre hypercomplexe x dont Tune des puissances est
identiquement nulle, a? — 0. Quand un corps de nombres [22]
ne contient aucune racine de zéro, il possède un
domaine holoïde maximal, et un seul. La définition
appropriée du nombre hypercomplexe entier y est donc possible
et univoque.

Si un corps de nombres [22] contient des racines
de zéro, ou bien il ne possède aucun domaine holoïde
maximal, ou bien il en possède une infinité. La définition

appropriée du nombre hypercomplexe entier y est donc ou bien
impossible, ou bien plurivoque.

12. H. Berliner (Bern). — Über ein Gesetz der infiniten
Pluralitât.

Als Elemente der homogenen projektiven Koordinatenbestimmung

können wir ebenso wie die Punkte auch die symmetrischen
Dreieckskurven Dm, deren Parameterdarstellung q= (a^t-\~b^)m
ß — 1,2,3) sind (wo m eine ganze Zahl ist), ansehen. Denn
durch eine Dm werden 3 Ecktransversalen A^ Dm des
Fundamentaldreiecks A1 Ä2 A 3 bestimmt, nämlich die durch die
Berührungspunkte der Dm mit den Gegenseiten gehenden oder die
Tangenten der Dm in Au A2, Az, je nachdem m >o oder m<i o ist.
Durch eine Dm und dem Fundamentalelement des Koordinatensystems,

das eine beliebige symmetrische Dreieckskurve Dk (k
ganzzahlig) sein kann, werden also 3 Doppelverhältnisse bestimmt,
deren Produkt für jede Dm gleich (—l)fc-w ist; und umgekehrt
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ist durch 3 solche Doppelverhältnisse eine Dm bestimmt. Wir
können also die Dm-Koordinationdefinieren durch

{m)

1 (-1)«-* Ax(Ax+1Ax+2Dk

x
U (—1) Ax(Ax+1Ax+2Dm«-it1

•«;+2
<1)W

oder III (-1) m~k [a; (ax+x Dk j
x'/.+2

(1 1,

Die bekannten homogenen projektiven Punkt- und Linienkoordinaten
sind Do- und Di-Koordinaten nach der Definition III. Ist eine Kurve
in Din-Koordinaten durch q xx (m) fx (t) (1 1,2,3), also als

Dm-Ort gegeben, so hat der Träger der Kurve, also die Enveloppe
aller dieser Dm in Punktkoordinaten die Parameterdarstellung

r 0X.— f/\oim+1 rm (o - m r(or1 —lxJ LA+1 1+2 1+11+21

[ßS^2-£ÖCiSr
oder nr e»,|f«] "+ '-» [f« W -

(1 1, 2, 3).

je nachdem I, II oder III benutzt wird. Es ist also speziell der

Träger einer Kurve 1. Ordnung, also eines Grundgebildes resp.
eine Dm—i oder wenn die Dm als Grundelemente

angesehen werden.
Nunmehr können wir jeden projektiven Satz auf unendlich

viele Weisen interpretieren, indem wir an Stelle der Punkte die

Dm, wo m irgendeine ganze Zahl ist, als Grundelemente ansehen

und dabei die Dm-f-i (I) oder die Dm—i (II) als die Träger der

Grundgebilde nehmen. Dies verstehen wir unter dem Gesetz der
infiniten Pluralität, wovon das der Dualität nur ein Spezialfall

ist, indem dabei nur die Punkte und Gerade, die Do und Di
sind, als Grundelemente angesehen werden. Das Gesetz der infiniten
Pluralität im Räume besteht darin, dass wir ebenso wie die Punkte
auch die tetraedral-symmetrischen Flächen von irgendeinem
ganzzahligen Index m als die Elemente der projektiven Koordinaten-
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Bestimmung, also als die Grundelemente im Räume ansehen. Wir
können jetzt auch jeden projektiven Satz der Liniengeometrie auf
unendlich viele Weisen interpretieren, da wir jetzt die tetraedral-
symmetrischen Kurven von irgendeinem ganzzahligen Index m
ebenso wie die Geraden als Grundelemente im Räume ansehen
können.

13. K. Mebz (Chur). — Quadratische Transformation einer
Kollineation und eine Massgeometrie.

Durch 2 x2 : (r2 — x2 — y2) ; y2 ~y2 \ (r2 — x2 — y2) wird
die unbegrenzte Ebene f, rj in das Innere des Kreises x2 + j,W
abgebildet, wobei ihrer unendlich fernen Geraden der Umfang
entspricht. Den Geraden parallel zu £ entsprechen Ellipsen mit dem
Kreisdurchmesser auf x als grosse Achse. Dem Werte 1

entspricht dann auf y die kleine Halbachse : V 2. Wird diese

Strecke als Einheit für die y angenommen und lässt man die
Koordinatenachsen £ y mit x y zusammenfallen, so entsprechen die
Punkte auf x~-f- y2r2 : 2 sich selbst. Einer Strecke AB im
Innern des Kreises r, die verlängert, ihn in U und V schneidet,
entspricht in zentrischer Lage ein Bogenstück A' B' einer Hyperbel
mit den Asymptoten 0 U und 0 V.

Wendet man auf diese Abbildung die quadratische Transformation

£2 £', y2 y x2 — x',y2an, so entsteht daraus
die zentrische Kollineation von 0 aus mit der Achse x' + y' r2:2

und der Gegenachse x' -|- yf — r2. Aus dieser Kollineation ergeben
sich damit Eigenschaften jener Abbildung der Ebene S y in den
Kreis r.

Um eine Massgeometrie1 im Innern des Kreises r zu

erhalten, ist die Strecke A (xi yi), B (X2 y2) durch eine solche
Funktion F (x, y) zu messen, die unendliche Werte gibt, wenn A
oder B in U oder V rücken. Dazu ist das Mass dargestellt durch
den Hyperbelbogen A' Br. Die Koordinaten x, y eines Punktes P
in r werden dann gemessen durch die zu P gehörenden Hyperbelbogen

u und vr welche die Abbildungen der Strecken x und y

1 Als Beispiel zu der allgemeinen Betrachtung über nichteuklidische
Geometrie in: K. Merz. Zur Erkenntnistheorie von Raum und Zahl aus
Historischem der Steinerschen Fläche (S. 104) im Jahresbericht der
Naturforschenden Gesellschaft Graubündens, Chur 1917. (Separatabzug
S. 40J
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sind. Diese krummlinigen Koordinaten sind durch elliptische
Integrale dargestellt

Uz=
/"VP"—yV + a?V dx. g rvp — y*

^J V (r2 — x2 — y2) 3 ' J V(r2 — x2 — y2)3

Diese Bogen u und v schneiden sich in Pf unter einem Winkel 99.

Damit das Linienelement aus ds2 dx2 -f- dy2 durch das ihm
entsprechende du2 + dv2 — 2 du dv cos <p gemessen werde, ist der
von dx und dy gebildete rechte Winkel als durch

r2 /r2 qq2 y2\
œ arc ta 5^y xy (2 r2 — x2 — y2)

gemessen darzustellen.
Mit Hilfe von u, v, cp ist nun die Massfunktion F (x, y) zu

bestimmen.
Für diese Massgeometrie sind dann nicht Strecken A B

geodätische Linien, sondern Ellipsenbogen A B, welche die Abbildung*
sind der Sehne im Hyperbelbogen A! B\ In der Umgebung von
0 nähern sich diese Bogen immer mehr den Strecken, und man
erhält überhaupt euklidische Massbeziehungen.

14. A. OsTJEtowsKi (Marburg a. d. L.) und G. Pôlya (Zürich).
— Über ganzwertige Polynome in algebraischen Zahlkörpern.

Die mitzuteilende Untersuchung ging von einer Fragestellung*
des Herrn Hurwitz aus, wurde durch Pôlya bis zu einem
gewissen Punkte durchgeführt und durch Ostrowski abgerundet
und weiter verfolgt.

„Ganzwertig im Körper Ku heisst ein Polynom P (x), das

für ganze, im Körper K liegende Werte der Variablen ganze, im
Körper K liegende Werte annimmt. Ein ganzwertiges Polynom
m-ten Grades lässt sich immer in die Form

a xm -f- ß xm~J -f- • • • + A

m!
setzen, wo a, ft ••• 1 ganze Zahlen des Körpers sind.

Im Körper K gibt es ein wohlbestimmtes Ideal am von
folgender Eigenschaft : a ist dann und nur dann eine Zahl des Ideals
am, wenn es ein ganzwertiges Polynom m-ten Grades gibt, dessen

höchster Koeffizient heisst. Eine längere Schlussreihe gipfelt

in der expliciten Berechnung des Ideals am. Man bezeichne mit
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pi, ps, ••• p« die sämtlichen in mlaufgehenden Primideale, mit
Ni,Nî, • •- NeihreNormen und man setze

Dann ist

(I) ampiki
p*

ki p, h" (m!).
Im rationalen Körper lässt sich bekanntlich jedes ganzwertige

Polynom m-ten Grades in der Form

p (CO) 00 -f- «1 (i) + O, (0+ ••• + «m(^)
darstellen, wo ao,a%,a», ••• aœ ganze Zahlen des rationalen
Körpers sind. Die Polynome

x (x— 1) a? (a? ~ 1) • • • (as — -f- 1)
i, as, —J72—' • ' • — i.2 '

bilden also eine Art „Basis" für die ganzwertigen Polynome des
rationalen Körpers. Die Bedingung für die Existenz einer analogen
Basis im Körper K ist, dass sämtliche Ideale ao, ai, 02, ••• am,

Hauptideale sein sollen. Z. B. existiert die Basis in einem quadratischen

Zahlkörper dann und nur dann, wenn sämtliche Idealteiler
der Grundzahl Hauptideale sind, wie es sich leicht aus (I) ergibt.
Etwas Analoges gilt allgemeiner für Galoissche Körper.

Unter denselben Bedingungen existiert auch eine ganz analog
zu definierende Basis für ganzwertige Polynome mehrerer
Veränderlichen.

15. L. G. DuPasquieb (Neuchâtel). — Une nouvelle formule
d'interpolation dans la théorie mathématique de la population.

Pour étudier les variations AP que subit un groupe de
population P(t)avecle temps t, on suppose que l'effectif P est une
fonction continue du temps et l'on définit l'intensité de variation

à l'instant tpar

_ Lim / AP
__ _

P'
Ato \P • Ai) P • P

On définit de même des intensités spéciales, notamment
l'intensité de natalité v(t);l'intensité de mortalité
p (t) ;l'intensité d'immigration (t);l'intensité d'émi-

'gration s (t). — Pour les facteurs qui tendent à diminuer
l'effectif, on arrive à la même notion en partant de la théorie des
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probabilités mathématiques; on définit par exemple le taux
instantané de mortalité (^Ll\ et Ton démontre qu'il

n —>- o \ n J
est égal à l'intensité de mortalité ju (t). En vertu d'une propriété
fondamentale des fonctions d'intensité ou taux instantanés, on peut
écrire o (t) — v (t) — jui (t) + i (t) — e (t)
la natalité, la mortalité, l'immigration et l'émigration étant les 4

facteurs dont la variation de l'effectif P (t) dépend directement.
En faisant des hypothèses appropriées sur le taux instantané

de variation, on retrouve les théories formelles de la population
émises jusqu'ici. Ainsi o (t) — o donne la théorie de la population
stationnaire (E. H alley); o (t) const, conduit à la théorie
eulérienne de la population variant en progression géométrique;

o (t) inversement proportionnel à l'effectif, o (t) £, donne la

théorie de la population variant en progression arithmétique (de
Moi vre); l'hypothèse a (t) c (m — P), où c et m désignent
des constantes positives, donne la théorie de F. P. Ver hülst qui
suppose que la population, partant de l'effectif initial Po, augmente
constamment, mais de plus en plus lentement et finit par atteindre
un état stationnaire caractérisé par l'effectif m, abstraction faite
des écarts accidentels; formule:

m • emct
P(t) p0

P0 - emct + m — P0

On peut développer une théorie nouvelle en supposant qu'avec
le temps surgissent des facteurs qui influencent l'intensité de

variation. Une formule relativement simple se déduit entre autres

de l'hypothèse o (t) ^ (b — t) (P — m)2; elle conduit à

pm=„+—p° - - —c (P„— m) ft' —2 M) + 1

Partant de l'effectif initial P0 — ni -J- n, la population passe
(après un temps b) par un extrême, puis tend vers un état stationnaire

caractérisé par l'effectif constant n, quand on attribue aux
constantes des valeurs appropriées.

En terminant, l'auteur indique les bases d'une théorie future
de la population, théorie formelle mieux adaptée à la réalité que
celles émises jusqu'ici.
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