Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =
Actes de la Société Helvétique des Sciences Naturelles = Atti della
Societa Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft
Band: 99 (1917)

Vereinsnachrichten: Sektion fir Mathematik
Autor: [s.n]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

. Sektion fir Mathematik

Zugleich Versammlung der schweizerischen mathematischen Gesell-
schaft

Dlenetag, den 11. September 1917.

Emfuhrende Prof.-Dr. F. RUDIO (Ziirich),
Prof. Dr. R. Fuerer (Ziirich).

Prasident:  Prof. Dr. M. GrossMANN (Ziirich).

Sekretdr : Prof. Dr. L. Crerier (Biel).

1. A. Emcr (Urbana U. S. A.). — Uber ebene Kurven, welche
die n** Einheitswurzeln in der komplexen Hbene zu reellen
- Brennpunkten haben.

2. G. PoLxa (Zirich). — Uber arithmetische Eigenschaften
der Reihenentwicklungen rationaler Funktionen.

I. Wenn das Integral einer rationalen Funktion nicht ratlonal
ausfillt, so kann seine Potenzreihe nicht lauter ganzzahhge Koeffi-
zienten besitzen. :

II. Wenn die Potenzreihe einer rationalen Funktion rationale
Koeffizienten besitzt, so gehen in den Nennern dieser Koeffizienten
nur endlich viele Primzahlen auf (trivialer Fall eines Eisen-
steinschen Satzes). Wann sind auch die Zadhler nur aus end-
lich vielen Primfaktoren zusammengesetzt ?

Die Antwort lisst sich durch Kombination der elnfachsten
Siatze der Idealtheorie mit Konvergenzbetrachtungen erbringen
und lautet so: alle fraglichen Reihen lassen sich aus der geome-
trischen Reihe durch w1ederholte Anwendung folgender 5 Opera-
tlonen ableiten : , ~

1. Addition eines Polynoms zu der Reihe,

2. Multlphkatlon der Reihe mil ax",

3. Variablenvertauschung x | ax,

4. Variablenvertauschung x | ™,
5. Addition ,exponentenfremder® Reihen.
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3. Ferd. GonserH (Ziirich). — Un théoréme relatif a deux
ellipsoides confocaua.

Le théoréme dont il s’agit ‘est une extension du th. connu de
Graves: Si l'on tend un fil passé autour d’une ellipse par une
pointe, celle-ci peut décrire une ellipse confocale & la premiére.
L’analogue s’énonce:

Théoréme. On méne de P le cone tangent & un
ellipsoide; I’intégrale de la courbure moyenne sur
la surface formée du cone jusqu’aux points de con-
tact et de la portion d’ellipsoide qui fait suite est
constante si P reste sur un ellipsoide confocal au
premier. La méthode de démonstration est exposée pour le th. de

Graves. L’intégrale f f dp d(p etendue 4 un ensemble de

droites 2 cos ¢ 4 y sin ¢ — p = 0 est (Crofton) la mesure
de I’ensemble. Les sécantes d’'une courbe convexe fermée ont une
mesure égale au périmétre de la courbe. — Les mémes droites

étant ux -+ vy -+ 1 = o la mesure est aussi égale & la surface

non euclidienne de I’ensemble des points de coordonnées cartésiennes.
1) x = u; y = v.

dans un plan ol la conique absolue est x? + y? = o.

“Deux ellipses confocales Ei et E: sont transformées par les
formules (1) en deux ellipses K1 et E's. Le théoréeme de Graves
sera exact si 'aire non euclidienne de la portion de plan située &
Iextérieur de la courbe fermée, formée par K= et une tangente
a E'', est constante lorsque cette tangente varie. On ménera une
tangente voisine, et il suffira de démontrer I’égalité (sens non-eu-
clidien) de deux triangles infiniment petits. Dans 1'espace on dé-
finira semblablement la mesure d’un ensemble de plans

x cos a—-+y cos f-F 5 cosy—p=0
ou bien - wxtoytw a4 1=0
qui sera égale au volume non euclidien de 'ensemble des
points de coord. rect. x —u; y = v; 2 = w; dans un espace
dont la quadrique absolue est x* 4 y? 4 2% = o.

En particulier, les plans coupant une surface convexe fermée
ont pour mesure l'intégrale de la largeur, c’est-a-dire (d’aprés une
formule de Minkowski), 'intégrale de la courbure moyenne sur
cette surface. La démonstration se calque, dés ici, sur la précé-
dente.
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4, L. KorLros (Ziirich). — Propmétés métriques des courbes
algébriques.

Toute propriété métrique peut étre con&dérée comme pro-
~jective si l'on fait intervenir les éléments absolus. On peut donc
transformer les propriétés métriques par une collinéation ou une
réciprocité. Ainsi le théoréme de Carnot sur les courbes algé-
briques planes coupées par un triangle, devient — par une réci-
procité dans laquelle les points cycliques correspondent & 2 cotés
du triangle — le théoréme suivant de Laguerre: Si par un
point, on méme les n tangentes & une courbe algébrique plane de
classe » et si on joint ce point aux n foyers réels de la courbe,
les 2 faisceaux de droites ainsi obtenus ont méme orientation.!

D’autre part, a un théoréme ot un systéme de droites
variables a une orientation constante, on peut, par
un raisonnement simple, faire correspondre un théo- .
~réme ol un systéme de points variables a un centre de

gravité fixe, de telle sorte qu’a un foyer de la pre-
miére figure corresponde une asymptote de la seconde.

Exemples 1. Au théoréme de Laguerre cité plus haut,
correspond le suivant: Le centre de gravité des points de
rencontre d’une droite avec une courbe du »n™ ordre
est le méme que celui des points d’intersection dela
droite avec les asymptotes de la courbe.

2. Les systémes de tangentes Les centres de gravité des 2

menées d'un méme point & deux
courbes de méme classe ont méme
orientation si le point est foyer
d’'une des courbes du faisceau
tangentiel déterminé par les deux
premiéres. (Humbert.)

3. L’orientation du systéme des
m n-tangentes communes & deux
- courbes algébriques ne varie pas
quand on remplace 'une des deux
par une courbe qui lui est homo-
focale. (Laguerre.)

systémes de points de rencontre
de deux courbes algébriques de
méme ordre par une asymptote
d’une courbe du faisceau ponc-
tuel déterminé par les deux pre-
miéres coincident.

Le Centre de gravité des points
de rencontre de 2 courbes algé-
briques ne varie pas quand on
remplace Pune des deux par une
autre qui a les mémes asymp-
totes.

! Deux systémes de n droites ont méme orientation lorsque la somme
des angles que font les n droites avec un axe fixe est la méme pour les 2 sys-

témes (& un multiple de = preés).
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5. O. Seiess (Basel). — Ein Satz iiber rationale Funkiionen.

Lie hat die Vermutung ausgesprochen, dass jede analytische
Funktion f (x) durch Iteration einer Infinitesimalsubstitution
x—+g(x) dt erzeugt werden konne und also Bestandteil einer kon-
tinuierlichen Transformationsgruppe sei. Es ist indess bisher nicht
gelungen, diesen Satz zu beweisen, selbst nicht fiir die viel engere
Klasse der algebraischen Funktionen. Hier soll nun die Lie’sche
Vermutung wenigstens fiilrdie rationalen Funktionen
als richtig erwiesen werden.

Das Problem ldsst sich zuriickfithren auf die Aufgabe, zu einem
gegebenen f(x) eine Funktion @ zu bestimmen, die der Gleichung
geniigt

(1) D[f(@)]=¢ P _

Die erzeugende Infinitesimalsubstitution ist dann n#mlich be-
stimmt durch g (x) = @:®’. Nun haben Koenigs, Grévy und
Leau seit langem gezeigt, dass in der Umgebung gewisser Fix-
punkte von f(x) Losungen von (1) existieren. Ist speziell /(x)
rational, so versagen diese Methoden nur dann, wenn fiir jeden
Fixpunkt a; ‘ |

(2) =1 (ax) = € Rl e (hr = 1rrational) ist.
Bloss falls /(x) linear ist, existiert auch dann eine Losung, nimlich
& = x. Die Lie’sche Behauptung ist also fiir rationale Funk-
tionen erwiesen, wenn gezeigt wird:

Satz: Eine rationale Funktion, deren simtliche Fixpunkte

die Eigenschaft (2) haben, ist notwendig linear.
Beweis: Die Fixpunkte a;---a, von f(x) :f::(%) (die wir
alle im Endlichen annehmen diirfen), sind Wurzeln der Gleichung

Y —=uxs —r=—o0. BEs folgt sofort

’ Tl C ¥ :
oo =1"(ar) =1 — === ({:kk)) [wegen (2)}
Die Zahlen wy = L _ s(ax) sind ebenso wie die ¢, 30, 1, oo, und
1-—8k ‘I"(ak) > ’
also gilt nach Lagrange S_ 5 Wk
| 1 X—ag
- . o xs .
daraus ergibt sich: 2 w; = [ T] == 1 oder
1
X == o0

3 | “”—"n"'“’“—*i
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Nun liegen nach (2) die Punkte &¢; auf dem Einheitskreis um
O, und also die Punkte w; auf der zur reellen Axe senkrechten
Geraden durch den Punkt .cv::% Da aber nach (3) der Schwer-
punkt der wy in &= liegt, muss n =2 sein, und somit f (x)
linear. g¢. e. d. ‘

6. A. Hurwirz (Ziirich). — Verallgemeinerung des Pohlkeschen
Satzes (aus einem Brief an Herrn Kollros).

Sind 2 Tetraeder gegeben, so kann man sie immer
— indem man eines derselben dhnlich verdindert — in
eine solche Lage bringen, dass die Verbindungs-
geraden entsprechender Spitzen untereinander pa-
rallel sind. ,

Sind ndmlich A B C D und A" B' ¢’ D' die gegebenen Te-
ABCD
ABCD
selben geht die Kugel K, welche A B C D umschrieben ist, in ein
Ellipsoid K’ iiber, welches A’ B’ C' D' umschrieben ist. Jetzt be-
stimme man einen Kreisschnitt ¢’ des Ellipsoides K'. Dem Kreise ¢’
entspricht in der Affinitit ein Kreis ¢ auf der Kugel K. Das
Tetraeder A B C D mit der Kugel K und dem daraufliegenden
Kreis ¢ dilatiere man in solchem MaBstabe, dass der Kreis ¢ in
einen dem Kreise ¢’ gleichen Kreis ¢:1 iibergeht. ‘

Nun bringe man das zo A B C D dhnliche Tetraeder A: Br
C1 D1 In eine solche Lage, dass der Kreis ¢ mit dem Kreis ¢’
Punkt fiir Punkt zur Deckung kommt. Dann sind die beiden affinen
Réume in perspektive Lage gebracht und die 4 Geraden A: A’,
B1 B, Ci C’;, D1 D' sind untereinander parallel. ,

Entsprechend den zwei Scharen von Kreisschnitten des Elip-
soids K’ gibt es zwei wesentlich verschiedene Losungen des
Problems.

Wenn die 4 Punkte A B C D in derselben Ebene liegen und
A*B'C' D' von drei durch eine Ecke gehenden Wiirfelkanten ge-
bildet ist, so findet man den Pohlkeschen Satz als Spezialfall.

traeder, so betrachte man die Affinitit ( ) Vermoge der-

7. C. Cararafiopory (Gottingen). — Uber die geometrische
Behandlung der Extrema von Doppelintegralen.

Neben den Randwertproblemen, denen die Variationsrechnung
ihr Dasein verdankt und dem von Lagran g e erfundenen Variations-
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kalkiil, dessen Bedeutung fiir alle moglichen Anwendungsgebiete
immer grosser wird, spielt seit fast hundert Jahren die aus der
~ Optik und der Mechanik hervorgegangene Hamilton-Jacobische
Theorie eine gleich wichtige Rolle.

Der Versuch, diese Theorie auf Doppelintegrale zu erweltern
ist vor einigen J ahren gemacht worden!; hier will ich skizzieren,
wie man das Wesentliche der Hamilton- J acobischen Resultate mit
ganz einfachen Mitteln erhalten kann, wenn man fiir die gesuchte
Losung keine Randwerte von vornherein vorschreibt und daher
die spezifischen Schwierigkeiten des Randwertproblems vermeidet.

Es sei

(1) J — ff f(ao, Yy 35 Zur By) dwdy

das zu untersuchende Doppelintegral. Wir betrachten eine zwei-
parametrige Schar
S (@, y, 2) =

& I oy —
von beliebigen Kurven, die den Raum durchsetzen und die man
als ein Biindel von unendhch diinnen Ro6hren auffassen kann. Auf
jeder beliebigen Fliche s = z (@, y) schneidet eine dieser Rohren
ein Flichenelement aus, fiir welches man den Wert des Integrals
(1) folgendermassen berechnen kann.
- Man setze

;S: (w: y) = S (w’ Y, & (.’IJ, y))
T (9&’, y) - T(w) Yy, 2 (x: y))
und bilde die Funktionaldeterminante

a(sS T
(3) A4 (wa Y, 35 By Zy) == 67—((5_?)
S+ Sea 84805

To+T: 2. Ty+T.-3

‘Dann ist nach (1), (2) und (3)

J—lfjf dA dy

und der gesuchte Wert von J fiir das ausgeschnittene Flachenelement

(4) g di du.

! G. Prange. Die Hamilton-Jacobische Theorie fiir Doppelintegrale.
‘Inaug.-Diss., Gottingen 1915.
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| Dieser Wert, der von 2, und z,, d.h. von der Stellung der
Tangentialebene der gegebenen Fliche z = z (a:, y) abhingt, ist
am Kleinsten, wenn die Gleichungen

| [Af ——f-A =0
§5) | lAf —f- A =o

erfiillt sind und wenn ausserdem das Mlmmum von f:4 als Funk-
tion von z,, 3, fir die durch (5) errechneten Werte dieser letzten
Grossen gesichert ist (Legendre’sche bzw. Weierstrass’sche
Bedmgung)

Den Minimalwert des Ausdrucks (4) nennen wir den Quer-
schnitt der betrachteten Rohre in ihrem Schmttpunkte mit der
Fliche z = z (x, y). '

Nun verlangen wir von der Kurvenschar (2), dass sie lauter
Rohren konstanten Querschnitts enthalte. Dies liefert die Gleichung

f

A= v (4, u),

wo v (4, u) zundchst eine willkiirliche Funktion bedeutet. Bemerkt *

man aber, dass man stets durch eine geeignete Transformation der

~ Parameter 4, u die Funktion y (4, u) =1 setzen kann, so erhilt
man schhesshch das Gleichungssystem :

b
|
&

N

(6) « e “a
f, =4,

aus dem man die ganze Variationsrechnung fiir Doppehntegrale
mit geringer Mithe entwickeln kann. :

8. D. HiLBERT (Gottingen). — Axiomatisches Denken.

“Wenn wir die Tatsachen eines bestimmten Wissensgebietes
zusammenstellen, so bemerken wir, dass dieselben einer Ordnung
fahig sind. Diese Ordnung erfolgt mit Hilfe eines gewissen Fach-
werkes von Begriffen in der Weise, dass dem einzelnen Gegenstande
des Wissensgebietes ein Begriff dieses Fachwerkes und jeder
Tatsache innerhalb des Wissensgebietes eine logische Beziehung
zwischen den Begriffen entspricht. Das Fachwerk der Begriffe
heisst die Theorie des Wissensgebietes. Weiter erkennen wir, dass

9
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der Konstruktion des Fachwerkes einige wenige ausgezeichnete
Sitze des Wissensgebietes zu Grunde liegen und diese dann allein
ausreichen, um aus ihnen nach logischen Prinzipien das ganze
Fachwerk aufzubauen. Diese grundlegenden Sitze konnen von
einem ersten Standpunkt aus als die Axiome der einzelnen Wissens-
gebiete angesehen werden. Das Bestreben, diese Axiome ihrerseits
zu erkliren, fiihrt meist zu einem neuen System von Axiomen,
d. h. zu einer tiefer liegenden Axiomsschicht. Das Verfahren
der axiomatischen Methode kommt also einer Tieferlegung der
Fundamente der einzelnen Wissensgebiete gleich.

Soll nun die Theorie eines Wissensgebietes durch das sie
darstellende Fachwerk der Begriffe dem Zweck, ndmlich der Orien-
tierung und Ordnung dienen, so muss es vornehmlich zwei An-
forderungen geniigen: erstens soll es einen Uberblick iiber die
Abbingigkeit, bzw. Unabhingigkeit und zweitens eine Gewihr
fir die Widerspruchslosigkeit der Axiome der Theorie bieten. Von
besonderer Wichtigkeit ist es, die Widerspruchslosigkeit za priifen,
weil das Vorhandensein eines Widerspruchs offenbar den Bestand
- der ganzen Theorie gefihrdet. Der Nachweis der Widerspruchs-
losigkeit gelingt im allgemeinen in den geometrischen und physi-
kalischen Theorien durch Zuriickfiihren auf das Problem der
Widerspruchslosigkeit der arithmetischen Axiome. Im Falle der
Axiome der Arithmetik ist dieser Weg der Zuriickfithrung auf ein
. anderes spezielleres Wissensgebiet offenbar nicht gangbar, weil es
ausser der Logik iiberhaupt keine Disziplin mehr gibt, auf die
alsdann eine Berufung moglich wire. Ks.scheint somit notig, die
Logik selbst zu axiomatisieren und zu zeigen, dass die Arithmetik
nur ein Teil der Logik ist. Dieser Weg ist seit langem vorbereitet
und am erfolgreichsten durch den scharfsinnigen mathematischen
Logiker Russell eingeschlagen worden. Die Axiomatisierung der
Logik ist ein grossziigiges Unternehmen, das mit  einer Reihe
prinzipieller spezifisch mathematischer Fragen zusammenhingt. Sie
bildet das wichtigste und schwierigste Problem der logisch mathe-
matischen Erkenntnistheorie.

9. A.Seriser (Zirich). — Gleichungen 5. Grades.

- Die alternierende Gruppe von 5 Variabeln . ist bekanntlich
isomorph mit den 60 Drehungen des Jcosaeders. Sie gestattet daher
eine Darstellung durch ternire lineare Substitutionen :
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s=(5,) j}_—_—’1,2,3 S—EAB...
sowie durch lineare gebrochene Substitutionen :

) S19 82
— 3390—}—84
Ist w eine erzeugende Zahl eines Korpers mit dieser Gruppe
und sind w=wE, wd, ..., o8, ... die konjugierten, so erfahren

die drei Zahlen
A __2'su w§, Az = 2812 w8, As =2 813 w8

S S S

beim Ubergang zu der Kkonjugierten terndren Substitutionen und
— Ae =V As® — 4 A1 As
2 A1

erfahrt dabel die gebrochenen linearen Substitutionen. Damlt ist
das Problem der Gleichung 5. Grades auf ein einparametriges
zuriickgefiihrt in der allgemeinsten Weise.

a —

10. S. Bays (Fribourg). — Sur les systémes de triples de 1 3
élements.

La preuve que pour 13 éléments le systéme cyclique de Netto,
et le systéme donné par Kirkmann, Reiss, de Vries, sont les 2
seuls systémes de triples de Steiner différents possi-
bles, peut &tre faite, sans 1’aide d’aucune notion particuliére et
d’une maniére assez simple, en construisant directement les systémes
de triples de 13 éléments qui ne contiennent pas un triple
fixé abe. Un systéme de triples de Steiner qui ne contient
pas le triple abc, contient les 3 triples: bca ca B ab y
(a, B, y == a, b, c et entre eux) ou a, 8, y peuvent étre tous les
arrangements de 10 éléments 3 & 8. Pour un arrangement a, g, »,
fixé, il n'y a que 2 possibilités, qui donnent, pour la construction
du systéme, les seules dispositions suivantes qui s’écrivent aisément:

Ier cas. Le triple a py est contenu dans le systéme.

aad  a.. af . ay. a.. ef. ay. afy o
bBF  ba’. b .. by . o’ B.. ByY. (40)
eyy cd. ¢cf. c.. ya', yﬂ' Y.

II° cas. Le triple afy n’est pas contenu dans le systéme'

Bra yaf aﬁ*/

% 2 aam adn afp ayq ad’. a.. dfy

S8 Lo bl . by 88 8.. ®)
a) § B cy. ca'. cf. o w . oy.. |

33 acd’ @ af’  ay' o.. a.. apy

3: § 2: bpm ba'n bBp by'q s . B a .. (8)

T ey ca  cff o oy |
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2 @ ace’ a@.. af’y a.. a.. a.. of'm
:‘ ? 1. 8. ba'p BB by Bp'. B.. ayn (12)

b - = g ey . calq cf . ¢o. oo oy
= =2 *i aam aa'n af'p ay'q aa’ . a.. By . (24) pour aa'n
~2 % 2. b08. b.. b by. g . B.. o« .. (20) pour ba'n ou
3:" g ey . ¢c.. ¢eff. oo v .oy, ca'n.

Dans chacune de ces dispositions, les éléments o', £, ¥, différents
entre eux et des éléments a, b, c, a,f,y, peuvent étre tous les
arrangements des 7 éléments restants 3 & 3; pour chaque arrange-
ment o, ', y'; m, n,p,q peuvent étre toutes les permutations des
4 derniers éléments. Pour un arrangement o', 8,y et une permu-
tation 'm, n, p, ¢, fixés, chacune des dispositions se compléte par
les éléments m, n, p, g (et cela sans y mettre beaucoup de temps),
du nombre de maniére que j’ai indiqué & droite, c’est-d-dire donne
ce nombre de systémes. En tenant compte des dispositions o les
2 éléments B et » ont & prendre le méme role que a’, nous ob-
tenous donc:

AL A% P, (404+8-+3.8-438.12-}3 [2442.20]) = 10! 300.
systémes de triples, ne contenant pas le triple abc, et par suite
10!300.11

----- T 10! 330 systémes de triples de 13 éléments, qui

différent entre eux au moins par 'un de leurs triples. Or les ordres

des groupes qui transforment en eux-mémes le systéme cyclique
! !

de Netto et celui de Kirkmann, sont 39 et 6; % -+ 1-2—: 10!330.

Par conséquent le systéme de - Netto et celui de Kirkmann sont

les 2 seuls systéemes de triples de Steiner différents

pour 13 éléments.

11. L. G. Du Pasquier (Neuchatel). — Sur un point de la

théorie des nombres hyper complexes.
Envisageons le corps de nombres [R]| formé par l'ensemble

des nombres hypercomplexes x = a, €, -} 21 e1 - ..... ~+ 2, €4 2
coordonnées «; toutes rationnelles. Les complexes ax, 4 @1 j, ol j
est un symbole défini par j2 = 1, fournissent l'’exemple le plus

simple montrant combien la définition ,lipschitzienne“ du nombre
hypercomplexe entier est peu appropriée pour servir de base a
une arithnomie. Par exemple, le produit (3 4 j) (6—3j) = 12—4
est divisible par 2 sans qu’aucun des facteurs ne le seit. On fait
tomber cette irrégularité et d’autres encore, en adoptant la défini-
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tion ,hurwitzienne“ d’aprés laquelle est réputé entier tout com-

plexe x appartenant an domaine holoide maximal du corps [R];
dans ce systéme particulier: tout complexe de la forme a + -g—l— b Js
oL@, b désignent des nombres rationnels entiers quelconques. Alors
chacun des 2 facteurs du produit cité est divisible par 2, puisque
3 )

~2—~I—J§ et ;—3—« —23— 4 sont maintenant des complexes ,entiers®.

Or, il existe des systemes de nombres hypercomplexes sans
domaine holoide maximal, ol par conséquent la définition ,hur-
witzienne“ est inapplicable. On peut les caractériser par la notion
de nom bre nilpotent, ou racine de zéro. On appelle ainsi
tout nombre hypercomplexe a« dont 'une des puissances est iden-
tiquement nulle, »” = 0. Quand un corps de nombres [R]
ne contient aucune racine de zéro, il posséde un
domaine holoide maximal, et un seul. La définition
appropriée du nombre hypercomplexe entier y est donc possible
et univoque. o

Si un corps de nombres [R] contient des racines
de zéro, ou bien il ne possede aucun domaine holoide
maximal, ou bien il en posséde une infinité. La défini-
tion appropriée du nombre hypercomplexe entier y est donc ou bien
impossible, ou bien plurivoque. '

12. H. Beruiner (Bern). — Uber ein Gesetz der infiniten
- Pluralitdt. * |

Als Elemente der homogenen projektiven Koordinatenbestim-
mung konnen wir ebenso wie die Punkte auch die symmetrischen
Dreieckskurven D,,, deren Parameterdarstellung o x; = (a; £+ b; )™
(A=1,2,3) sind (wo m eine ganze Zahl ist), ansehen. Denn
durch eine D, werden 3 Ecktransversalen A; D, des Funda-
mentaldreiecks A, A; A; bestimmt, ndmlich die durch die Beriih-
rungspunkte der D,, mit den Gegenseiten gehenden oder die Tan-
genten der D, in A,, Ay, A3, je nachdem m >0 oder m < o ist.
Durch eine D,, und dem Fundamentalelement des Koordinaten-
systems, das eine beliebige symmetrische Dreieckskurve D, (k ganz-
zahlig) sein kann, werden also 3 Doppelverhiltnisse bestimmt,
deren Produkt fir jede D, gleich (—1)*=™ ist; und umgekehrt
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ist durch 3 solche Doppelverhiltnisse eine D, bestimmt. Wn

konnen also die D,,-Koordination definieren durch

”10/1(-7{”-)1
x ;(3@_?2
(m)

’ €
I (—1)=* A, (A,l+1 Ajy2 Dm Dy ) - T

I (—1)"* 4;(A;44 Ajyo Di Du) ==

(m)
L 42
- 1ym (m)
oder II] (—1)m* [A (Aj4 1 A4;40D, D )]( ) e
2\ App1 Apqe Dy U - m
142
=1, 2 3.
Die bekannten homogenen projektiven Punkt- und Linienkoordinaten
sind Do- und D:-Koordinaten nach der Definition III. Ist eine Kurve
in D,-Koordinaten durch pa; ™ = f; (£) (1 =1, 2, 3), also als
D, -Ort gegeben, so hat der Triger der Kurve, also die Enveloppe
aller dieser D, in Punktkoordinaten die Parameterdarstellung
' [ g m+1 ____ m
rem = (O] 10181070

II’ 0x, = bf:(t); m—I1 {_g—z? ];_’(_2 _ ];_(@ ’: (t)!m

[ q n+ (—1hm _ m
oder 111" g 0, = [[O]"™ [ 739 — [ 7491
A=1,2,3).
je nachdem I, IT oder III benutzt wird. Ks ist also speziell der
Trager einer Kurve 1. Ordnung, also eines Grundgebildes resp.
eine Dy 1, Dn—1 oder Dyy(—1ym, wenn die D, als Grundelemente
angesehen werden.

Nunmehr konnen wir jeden projektiven Satz auf unendlich
viele Weisen interpretieren, indem wir an Stelle der Punkte die
- Dy, wo m irgendeine ganze Zahl ist, als Grundelemente anseben
und dabei die D, 41 (I) oder die D,_; (II) als die Triger der
Grundgebilde nehmen. Dies verstehen wir unter dem Gesetz der
infiniten Pluralitdt, wovon das der Dualitit nur ein Spezial-
fall ist, indem dabei nur die Punkte und Gerade, die Do und D:
sind, als Grundelemente angesehen werden. Das Gesetz der infiniten
Pluralitdt im Raume besteht darin, dass wir ebenso wie die Punkte
auch die tetraedral-symmetrischen Flichen von irgendeinem ganz-
zahligen Index 7 als die Elemente der projektiven Koordinaten-
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bestimmung, also als die Grundelemente im Raume ansehen. Wir
konnen jetzt auch jeden projektiven Satz der Liniengeometrie auf
unendlich viele Weisen interpretieren, da wir jetzt die tetraedral-
symmetrischen Kurven von irgendeinem ganzzahligen Index m
ebenso wie die Geraden als Grundelemente im Raume ansehen
konnen.

13. K. MERz (Chur) — Quadratische Transformation einer
Kollineation und eine Massgeometrie.
Durch & = x®: (r* — x® —y%); ¥ =y?: (r* — x® — y? Wird

die unbegrenzte Ebene &, n in das Innere des Kreises 902 + y2==12
abgebildet, wobei ihrer unendlich fernen Geraden der Umfang ent-
spricht. Den Geraden parallel zu & entsprechen Ellipsen mit dem
- Kreisdurchmesser auf o als grosse Achse. Dem Werte #n = 1
entspricht dann auf y die kleine Halbachse »: ¢ 2. Wird diese
Strecke als Einheéit fiir die » angenommen und lisst man die Koor-
dinatenachsen & » mit x y zusammenfallen, so entsprechen die
Punkte auf x® -+ y®=?%:2 sich selbst. Kiner Strecke A B im
Innern des Kreises 7, die verlingert, ihn in U und V schneidet,
entspricht in zentrischer Lage ein Bogenstiick A’ B’ einer Hyperbel
mit den Asymptoten O U und O V.

Wendet man auf diese Abbildung die quadratische Transfor-
mation &2 = ¢, p* =" o =, y* =1y  an, so entsteht daraus
die zentrische Kollineation von O aus mit der Achse &' 4 y' = ?: 2
und der Gegenachse x' -}y =2 Aus dieser Kollineation ergeben
sich damit Kigenschaften Jener Abblldung der Ebene & # in den
Kreis 7.

Um eine Massgeometrie! im Innern des Kreises » zu
- erhalten, ist die Strecke A (a1 y1), B (22 y:) durch eine solche
Funktion F' (x, y) zu messen, die. unendliche Werte gibt, wenn A
oder B in U oder V riicken. Dazu ist das Mass dargestellt durch

den Hyperbelbogen A’ B'. Die Koordinaten «, y eines Punktes P
in 7 werden dann gemessen durch die zu P gehdrenden Hyperbel-
bogen # und v, welche die Abbildungen der Strecken x und y

1 Als Beispiel zu der allgemeinen Betrachtung iiber nichteuklidische
Geometrie in: K. Merz. Zur Erkenntnistheorie von Raum und Zahl aus Histo-
~ rischem der Steinerschen Fldche (S.104) im Jahresbericht der Natur-

forschenden Gesellschaft Graubiindens, Chur 1917. (Separatabzug
S. 40.)
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sind. Diese krummlinigen Koordinaten sind durch elliptische Inte-
grale dargestellt /

2___ .2 2 2. .2 2 ,,2
Vol =)ty .v__:fv(’" B+ 2y,
V(rz_wz_yz)s V(r2—m2-—y2)3 ‘
Diese Bogen # und v schneiden sich in P’ unter einem Winkel ¢.
Damit das Linienelement aus ds®* — dac® -} dy?® durch das ihm ent-

sprechende du® -+ dv? — 2 du dv cos ¢ gemessen werde, ist der .
von doc und dy gebildete rechte Winkel als durch

7,.2 (7.2 — % — y2)
xy (2r?—a? — y?)

@ — arclyg

gemessen darzustellen.

Mit Hilfe von w, v, ¢ ist nun die Massfunktion F (x, y) zu
bestimmen.

Fiir diese Massgeometrie sind dann nicht Strecken A B geo-
datische Linien, sondern Ellipsenbogen A B, welche die Abbildung
sind der Sehne im Hyperbelbogen A’ B’. In der Umgebung von
O ndhern sich diese Bogen immer mehr den Strecken, und man
erhilt iiberhaupt euklidische Massbeziehungen.

14. A. Ostrowskr (Marburg a. d. L.) und G. Porya (Ziirich).
— Uber ganzwertige Polynome in algebraischen Zahlkiorpern.

Die mitzuteilende Untersuchung ging von einer Fragestellung
des Herrn Hurwitz aus, wurde durch Polya bis zu einem ge-
wissen Punkte durchgefithrt und durch Ostrowski abgerundet
und weiter verfolgt.

,Ganzwertig im Korper K¢ helsst ein Polynom P (x), das
fiir ganze, im Korper K liegende Werte der Variablen ganze, im
"Korper K liegende Werte annimmt. Ein ganzwertiges Polynom
m-ten Grades ldsst sich immer in die Form

| awn 4 pamt 4 o
m/!

setzen, wo a, \/3, .-« A ganze Zahlen des Korpers sind.

Im Korper K gibt es ein wohlbestimmtes Ideal a, von fol-
gender Eigenschaft: « ist dann und nur dann eine Zahl des Ideals
an, Wenn-es ein ganzwertiges Polynom #-ten Grades gibt, dessen

hochster Koeffizient n% heisst. Kine ldngere Schlussreihe gipfelt

in der expliciten Berechnung des Ideals a,. Man bezeichne mit
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P1, pe, --- p. die simtlichen in 7/ aufgehenden Primideale, mit
Ni, Ne, .- - N, ihre Normen und man setze

SHNERES
Dann ist ' S

A AR Ay Y]
Im rationalen Korper lésst sich bekanntlich jedes ganzwertige
~ Polynom w-ten Grades in der Form

P (x) = -} (‘f) ~+ a: (g)_|_ one Fe am(z),

darstellen, wo ao, a1, a2, --- an ganze Zahlen des rationalen
Korpers sind. Die Polynome

) wt)o\(ici—l) o —1)-- (ac-m—{—l)

T 1.2 7 1.2 .
bilden also eine Art ,Basis“ fiir die ganzwertlgen Polynome des
rationalen Kérpers. Die Bedingung fiir die Existenz einer analogen
Basis im Korper K ist, dass simtliche Ideale ao, ai, as, --- am, -
Hauptideale sein sollen. Z. B. existiert die Basis in einem quadra-
tischen Zahlkorper dann und nur dann, wenn simtliche Idealteiler
der Grundzahl Hauptideale sind, wie es sich leicht aus (I) ergibt.
Etwas Analoges gilt allgemeiner fiir Galoissche Korper.

~ Unter denselben Bedingungen existiert auch eine.ganz analog

zu definierende Basis fiir ganzwertige Polynome mehrerer Ver-
dnderlichen.

15. L. G. Du Pasquier (Neuchatel). — Une nouvelle formule
d’interpolation dans la théorie mathématique de la population.

Pour étudier les variations 4 P que subit un groupe de popu-
lation P (¢) avec le temps ¢, on suppose que l'effectif P (¢) est une
fonction continue du temps et ’on déﬁnlt I’intensité de varia-
tion & I’instant ¢ par

- Lim 4 P apP P’
o () = (5 44)

Al—>0 “P.a P

On définit de méme des intensités spéciales, notamment
I'intensité de natalité » (3); 1’intensité de mortalité
w(); ’intensité A’ immigration:(#; I’intensité d’émi-
‘gration ¢ (). — Pour les facteurs qui tendent & diminuer 1’ef-
fectif, on arrive & la méme notion en partant de la théorie des
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probabilités mathématiques; on définit par exemple le taux ins-
Lim ("Qt ) et 'on démontre qu’il
"n—>0 noy »
est égal & l'intensité de mortalité « (7). En vertu d’une propriété
fondamentale des fonctions d’intensité ou taux instantanés, on peut
éerire o) =v®) — u®) + () — ()
la natalité, la mortalité, I'immigration et 1’émigration étant les 4
facteurs dont la variation de l'effectif P (#) dépend directement.
En faisant des hypotheses appropriées sur le taux instantané
de variation, on retrouve les théories formelles de la population
émises jusqu’ici. Ainsi o (7) = o donne la théorie de la population
stationnaire (E. Halley); o (¢) = const. conduit & la théorie
eulérienne de la population variant en progression géométrique ;

tantané de mortalité

6 (t) inversement proportionnel & Veffectif, o () == 1% , donne la

théorie de la population variant en progression arithmétique (de
Moivre); I’hypothése o (f) — ¢ (m — P), ou ¢ et m désignent
des constantes positives, donne la théorie de F. P. Verhulst qui
- suppose que la population, partant de l'effectif initial Po, augmente
constamment, mais de plus en plus lentement et finit par atteindre
un état stationnaire caractérisé par Deffectif 72, abstraction faite
des écarts accidentels; formule:
Pit) = P, - —— m - et -
ST Pyeemet Loy — P,
On peut développer une théorie nouvelle en supposant qu’avec
le temps surgissent des facteurs qui influencent Vlintensité de
variation. Une formule relativement simple se déduit entre autres

de V'hypothése o () = QFc (b —t) (P— m)?; elle conduit a

P, — m

¢c- (P, —m) - —2bt) + 1

Partant de l'effectif initial P, — # 4 %, la population passe
(aprés un temps b) par un extréme, puis tend vers un état station-
naire caractérisé par Deffectif constant », quand on attribue aux
constantes des valeurs appropriées.

En terminant, l'auteur indique les bases d’une théorie future
de la population, théorie formelle mieux adaptée a la réalité que-
celles émises jusqu’ici.

Pt) =n—+
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