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Sektion fiir Mathematlk

(Zuglmch Versammlung der Schwelzeuschen Mathematlschen
- Gresellschaft)

Dienstag. 8. August 1916

Einfithrender : D" K. MERz
Praesident :  Prof. CAILLER
Sekretir : Prof. CRELIER

1. K. Merz (Chur). — Historisches zur Steiner’schen Fliche.

Wie Steiner seine Romerfliche, tiber die er nichts veroffent-
lichte, entstehen liess, ist mir durch Herrn Prof. Geiser mit-
geteilt worden. Die Methode Steiners wendet Schroter an,
nur nimmt er zur Vereinfachung statt des von Steiner an-
genommenen Biindels quadratischer Flichen ein Kegelschnitt-
netz an. Noch etwas vorausgehend hat Kummer die analytische
Behandlung der Fliche begonnen, die er in einer von ihm auf-
gestellten Gleichung erkennt. In der folgenden tabellarischen
Uebersicht* gibt die 1. Kolonne die synthetischen Bearbei-
tungen der Fliche an und die 3. Kolonne die analytischen mit
Abbildung auf eine Ebene. In der 2. Kolonne ist die Behand-
lung durch quadratische Transformation eingeschaltet. Die
iibrige Kolonne gibt den Uebergang zur Theorie der biqua-
“dratischen Formen an, welche durch die Raumkurve 4. Ordg.,
2. Art als Haupttangentenkurve mit der Steiner’schen Flache
in enger Beziehung sind. ,/

1 Die genaueren Literaturangaben zu dieser Tabelle findet man in:
K. Merz, Parallelflichen und Centrafliche eines besonderen Ellipsoides
und die Steinersche Eliiche. Beispiel einer quadratxschen Transformation,
wobei noch zuzufiigen sind :

.~ Laguerre, Ouevres 1I, p. 281 und Beltrami, Opere IlI p- 168 Siehe
auch diese «Vexhandlungen » 1914, II., Seite 102.
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- Stetner (Rom 1843) 1863 [Frégier, Hesse, 1837]

Schroter 1863 Kummer 1863 Weyerstrass 1863

Cremona 1864 Berner 1864 Cayley 1864
Reye 1867 Reye 1867 Clebsch 1867 Laguerre 1872
Sturm 1871 Bertini 1872
' Gerbaldi 1881 Beltrami 1879
(Stahl 1885) Rohn 1890
Reye 1896  Lacour 1896  Berzolari 1892

Timerding 1898

Diese historische Entwicklung zeigt, wie das Problem, das
eine geniale geometrische Phantasie erschaut hat, immer mehr
einer formal algebraischen Behandlung anheimfillt, wobei an
Stelle der raumlich anschaulichen Darstellung die allgemeine
rechnerische Methode tritt, so dass schliesslich die geometrische
Erkenntnis als ein intuitiver Einblick in die arithmetischen
Zusammenhinge erscheint, der zugleich als Wegweiser wirkt, in
welcher Richtung fordernde und fruchtbare Ergebnisse zu erzie-
len sind.

2. L. CrerLiEr (Berne-Bienne). — Puissance d’une droite par
rapport & un cercle.

I. Puissance. — Théoréeme: Etant donné tous les couples de
tangentes a un cercle que U'on peut mener par les divers points
d’une droite quelconque du plan du cercle, le produit des tangentes
des demis angles de la premiére tangente et du prolongement de
la seconde tangente de chaque couple avec la droite donmée est
constant. ‘

Cette constante s’appellera la puissance de la droite par
rapport au cercle. Nous aurons :

ql ’ 7,+p

a T — " J —
tgé.tg-——2- = tgﬁ.tg—«é—«— e = const ,
II. Faisceavx. — Nous appellerons faisceaux de cercle

F; ou F, I’ensemble des cercles admettant un méme premier
centre de similitude extérieur ou intérieur par rapport i tous
les cercles. Nous aurons: |

a) Etant donné deux faisceaux F';l) et Ff) de méme centre
radical principal S les points de coupe des tangentes extérieures



| — 95 —
communes de deux cercles quelconques des faisceaux, pris Uun
dans F() et Vautre dans Fff) , sont tous sur ume méme droile
appelée laxe radical principal des faisceaux. Les points de
coupe des tangenles intérieures communes des mémes cercles sont
tous sur une autre droite appelée 1'axe radical secondaire des
deux faisceaux.

b) Le méme théoréme subsiste pour deux falsceaux F( ) et F(2)

III. InvoruTiONs. — Considérons maintenant un pomt quel—
conque P du plan d’un faisceau F, ou ¥, complété par le
faisceau conjugué F3 ou F4 et par ce point menons deux

tangentes & chaque cercle du faisceau considéré. Soient ¢ et ¢,
les deux tangentes a 1’un quelconque des cercles. La puissance
absolue de la droite PS = a, S étant le sommet du faisceau,
sera la méme par rapport a tous les cercles du faisceau F, et la
méme par rapport a tous les cercles du faisceau complémen-
taire F,. '

Si nous posons : angle (¢, @) = a et angle (¢, @) = o', nous
aurons : .

Pulssance de a = tg 5" tg n——;i ;

Avec les deux tangentes d’un autre quelconque des cercles du
faisceau nous aurons également :

Puissance dea—tg2 n;a tgg'.'tg”_;ﬂ = ... = const .

Les bissectrices des angles compris entre a et ¢ ou a et le pro-

longement de ¢, donnent lieu & un produit de tangentes trigo-
nométriques constant; ces bissectrices forment une involution.
D’ou nous tirons le théoréme suivant :

T héoreme: A tout point P du plan d'un faiscean F,ouF, de
centre radical principal S correspond une involution de myons
Les rayons conjugués sont les bissectrices des amgles compris
entre 'axe PS—a et la premiére tangente menée de P d chaque
cercle du faisceau, puis entre a et le prolongement de la deuxieme
tangente mende de P au méme cercle. Les rayons doubles sont
toujours réels dans le plan d'un faisceau F, et dans I angle inté-
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rieur du plan d'un faisceau ¥,. Dans son angle extérieur ils sont
imaginaires.

Les rayons doubles réels sont les bissectrices des angles compris
entre Uaxe a et les tangentes des deux cercles du faisceau passani
par le point considéré.

3. O. Seiess (Basel). — Schliessungsprobleme bei konvexen
Kurven o

Zu einer beliebigen geschlossenen Kurve C sei eine Kon-
struktion K gegeben, die jedem Punkt 4 der Kurve einen
andern 4, zuordnet und zwar soll gelten :

1. 4 und 4, bestimmen einander umkehrbar eindeutig.

- 2. Durchléuft 4 die Kurve in bestimmtem Sinn, so durch-
lauft 4, dieselbe im Gegensinn. |

Die Konstruktion K «schliesst», wenn A, = A4 ist (Fiz-

punkte); sie schliesst nach zweimaliger Ausfithrung, wenn
A,—=A ist, d. h. wenn sich 4 und A4, wechselseitig entsprechen
(Wechselpunkte). Das Schliessungsproblem besteht darin, die
Fixpunkte und Wechselpunkte zu bestimmen. Man erkennt
folgendes:
I. Es gibt immer genau zwei Fixpunkte; sie trennen je
zwel entsprechende Punkte A und A4,.

II. Wechselpunkte kann es geben in endlicher oder unend-
licher Zahl.

III. Ist A ein beliebiger Punkt von C (weder Fix- noch
Wechselpunkt), so sind die durch Wiederholung von K
entstehenden Punkte 4, 4,, 4,, A,,... alle ver-
schieden und ndhern sich alternativ den Grenzpunkten

khm Ay, =2, khm Agpgr = %+
=00 ==

Ist o, & @, s0 sind a, o, Wechselpunkte; ist a, == a, S0
ist a Fixpunkt. In Praxi konnen daher diese Punkte durch
endliche Wiederholung von K gefunden werden. Derselbe
Schluss gilt fiir die aus der inversen Konstruktion X ' ent-
sprmgende Punktreihe 4, 4 A4

Ist C' konvex, so lassen smh solche Konstruktionen K in



mannigfacher Weise angeben. Man nehme » Punkte P, ,..
P von denen eine wungerade Anzahl ausserhalb C liegen, z1ehe
AP bis zum zweiten Schnittpunkt 4 mit ¢, 4" )P bis 4®
etc., so hat der Punkt A™ = A, zu A4 die geforderten Be-
ziehungen. Man erhilt so z. B. den Saiz: :

~«Jeder konvexen Kurve (ohne Ecken) lassen sich zwei un-
gerade Polygone bei gegebenen Richtungen der Seiten ein-
schreiben — speziell z. B. unendlich viele Paare regelmass1ge1
Dreiecke ».

Die Punkte P, lassen sich ersetzen durch konvexe Kurven T,
an welche Tangenten gezogen werden. Ferner lassen sich dlese
Konstruktionen dual umformen.

4. C. CaiLLER (Geneve). — Sur la Géométrie réglée imaginaire.

Dans ma communication de Genéve, j’ai entretenu la section
mathématique de la Géométrie des corps solides. De nouvelles
recherches dont j’expose les résultats, avec tous les détails
nécessaires, dans un mémoire actuellement en cours de pubh-
cation dans les Archives de Genéve, m’ont amené recemment a
développer, sur I’ensemble du sujet, un point de vue inédit.
Je désire en dire un mot aujourd’hui. | |

D’aprés cette nouvelle théorie, la Géométrie des corps
solides se confond avee la Stéréométrie ordinaire, quand on
prolonge celle-ci dans le domaine complexe. La premiére géo-
métrie est simplement 1’aspect réel de la Géométrie ponctuelle
imaginaire. ' -

Le corps solide est le pendant réel du point imaginaire.

Le pendant réel du plan imaginaire est la figure qu’on obtient
en faisant chavirer un corps solide fixe autour de toutes les
droites de l’esPace ; Jdppelle vmllozde 1’ensemble a1ns1 en-
gendré,

Enfin si on fait tourner et glisser un corps solide le long d’un
axe fixe, on decmt une’ vmlle, c est l’apparence reelle de la
droite imaginaire.

Les propriétés manifestées par le corps solide, le vrilloide, et
la wvrille sont identiques & celles du point, ‘du plaw, et de la
droite de 'espace ordinaire, sauf en ceci que, dans les relations

7#
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métriques, des quantités complexes se substituent aux quanti-
tés réelles. La place me manque pour justifier ici cette asser-
tion. Je veux seulement entrer dans quelques détails touchant
la Géométrie des vrilles, laquelle représente pour la nouvelle
théorie, ce qu’est la GGéométrie réglée par rapport & 1’espace
ordinaire. |

L’espace réglé est de la quatriéme dimension, I’espace vrillé
de la huitieme. Pour transformer les unes dans les autres
toutes les vrilles de ’espace il faut disposer des oo'* mouve-
ments complexes de 1’espace imaginaire; les mouvements réels
ne transforment une vrille donnée qu’en oo* vrilles nouvelles
seulement.

Toute droite possede 6 coordonnées pliickériennes I, m, n, p,
q, r liées entre elles par la relation

Ilp +mqg + nmr =0.

Toute vrille posséde de méme 12 coordonnées pliickériennes
U,U,m,w',w,n', v, 9", ¢, q", v, v qui satisfont trois relations
homogenes

"+ m'm" 4+ n'n" =0,
I'py —U"p" +mqg — m"qg" + n'r' —n'"r" =0,
U'p" + 1"p" + m'q" + m"q + »n'r" + n"r' =0,

lesquelles restent invariantes quand on exécute les oo'* mou-
vements complexes.

En Géométrie réglée, la forme fondamentale est le complexe
linéaire de Pliicker et Chasles, dont 1’équation dépend linéai-
rement des coordonnées I, m, n, p, q, 7.

De méme, dans I’espace vrillé, la forme fondamentale, qui
fait symétrie au complexe linéaire, est une heptasérie, d’équa-
tion |

a"l! 4+ a'l" + b"m' + b'm" 4+ ¢"n’ + cn”
+ d"p + A"+ e"d + 9" + =0,

L’interprétation géométrique de la condition précédente est
analogue a celle du complexe en Géométrie réglée. Elle est
seulement plus compliquée. Aulieu de ladistance et de I'angle qui
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mesurent ’intervalle de deux droites quelconques, une nouvelle
notion s’y rencontre: celle des deux distances conjuguées qui
expriment, d’une maniére analogue, l’intervalle entre deux
vrilles. | , |

J’ajoute que si on cherche & déterminer dans I’heptasérie les
vrilles qui renferment un corps donné & volonté, les axes de ces
vrilles décrivent un complexe linéaire I', lequel est ainsi
associé d’une part & [’heptasérie, de ’autre au corps donné.

Il existe seulement oo* complexes I' de cette espéce ; la cons-
truction de cette famille de complexes, dusecond ordre, permet
de définir géométriquement toutes les vrilles qui forment I’hep-
tasérie linéaire fondamentale.

5. Prof. Dr. M. GrossMann (Zurich). — Hinweis auf den
Abschluss der allgemeinen Relativitetstheorie.

Albert Einstein hat die vor mehreren Jahren begonnene
Verallgemeinerung der von ihm, Lorentz und Minkowski ge-
schaffenen Relativititstheorie nunmehr zum votig befriedigen-
den Abschluss gebracht. Es ergibt sich die allgemeine Kova-
rianz der Gleichungen, die den Ablauf der physikalischen
Vorginge beschreiben, wie auch der Differentialgleichungen,
die das Gravitationsfeld bestimmen. Die Koordinaten von Raum
und Zeit verlieren damit den letzten Rest anschaulicher Bedeu-
tung und werden lediglich zu Parametern, die zur Punktbe-
stimmung in der vierdimensionalen Mannigfaltigkeit dienen,
deren Differentialgeometrie die physikalischen Vorginge dar-
stellt. Das Ergebnis tritt ins hellste Licht wenn es den weitaus-
schauenden Ideen von Riemann, welche dieser in seinem Habi-
litationsvortrage (1854) entwickelte, gegeniiber gestellt wird.
(Vgl. die ausfiihrliche Darstellung der Theorie durch Kin-
stein ! Die Grundlage der allgemeinen Relativitétstheorie, Joh.
Amb. Barth). | |

6. H. WeyL (Zurich). — Das Problem der Analysis situs
In der Analysis situs, welche diejenigen Kigenschaften kon-
tinuierlicher Mannigfaltigkeiten untersucht, die ihnen unab-
héngig von jeder Massbestimmung zukommen, kann man gegen-
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wirtig zwei Betrachtungsweisen unterscheiden, die mengen-
theoretische (vergl. namentlich die Arbeiten Brouwers) und die
kombinatorische (die in dem Enzyklopidie-Artikel von Dehn
und Heegaard die herrschende ist). Um die Bedeutung jeder
dieser beiden Untersuchungsrichtungen und ihr gegenseitiges
~ Verhdltnis zu illustrieren, kniipft der Vortragende an dasjenige
spezielle Problem der Analysis situs an, das in Riemanns Theorie
der algebraischen Funktionen die entscheidende Rolle spielt:
die Bestimmung der Zusammenhangszahl zweidimensionaler
geschlossener Mannigfaltigkeiten.

Durch Zerlegung einer solchen Mannigfaltigkeit in endlich-
viele « Elementarfliichenstiicke» entsteht aus ihr ein Polyéder
(Mobius); zur weiteren Vereinfachung mag jedes Polygon in
Dreiecke zerlegt werden. Nachdem man deren Ecken durch
irgendwelche Symbole, z. B. Buchstaben, gekennzeichnet hat,
stellt man in einer Tabelle die simtlichen Dreiecke, aus denen
die triangulierte Fliache besteht, zusammen ; jedes Dreieck ist
dabei durch Angabe seiner drei Ecken zu charakterisieren. So
entsteht das kombinatorische « Schema» der Fliche. Zwei
Schemata entspringen, wie sich plausibel machen lasst, durch
verschiedene Triangulierung aus derselben Fliche, wenn sie
« homdoomorph » sind, d. h. durch « Unterteilung » in ein-
und dasselbe dritte Schema tibergefithrt werden konnen. Die
Homoomorphie ist einerein kombinatorische Beziehung zwischen
den beiden Schemata. Die wichtigste. Schema-Invariante im
Sinne der Homodomorphie ist die Zusammenhangszahl =
k — e — d -+ 3 (k = Apzahl der Kanten, e der Ecken, d der
Dreiecke); fir «einfach zusammenhingende» Flichen ist sie
= 1 (Eulers Polyédersatz). j

Um aber streng zu begriinden, dass die so gewonnene Zu-
sammenhangszahl eine Analysis-situs-Invariante der urspriing-
lich gegebenen zweidimensionalen Mannigfaltigkeit ist, sind
ganz anders geartete, auf den Begriften der Mengenlehre
basierende Betrachtungen notig. Zunichst ist dazu eine exakte
Festlegung des Begriffs der zweidimensionalen Mannigfaltigkeit
erforderlich. Um dann eine von jeder Triangulation unabhéingige
Definition der Zusammengszahl zu gewinnen, kann man einen

A
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Weg gehen, der innerhalb der Analysis situs zu einer von
Weierstrass auf funktionentheoretischem Felde, in der Theorie
der Abelschen Integrale, benutzten Beweisfithrung analog ist:
aus dem Verhalten der Integrale auf die Natur und die Be-
ziehungen der Integrationswege zu schliessen. D1es wurde im
Vortrag genauer ausgefuhnt :

7. M. L.-G. DU Pasquier (Neuchétel) - Sur l’amtkmetaque '
généralisée.

SOIt une infinité de complexes ¢ n coordonnees tels . que
( ey @), 000Q,a, ..., 4 ,repr ésentent des nombres rdels.
On erlge une arithmétique et une algebre généralisées portant
sur ces éléments en définissant, sur ces complexes, 1’égalité et
deux opérations qu’on appellera addition et multiplication, par
analogie avec I'arithmétique ordinaire. Ces trois définitions
[initiales sont arbitraires, ce qui n’empéche pas les opérations
qui en résultent d’étre soumises & certaines lotis fondamentales.
L’orateur cite les dix lois fondamentales qui caractérisent
Parithmétique et I’algebre classiques et rappelle le théoreme
établissant qu’une nouvelle extension du domaine des nombres,
au deld des nombres complexes ordinaires, n’est possible qu’au
prix de ’abandon d’une ou de plusieurs de ces lois fondamen-
tales. Le développement pris jusqu’ici par1’analyse mathémati-
que montre que les lois d’associativité et de distributivité sont
des plus importantes. En maintenant ceslois et laissant tomber
seulement la commutativité de la multiplication et ’exclusion
des diviseurs de zéro, on arrive aux systémes des polytetlarions
‘que I’orateur définit. Posant entre les coordonnées des tetta-
rions certaines relations appropriées, on obtient d’autres sys-
temes de nombres hypercomplexes, par-exemple les quater-
nions, comme ¢as partxcuhels de certaines classes de polytet-
tarions. Il semble que les tettarions corprennent, comme sous-
systémes; lous les- systemes possibles de nombres hz/percomplexes
a multiplication associative et distributive. A -

Parmi les connexions remarquables entre certaines 101s fon-
damentales régissant les opérations de 1’algebre généralisée et
les propriétés arithmétiques des domaines oui ces lois sont vala-
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bles, citons cette curieuse relation: soit un domaine de nom-
bres hypercomplexes entiers, comprenant des complexes irré-
ductibles, ou premiers, et o un complexe entier non irréductible
de ce domaine. On pourra mettre « sous forme d’un produit de
facteurs irréductibles, en imposant a ces derniers de se suivre
dans un ordre tel que leurs normes suivent un ordre fixé arbi-
trairement pour les facteurs premiers de la norme N(a) du
complexe entier donné a. Cette décomposition de o. en facteurs
premiers est plurivoque ou unique, suivant que la multiplica-
tion, dans le systéme envisagé, est commutative ou ne 1’est pas.

8. Georg PoLya. — Hin Gegenstiick des Liouville’schen
Approximationssatzes in der Theorie der Differentialgleichungen.

Es sei o eine irrationale Zahl und es sei unter allen rationalen
Zahlen, deren Nenner x nicht ibersteigt, die Zahl » der
Zahl oo am nachsten gelegen. Der Liouwille’sche Satz besagt
dass die fir jede Wahl von o konvergente Folge

(1) Tig Mo, T3, «o. T

nicht beliebig schnell konvergieren kann, wenn o« einer alge-
braischen Gleichung mit rationalen Koeffizienten geniigt.

Analog, wie die Folge (1) der Zahl o, ist jeder ganzen
Funktion f(x) ihre gegen sie konvergierende Taylor’sche Reihe
zugeordnet. Geniigt f(x) einer algebraischen Differential-
gleichung mit rationalen Koeftizienten, so kann die Taylorreihe
von f(x) nicht beliebig schuell konvergieren. Da bei ganzen
Funktionen die Taylorreihe um so schneller konvergiert, je
langsamer der absolute Betrag der Funktion anwiichst, kann
der Satz auch so ausgesprochen werden: Geniigt eine ganze
Funktion einer algebraischen Differentialgleichung, so kann
ihr absoluter Betrag nicht beliebig langsam wachsen.

Diesen Satz spreche ich nur vermutungsweise aus, oder
besser gesagt, ich stelle seinen Beweis als Problem hin.
Wichtige Stiicke davon konnen jedoch wirklich bewiesen
werden. Ich bin in dieser Richtung, mich Arbeiten von
Hurwitz und Perron anschliessend, zu verschiedenen Resul-
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~ taten gelangt. Einige ganz bestimmte Beispiele: die ganze
Funktion von x - '

@
nt n
qQ x

n=—0

(die Halfte einer Thetareihe) geniigt keiner algebraischen

Differentialgleichung, wenn ¢ rational. — Die Differential-
gleichung

m—1 &y m—2 £ “_ig dy _

&£ P + ar P + ... +a ar y=20

ist irreduzibel, in dem Sinne, dass kein Integral von ihr einer
homogenen linearen Differentialgleichung mit rationalen Koef-
fizienten geniigt, deren Ordnung << m ist.

9. Dr. H. BeruiNer (Bern). — Ueber zwei projektive natiir-
liche Geometrien.

Die beiden mittelst der Abszissen und Ordinatenwinkel-
systeme entstehenden projektiven Massgeometrien (s. Berliner,
Verhandlungen der Schweizerischen Naturforschenden Gesell-
schaft, 1915, Teil II, page 109) fithren zu zwei natiirlichen
Geometrien. Definieren wir nidmlich die Bogenlinge einer
Kurve als den Grenzwert der Linge (im Sinne jener Mass-
geometrien) eines dem Kurvenbogen eingeschriebenen Polygons,
dessen Seiten nach O streben, so wird die Abszisse und ebenso
der Ordinatemovinkel eines Pumktes auf der Kurve (s. a. a. O.)
eine Funktion der Bogenlinge sein. Die Kenntnis dieser
FKunktion geniigt nun, um die Gestalt (im Sinne jener Geo-
metrien) der Kurve, nicht aber um ihre Lage in der Ebene zu
bestimmen. In der Tat setzt man A(BCQP) = (QP), : (QP),,
B(CAQP) = (QP), : (QP),, C(ABQP) = (QP), : (QP),, so ist
QP), = (QP),(P,P,), ... (P,_,P,)(P,P) furi=1,2,3; ferner
ist (QP), = %:é’ , Wo x,y die Abszissen von Q, P in dem
QP zugeordneten Systeme bedeuten. Ist also eine stetige
Funktion t = ¢(s) gegeben, und zieht man durch einen Punkt
P, die Gerade P P, , deren Abszisse im Systeme von P,o(s,)
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ist, dann durch P, die Gerade P,P,, deren Abszisse im Systeme
von P,o(s,) ist, wenn die Entfernung PP, = s, — s, (wenn
also ¢(s,) + s, — s, die Abszisse von P, im Systeme von P,P,
ist), usw., endlich durch P, , die Gerade P, ,P,, deren
Abszisse im Systeme von P, _,e¢(s,_,) ist, und ist P, P,
=5, — 5, _,,80ist |

(P()P”)'. == (POPI){ a0 (Pn——IPn)t

. q)(‘sO) + 8§ — S — Zz. 09(6'”_1) + sn - sn—l - zi
Ps) — 2, o (p(sn—;l) - %

r=n—1

ds,
T (1 payes)

=0

Lasst man nun simtliche As. nach O streben und dement-

sprechend ihre Anzahl oo werden, so dass Y, As = § — 85, 80
wird

(1) s A s
s ds
dmd 5(5) —2; f-_.:(s)—z'-
= lim ¢ = ¢’ (=123
As=0

sein; da e® =1+ 2= fur| x| <<V2—1 (es ist nam-
. — xo (1—
lich "™ =142 — 5 [2— (1 — )" 7], wo 0<<6<C1),
also

v As ) As . As 2

- o)== ’ ‘ Z 2(8) - & Z (?(‘)~zz’>

e o So .

(43
v
o f—
j——
ot
+
pst
)
Rl N
I «»
N
N—
%

4s 2
lim (*ﬁ—— 1 =0
As=0 Pp(s) — zi\’)

s

ist. Die Eckpunkte eines, in angegebener Weise konstruierten
Polygons, dessen Seiten nach O streben, erfiillen also eine
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durch P, gehende Kurve, fir die die Abszisse . eines jeden
ihrer Punkte P, durch © = ¢(s) gegeben ist (wobei s —s, die
Linge des Polygons und: mithin, wie leicht einzusehen,, auch
die Linge des Kurvenbogens von P, bis P, ist) und deren jeder
beliebige Bogen mittels (1) konstruiert werden kann. Analog
findet man, wenn t© = ¢(s) nicht die Abszisse, sondern den
- Ordinatenwinkel des Kurvenpunktes angibt : |

s .

© ds
' ' f cos’z(s)[tg o (s) —tg ] .
(2) (PoP); = €™ |  (1=1,23).

Es ist also in der Abszissen- und ebenso in der Ordinaten-
winkelgeometrie © = ¢(s) eine natiirliche Gleichung der Kurve.

10. O. Brocu (Bern). — Zur Geometrie der Gaussischen
Zahlenebene. S

Im Zusammenhang mit elektrotechnischen Problemen wurde
der Vortragende zu gebrochenen rationalen Funktionen gefiihrt
von der Form

V=A—|‘—Bv+(3v2 + ” + Mo"
D+ EBo+Fo+ ...+ N"

wobei die konstanten Koeffizienten A, B, G, usw. irgendwelche
- konstante komplexe Zahlen sein konnen, wir deuten das durch
Fettdruck an, wiahrend v ein reeller Parameter ist. V ist
also wieder eine komplexe Zahl, deren geometrischer Ort in
" der Zahlenebene eine Kurve darstellt. Im besonderen fithren
Ausdriicke obiger Form zu Unikursalkurven. — Der Referent
entwickelt einige Ergebnisse seiner Untersuchungen. Um
diese kurz resumieren zu konnen, nummerieren wir die ein-
zelnen Glieder von Zihler und Nenner mit arabischen bezw.
romischen Ziffern. Diese setzen wir in Fettdruck, wenn die
Glieder beliebige komplexe Koeffizientén haben und im ge-
wohnlichem Druck, wenn sie ein gemeinsames Argument auf-
weisen. ' . o PR
Dann bedeutet: (1) = fester Punkt; (2) = Gerade durch
den Ursprung; (1, 2) = Gerade von allgemeiner Lage; (1, I, II)
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= Kreis durch den Ursprung; (1, 2, I, II) = Kreis von allge-
meiner Lage; (1, I, II) = Gerade durch den Ursprung ;
(1, 2, I, II) = Gerade von allgemeiner Lage; (1, 2,3) =
Parabel von allgemeiner Lage; (1,2, 3, I, II) = zirkulare Kubik;
(1, 2, 3,1, IT) = zirkulare Kubik mit Doppelpunkt im Ursprung;
(1, 2, I, II, III) = Kegelschnitt durch den Ursprung ;
1, 2, 3, I, II, III) = Kegelschnitt in allgemeiner Lage;
(1, 2, 3, I, II, III) = bizirkulare Quartik mit Doppelpunkt im
Ursprung; (4, 2,3, I, II, III) = bizirkulare Quartik in allge-
meiner Lage usw. Die Gleichungen der Paskalschnecken und
die Fokalgleichung der Kegelschnitte werden entwickelt. Die
‘Diskussion der Gleichungen fithrt zum Teil auf noch unbe-
kannte Erzeugungsweisen fiir bekannte Kurven und gelegen-
tlich auch zu neuen Kurven. Man erhilt die andern Unikursal-
kurven durch systematische Kombination der Glieder im Zahler
und Nenner. Von der Zahl der Moglichkeiten erhilt man einen
Begriff, wenn man bedenkt, dass schon zwischen den ersten
vier Gliedern in Zihler und Nenner der Grundgleichung 255
verschiedene Kombinationen moglich sind. Diese stellen aber
erst Gruppen von Kurven dar, in denen noch mehr oder weni-
ger zahlreiche Sonderfille moglich sind. So ist z. B.

V_A+i(A+C)+Cv‘~’
o 1 + @

die Gleichung der geraden Strophoide in aligemeiner Lage ein
Sonderfall der allgemeinen Gleichung der zirkularen Kubik.
Gelegentlich ergeben auch verschiedene Kombinationen die-
selbe Kurvenart. (Vergl. oben die Gleichungen der Geraden).

Ueber die Behandlung der allgemeinen Probleme der ana-
lytischen Geometrie (Schnitt-, Tangentenprobleme usw.) zu
referieren, fehlt dem Vortragenden die Zeit. Er verweist auf
eine demnéichst im Druck erscheinende ausfiithrlichere Ver-
offentlichung.

11. W.-H. YouNa. — Les intégrales multiples et les séries de
Fourier.
Le conférencier passe d’abord en revue quelques points
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dans sa méthode de développer la théorie de l’intégration
simple.

1. La méthode Sapplique également quand Uintégration est
ordinaire, ou par rapport d umne fonction d variation bornée,
soit continue, soit discontinue;

2. Elle s applique également quand 1'intégration est multiple;

3. Dans cet exposé il n’est pas nécessaire de recourir a umne
perspective illimitée de suites monotones. Il s’agit seulement de
définir les intégrales des fonctions semi-eontinues de M. Baire,
qui sont précisément les intégrales par exces et par défaut de
M. Darboux, et d’appliquer ensuite le théoréme suivant :

L'intégrale d’'une fonction f(x) est en méme temps la borne
supérieure des intégrales des fonctions semi-conlinue supérieure-
ment plus petites que 1(x), et la borne inférieure des intégrales des
fonctions semi-continues inférieurement plus grandes que f{(x).
(Comptes rendus, t. 162, p. 909).

4. La méthode wexige pas une conmnaissance préalable de
la théorie des ensembles, et en particulier de celle de la
mesure.

L’avantage du point de vue logique est que le traitement est
uniforme. On définit la mesure comme un genre spécial d’inté-
grale, ou la fonction intégrée ne prend que les valeurs O et 1.
En effet, la définition de la mesure en général n’est pas justifiée
sans I’emploi d’un raisonnement identique a celui que le confé-
rencier adopte dans sa théorie de l’'intégration. D’un autre
point de vue, pourquoi définir d’abord, et d’une maniére géo-
métrique les intégrales des fonctions a deux valeurs, pour en
déduire celles des fonctions générales ? Méme les fonctions
continues prennent toutes les valeurs entre leurs bornes supé-
rieures et inférieures. C’est le nombre des limites nécessaires
pour définir et exprimer une fonction qui en détermine la
place dans I’armée des fonctions, et ceci ne dépend guere du
nombre de valeurs qu’elle prend.

Apres ces remarques le conférencier passe & la considération
- de Vintégrale multiple s f(2, ¥, 2,....) dg (z, ¥, 2,....). Ayant
donné la définition, et observé que ’intégration ordinaire est
Pintégration par rapport a la fonction xy, le conférencier mon-
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tre sur une planche des formules fondamentales de 1’intégration
double. Entre ces formules on peut citer le suivant :
Si F(x,.y‘) = [ f(z, y) dx,

/ F,y)dg,y f [Fd]x_‘—f (2, 9) ,

ainsi que le theoreme de la moyenne, type Ossian Bonnet :
St vita, 9) dlay) = gta, ) [7flo, y) day)

olt g(w y) est monotone non-decroissante par rapportad x , 4 y
et & (xz, ).

En conclusion le conférencier parle de D'application de sa
théorie aux Séries de Fourier d’un nombre quelconque de
variables. Il donne les résultats nouveaux pour le cas d’une
variable. Nous n’en citons que le suivant :

La série de Fourier de f(x) converge au point X, st

lm (fir 4 u) -+ flr — )
existe, et
if’(‘)\ d (u(f(.c-%— u) -+ flr — ")>i

est bornée.

- 12. W.-H. Youne et M™ Youne. — La structure des jfonc-
tions a plusieurs variables.

Le sujet de cette conférence est une généralisation pour plu-
sieurs variables du théoréme remarquable donné par M. Young
a la séance de la British Association, & Leiceister, en 1907,
d’apres lequel les limites supérieures et inférieures d’indéter-
mination ¢(x) et §(z) de f(x | k), ou k est positif et s’approche
de zéro, sont les mémes que celles de f(x-h), sauf dans un
ensemble dénombrable de points. On exprime briévement ce
resultat en disant, qu’il y a symétrie a droite et @ gauche, sauf
dans un ensemble dénombrable de points.

~Dans le plan, et dans » dimension, nous trouvons ainsi en .
général qu’une fonction queiconque possede unestructure, pour
ainsi dire, cristalline, en vertu du théoréme suivant :
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Si f(x, y) est une fonction quelconque de (X, y), il y a symétrie
compléte autour du point (X, y) par rapport aux limites supé-
rieures :

(P> Pp—s Pys )
el inférieures
('IP++ » Wy Yy 'P_-)

dindétermination de f(x=£h, y==k), sauf pour des points tout a
Jfait exceptionnels. Ces points gisent sur un ensemble dénombrable
de courbes monotones, et forment en conséquence, un ensemble
simple de mesure nulle.

Pour une fonction de n variables Uensemble exceptionnel est '
toujours de mesure nulle, et gise sur un ensemble dénombrable de
variétés de (n-1) dimensions. |
~ Ce théoréme gagne en intérét lorsqu’on le précise davan-
tage. Si les ¢’s par exemple ne sount pas tous égaux, on peut
distinguer les cas suivants :

I) Un des ¢’s est plus grand que chacun des autres (ensemble
dénombrable) ; :

II) deux des ¢’s sowt égaux et plus grands que chacun des
autres (dénombrable) ;

III) Deux des ’s sont égaux, et les deux autres sont egauw

a) Il y a symétrie latérale

(Pir=9__ @4 P_y) - (-»‘P++ = ‘P‘+_'s‘<P_+ =@ ——)
b) Ilya mangue complet de symétme latérale,

(‘P++ P Py = ‘P_ ) 5

IV) T'rois des ’s eont égaux et plus petits que le dermer .

Les cas IIIb et IV corresporident au cas général de notre théo-
réeme. Le cas IIla est particuliérement intéressant et caracte-
ristique pour notre systéme de coordonnées.

Les points o il y a symétrie a droite et & gauche gisent sur un
ensemble dénombrable de lignes horizontales, et ceux ou. il y a
symétrie au-dessus et au-dessous sur un ensemble dénombrable de
lignes verticales.

La méthode de démonstration dépend du fait que chaque
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fois qu'on a deux ¢’s différant par une quantité plus grande
que ¢, o ¢ est fixe, le point a n’est pas un point limite
de points du méme genre dans le quadrant correspondant au
plus petit des deux ¢’s. Attaché au point x on aura donc un
petit « drapeau» dans ’intérieur duquel, au sens étroit, il n’y
aura pas de points de I’ensemble. Il s’agit de démontrer que
les ensembles de points avec un, deux ou trois « drapeaux » par
point, ont certaines propriétés. En particulier les ensembles d
trots « drapeaux » sont dénombrables.

13. M=e Grace Chisholm Youne. — Quelques remarques sur
les courbes de Cellérier et Weierstrass.

L’année passée, a I’occasion de la conférence de M™¢ Young,
sur les courbes sans tangentes, M. Raoul Pictet a raconté que
M. Cellérier lui avait parlé vers 1860 d’une courbe sans tan-
gentes que celui-ci aurait construite. Un mémoire de Cellérier’
existe sur ce sujet, et a paru apres la mort de l’auteur dans
le Bulletin de M. Darboux (1890). Il reste incertain si la courbe
de Cellérier est antérieure a celle de Weierstrass ou vice versa.
En tout cas les deux semblent étre indépendantes. Apres avoir
parcouru le mémoire du mathématicien genevois, M™ Young
constate avec le plus grand intérét que la courbe de Cellérier
est une courbe sans tangentes dans le sens le plus large. Elle
n’a pas de tangentes, soit ordinaires, soit singuliéres.

L.a méthode de démonstration de Cellérier est tout & fait ori-
ginale et d’une exactitude irréprochable. Comme Weierstrasse,
il n’envisage pas la question du point de vue géométrique, et
la question de tangentes singuliéres n’entre pas dans les recher-
ches ni de I'un ni de 'autre. Mais la méthode de Weierstrass
est moins profonde que celle de Cellérier; cette derniére suffit
sans recherches ultérieures a trancher la question proposée.
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