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I

Sektion für Mathematik
(Zugleich Versammlung der Schweizerischen Mathematischen

Gesellschaft)

Dienstag. 8. August 1916

Einführender : Dr K. Merz
Praesident : Prof. Cailler
SekretärProf. Crelier

1. K. Merz (Ghur). — Historisches zur Steiner7sehen Fläche,
Wie Steiner seine Römerfiäche, über die er nichts veröffentlichte,

entstehen liess, ist mir durch Herrn Prof. Geiser
mitgeteilt worden. Die Methode Steiners wendet Schröter an,
nur nimmt er zur Vereinfachung statt des von Steiner
angenommenen Bündels quadratischer Flächen ein Kegelschnitt-
netz an. Noch etwas vorausgehend hat Kummer die analytische
Behandlung der Fläche begonnen, die er in einer von ihm
aufgestellten Gleichung erkennt. In der folgenden tabellarischen
Uebersicht1 gibt die 1. Kolonne die synthetischen Bearbeitungen

der Fläche an und die 3. Kolonne die analytischen mit
Abbildung auf eine Ebene. In der 2. Kolonne ist die Behandlung

durch quadratische Transformation eingeschaltet. Die
übrige Kolonne gibt den Uebergang zur Theorie der
biquadratischen Formen an, welche durch die Raumkurve 4. Ordg.,
2. Art als Haupttangentenkurve mit der Steiner'schen Fläche
in enger Beziehung sind.

1 Die genaueren Literaturangaben zu dieser Tabelle findet man in :

K. Merz, Parallelflächen und Centrafläche eines besonderen Ellipsoïdes
und die Steinersche Eläche. Beispiel einer quadratischen Transformation,
wobei noch zuzufügen sind :

Laguerre, Ouevres II, p. 281 und Beltrami, Opere III, p. 168. Siehe
auch diese «Verhandlungen » 1914, II., Seite 102.
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Steiner (Rom 1843) f 1863

Schröter 1863

Cremona 1864 Berner 1864

Reye 1867 Reye 1867

Sturm 1871

(Stahl 1885)
Reye 1896

Timerding 1898

[Frégier, Hesse, 1837]
Kummer 1863 Weyerstrass 1863

Cayley 1864
Clebsch 1867 Laguerre 1872

Bertini 1872

Gerbaldi 1881 Beltrami 1879

Röhn 1890

Lacour 1896 Berzolari 1892

Diese historische Entwicklung zeigt, wie das Problem, das

eine geniale geometrische Phantasie erschaut hat, immer mehr
einer formal algebraischen Behandlung anheimfällt, wobei an
Stelle der räumlich anschaulichen Darstellung die allgemeine
rechnerische Methode tritt, so dass schliesslich die geometrische
Erkenntnis als ein intuitiver Einblick in die arithmetischen
Zusammenhänge erscheint, der zugleich als Wegweiser wirkt, in
welcher Richtung fördernde und fruchtbare Ergebnisse zu erzielen

sind.

2. L. Crelier (Berne-Bienne). — Puissance d'une droite par
rapport à un cercle.

I. Puissance. — Théorème: Etant donné tous les couples de

tangentes à un cercle que Von peut mener par les divers points
d'une droite quelconque du plan du cercle, le produit des tangentes
des demis angles de la première tangente et du prolongement de

la seconde tangente de chaque couple avec la droite donnée est

constant.
Cette constante s'appellera la puissance de la droite par

rapport au cercle. Nous aurons :

a n — a' _ jt — ß' r + »
tg - tg —;— tg ß tg —2-^- —| const

II. Faisceaux. — Nous appellerons faisceaux de cercle
Fs ou F4 l'ensemble des cercles admettant un même premier
centre de similitude extérieur ou intérieur par rapport à tous
les cercles. Nous aurons :

a) Etant donné deux faisceaux F^ et F^ de même centre

radical principal S les points de coupe des tangentes extérieures
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communes de deux cercles quelconques des faisceaux, pris l'un
dans et l'autre dans FÎ2\ sont tous sur une même droite

O Ö

appelée l'axe radical principal des faisceaux. Les points de

coupe des tangentes intérieures communes des mêmes cercles sont
tous sur une autre droite appelée l'axe radical secondaire des

deux faisceaux.
b) Le même théorème subsiste pour deux faisceaux F(41} et F(4\
III. Involutions. — Considérons maintenant un point

quelconque P du plan d'un faisceau Fg ou F complété par le

faisceau conjugué F3 ou F4 et par ce point menons deux

tangentes à chaque cercle du faisceau considéré. Soient tL et t2

les deux tangentes à l'un quelconque des cercles. La puissance
absolue de la droite PS a, S étant le sommet du faisceau,

sera la même par rapport à tous les cercles du faisceau F3 et la
même par rapport à tous les cercles du faisceau complémentaire

F3.

Si nous posons : angle (t1 a) a et angle (t2 a) a nous

aurons :

^ _ a jt — a'
Puissance de a tg - tg —-—

Ji Ji

Avec les deux tangentes d'un autre quelconque des cercles du
faisceau nous aurons également :

T» • j a 71 — a' ß JT — ßrPuissance de a — tg - tg ——- tg tg ——- const
À À 2 ' À

Les bissectrices des angles compris entre a et t± ou a et le

prolongement de t2 donnent lieu à un produit de tangentes trigo-
nométriques constant; ces bissectrices forment une involution.
D'oü nous tirons le théorème suivant :

Ihéorème: A tout point P du plan d'un faisceau Fg ou F4 de

centre radical principal S correspond une involution de rayons.
Les rayons conjugués sont les bissectrices des angles compris
entre l'axe PS=a et la première tangente menée de. P à chaque
cercle du faisceau, puis entre a et leprolongement de la deuxième

tangente menée de P au même cercle. Les rayons doubles sont

toujours réels dans le plan d'un faisceau F4 et dans V angle inté-
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rieur du plan d'unfaisceau F3. Dans son angle extérieur ils sont

imaginaires.
Les rayons doubles réels sont les bissectrices des angles compris

entre l'axe a et les tangentes des deux cercles du faisceau passant

par le point considéré.

3. 0. Spiess (Basel). — Schliessungsprobleme bei konvexen
Kurven.

Zu einer beliebigen geschlossenen Kurve C sei eine
Konstruktion K gegeben, die jedem Punkt A der Kurve einen
andern A± zuordnet und zwar soll gelten :

1. A und At bestimmen einander umkehrbar eindeutig.
2. Durchläuft A die Kurve in bestimmtem Sinn, so durchläuft

A± dieselbe im Gegensinn.
Die Konstruktion K « schliesst », wenn AX=A ist

(Fixpunkte); sie schliesst nach zweimaliger Ausführung, wenn
A2^=A ist, d. h. wenn sich A und At wechselseitig entsprechen
(Wechselpunkte). Das Schliessungsproblem besteht darin, die

Fixpunkte und Wechselpunkte zu bestimmen. Man erkennt
folgendes :

I. Es gibt immer genau zwei Fixpunkte; sie trennen je
zwei entsprechende Punkte A und A±.

II. Wechselpunkte kann es geben in endlicher oder unend¬

licher Zahl.
III. Ist A ein beliebiger Punkt von C (weder Fix- noch

Wechselpunkt), so sind die durch Wiederholung von K
entstehenden Punkte A, A19 A29 A39... alle
verschieden und nähern sich alternativ den Grenzpunkten

lim A2k a lim AÄfc+1 ax
k=rao k= ac

Ist at 4= a, so sind a, Wechselpunkte; ist a, so

ist a Fixpunkt. In Praxi können daher diese Punkte durch
endliche Wiederholung von K gefunden werden. Derselbe
Schluss gilt für die aus der inversen Konstruktion K~x
entspringende Punktreihe A, A_± A_2...

Ist C konvex, so lassen sich solche Konstruktionen K in
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mannigfacher Weise angeben. Man nehme Punkte
Pn von denen eine ungerade Anzahl ausserhalb liegen, ziehe
APX bis zum zweiten Schnittpunkt AwmitC, A{,) Pt bis A{2>

etc., so hat der Punkt Am At zu A die geforderten
Beziehungen. Man erhält so z. B. den Satz:

«Jeder konvexen Kurve (ohne Ecken) lassen sich zwei
ungerade Polygone bei gegebenen Richtungen der Seiten
einschreiben — speziell z. B. unendlich viele Paare regelmässiger
Dreiecke ».

Die Punkte P, lassen sich ersetzen durch konvexe Kurven T,,&
« k

an welche Tangenten gezogen werden. Ferner lassen sich diese
Konstruktionen dual umformen.

4. C. Cailler (Genève). — Sur la Géométrie réglée imaginaire.
Dans ma communication de Genève, j'ai entretenu la section

mathématique de la Géométrie des corps solides. De nouvelles
recherches dont j'expose les résultats, avec tous les détails
nécessaires, dans un mémoire actuellement en cours de publication

dans les Archives de Genève, m'ont amené récemment à

développer, sur l'ensemble du sujet, un point de vue inédit.
Je désire en dire un mot aujourd'hui.

D'après cette nouvelle théorie, la Géométrie des corps
solides se confond avec la Stéréométrie ordinaire, quand on
prolonge celle-ci dans le domaine complexe. La première
géométrie est simplement l'aspect réel de la Géométrie ponctuelle
imaginaire.

Le corps solide est le pendant réel du point imaginaire.
Le pendant réel du plan imaginaire est la figure qu'on obtient

en faisant chavirer un corps solide fixe autour de toutes les
droites de l'espace; j'appelle vrilloïde l'ensemble ainsi
engendré.

Enfin si on fait tourner et glisser un corps solide le long'd'un
axe fixe, on décrit une vrille, c'est l'apparence réelle de la
droite imaginaire. / \ '

Les propriétés manifestées par lé corps solide, le vrilloïde, et
la vrille sont identiques à celles du point, du plan, et de la
droite de l'espace ordinaire, sauf en ceci que, dans les relations

7'
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métriques, des quantités complexes se substituent aux quantités

réelles. La place me manque pour justifier ici cette assertion.

Je veux seulement entrer dans quelques détails touchant
la Géométrie des vrilles, laquelle représente pour la nouvelle
théorie, ce qu'est la Géométrie réglée par rapport h l'espace
ordinaire.

L'espace réglé est de la quatrième dimension, l'espace vrillé
de la huitième. Pour transformer les unes dans les autres
toutes les vrilles de l'espace il faut disposer des °o12 mouvements

complexes de l'espace imaginaire; les mouvements réels

ne transforment une vrille donnée qu'en oo4 vrilles nouvelles
seulement.

Toute droite possède 6 coordonnées pltickériennes l, m, n, p,

q, r liées entre elles par la relation

Ip 4- mq + nr 0

Toute vrille possède de même 12 coordonnées pltickériennes
V, 1", mm", n', n", p, p", q, qr, r" qui satisfont trois relations
homogènes

VI" + m'm" + n'n" — 0

l'pf — V'p" 4- m'q! — m"q" + n'r' — n"r" 0

Vp" + l"p' + m'q" + m"q' + n'r" + n"r' 0

lesquelles restent invariantes quand on exécute les oo12

mouvements complexes.
En Géométrie réglée, la forme fondamentale est le complexe

linéaire de Pliicker et Chasles, dont l'équation dépend
linéairement des coordonnées l, m, n, p, q, r.

De même, dans l'espace vrillé, la forme fondamentale, qui
fait symétrie au complexe linéaire, est une heptasérie, d'équation

a"V. + aï" + b"m' + I'm" + c'V + c'n"
d"p' 4- d'p" 4- e"q' 4- e'q" 4- fnrf 4- f'r" 0

L'interprétation géométrique de la condition précédente est

analogue à celle du complexe en Géométrie réglée. Elle est
seulement plus compliquée. Au lieu de la distance et de l'angle qui
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mesurent l'intervalle de deux droites quelconques, une nouvelle
notion s'y rencontre: celle des deux distances conjuguées qui
expriment, d'une manière analogue, l'intervalle entre deux
vrilles.

J'ajoute que si on cherche à déterminer dans l'heptasérie les

vrilles qui renferment un corps donné à volonté, les axes de ces

vrilles décrivent un complexe linéaire T, lequel est ainsi
associé d'une part à l'heptasérie, de l'autre au corps donné.

Il existe seulement o©4 complexes T de cette espèce ; la
construction de cette famille décomplexes, du second ordre, permet
de définir géométriquement toutes les vrilles qui forment
l'heptasérie linéaire fondamentale.

5. Prof. Dr. M. Grossmann (Zurich). — Hinweis auf den

Abschluss der allgemeinen Helativitœtstheorie.
Albert Einstein hat die vor mehreren Jahren begonnene

Verallgemeinerung der von ihm, Lorentz und Minkowski
geschaffenen Relativitätstheorie nunmehr zum völlig befriedigenden

Abschluss gebracht. Es ergibt sich die allgemeine Kovarianz

der Gleichungen, die den Ablauf der physikalischen
Vorgänge beschreiben, wie auch der Differentialgleichungen,
die das Gravitationsfeld bestimmen. Die Koordinaten von Raum
und Zeit verlieren damit den letzten Rest anschaulicher Bedeutung

und werden lediglich zu Parametern, die zur Punktbe-
stimmung in der vierdimensionalen Mannigfaltigkeit dienen,
deren Differentialgeometrie die physikalischen Vorgänge
darstellt. Das Ergebnis tritt ins hellste Licht wenn es den
weitausschauenden Ideen von Riemann, welche dieser in seinem

Habilitationsvortrage (1854) entwickelte, gegenüber gestellt wird.
(Vgl. die ausführliche Darstellung der Theorie durch
Einstein Die Grundlage der allgemeinen Relativitätstheorie, Joh.
Amb. Barth).

6. H. Weyl (Zürich). — Das Problem der Analysis situs
In der Analysis situs, welche diejenigen Eigenschaften

kontinuierlicher Mannigfaltigkeiten untersucht, die ihnen
unabhängig von jeder Massbestimmung zukommen, kann man gegen-
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wärtig zwei Betrachtungsweisen unterscheiden, die
mengentheoretische (vergl. namentlich die Arbeiten Brouwers) und die
kombinatorische (Ais in dem Enzyklopädie-Artikel von Dehn
und Heegaard die herrschende ist). Um die Bedeutung jeder
dieser beiden Untersuchungsrichtungen und ihr gegenseitiges
Verhältnis zu illustrieren, knüpft der Vortragende an dasjenige
spezielle Problem der Analysis situs an, das in Riemanns Theorie
der algebraischen Funktionen die entscheidende Rolle spielt :

die Bestimmung der Zusammenhangszahl zweidimensionaler
geschlossener Mannigfaltigkeiten.

Durch Zerlegung einer solchen Mannigfaltigkeit in endlich-
viele « Elementarflächenstücke y> entsteht aus ihr ein Polyeder
(Möbius) ; zur weiteren Vereinfachung mag jedes Polygon in
Dreiecke zerlegt werden. Nachdem man deren Ecken durch
irgendwelche Symbole, z. B. Buchstaben, gekennzeichnet hat,
stellt man in einer Tabelle die sämtlichen Dreiecke, aus denen
die triangulierte Fläche besteht, zusammen; jedes Dreieck ist
dabei durch Angabe seiner drei Ecken zu charakterisieren. So

entsteht das kombinatorische « Schema » der Fläche. Zwei
Schemata entspringen, wie sich plausibel machen lässt, durch
verschiedene Triangulierung aus derselben Fläche, wenn sie
« homöomorph » sind, d. h. durch « Unterteilung » in ein-
und dasselbe dritte Schema übergeführt werden können. Die
Homöomorphie ist einereinkombinatorischeBeziehungzwischen
den beiden Schemata. Die wichtigste Schema-Invariante im
Sinne der Homöomorphie ist die Zusammenhangszahl
k — e — d -j- 3 (Je Anzahl der Kanten, e der Ecken, d der
Dreiecke); für «einfach zusammenhängende» Flächen ist sie

1 (Eulers Polyedersatz).
Um aber streng zu begründen, dass die so gewonnene

Zusammenhangszahl eine Analysis-situs-Invariante der ursprünglich

gegebenen zweidimensionalen Mannigfaltigkeit ist, sind

ganz anders geartete, auf den Begriöen der Mengenlehre
basierende Betrachtungen nötig. Zunächst ist dazu eine, exakte
Festlegung des Begriffs der zweidimensionalen Mannigfaltigkeit
erforderlich. Um dann eine von jeder Triangulation unabhängige
Definition der Zusammengszahl zu gewinnen, kann man einen
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Weg gehen, der innerhalb der Analysis situs zu einer von
Weierstrass auf funktionentheoretischem Felde, in der Theorie
der Abelschen Integrale, benutzten Beweisführung analog ist :

aus dem Verhalten der Integrale auf die Natur und die
Beziehungen der Integrationswege zu schliessen. Dies wurde im
Vortrag genauer ausgeführt.

7. M. L.-G. Du Pasquier (Neuçhâtel). — Sur l'arithmétique
généralisée.

Soit une infinité de complexes à n coordonnées tels que
(aQ, at, &n),oùa0, av an, représentent des nombres réels.
On érige une arithmétique et une algèbre généralisées portant
sur ces éléments en définissant, sur ces complexes, Végalité et
deux opérations qu'on appellera addition et multiplication, par
analogie avec l'arithmétique ordinaire. Ces trois définitions
initiales sont arbitraires, ce qui n'empêche pas les opérations
qui en résultent d'être soumises à certaines lois fondamentales.
L'orateur cite les dix lois fondamentales qui caractérisent
l'arithmétique et l'algèbre classiques et rappelle le théorème
établissant qu'une nouvelle extension du domaine des nombres,
au delà des nombres complexes ordinaires, n'est possible qu'au
prix de l'abandon d'une ou de plusieurs de ces lois fondamentales.

Le développement pris jusqu'ici par l'analyse mathématique

montre que les lois d'associativité et de distributivité sont
des plus importantes. En maintenant ces lois et laissant tomber
seulement la commutativité de la multiplication et l'exclusion
des diviseurs de zéro, on arrive aux systèmes des polytettarions
que l'orateur définit. Posant entre les coordonnées des tetta-
rions certaines relations appropriées, on obtient d'autres
systèmes de nombres hypercomplexes, par exemple les quaternions,

comme cas particuliers de certaines classes de polytettarions.

Il semblé que les tettarions comprennent, comme sous-
systèmes, tous les systèmes possibles de nombres hypercomplexes
à multiplication associative et distributive.

Parmi les connexions remarquables entre certaines lois
fondamentales régissant les opérations de l'algèbre généralisée et
les propriétés arithmétiques des domaines où ces lois sont vala-
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bles, citons cette curieuse relation : soit un domaine de nombres

kypercomplexes entiers, comprenant des complexes
irréductibles, ou premiers, et a un complexe entier non irréductible
de ce domaine. On pourra mettre a sous forme d'un produit de

facteurs irréductibles, en imposant à ces derniers de se suivre
dans un ordre tel que leurs normes suivent un ordre fixé
arbitrairement pour les facteurs premiers de la norme N(a) du
complexe entier donné a. Cette décomposition de a en facteurs
premiers est plurivoque ou unique, suivant que la multiplication,

dans le système envisagé, est commutative ou ne l'est pas.

8. Georg Pölya. — Ein Gegenstück des Liouville'sehen
Approximationssatzes in der Theorie der Differentialgleichungen.

Es sei a eine irrationale Zahl und es sei unter allen rationalen
Zahlen, deren Nenner n nicht übersteigt, die Zahl r der7 O 7 n
Zahl a am nächsten gelegen. Der Liouville'sehe Satz besagt,
dass die für jede Wahl von a konvergente Folge

(1) Vi » r2 r3 rn,

nicht beliebig schnell konvergieren kann, wenn a einer
algebraischen Gleichung mit rationalen Koeffizienten genügt.

Analog, wie die Folge (1) der Zahl a, ist jeder ganzen
Funktion fipc) ihre gegen sie konvergierende Taylor'sche Reihe
zugeordnet. Genügt f(x) einer algebraischen Differentialgleichung

mit rationalen Koeffizienten, so kann die Taylorreihe
von f{x) nicht beliebig schnell konvergieren. Da bei ganzen
Funktionen die Taylorreihe um so schneller konvergiert, je
langsamer der absolute Betrag der Funktion anwächst, kann
der Satz auch so ausgesprochen werden : Genügt eine ganze
Funktion einer algebraischen Differentialgleichung, so kanu
ihr absoluter Betrag nicht beliebig langsam wachsen.

Diesen Satz spreche ich nur vermutungsweise aus, oder
besser gesagt, ich stelle seinen Beweis als Problem hin.
Wichtige Stücke davon können jedoch wirklich bewiesen
werden. Ich bin in dieser Richtung, mich Arbeiten von
Hurwitz und Perron anschliessend, zu verschiedenen Resul-
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taten gelangt. Einige ganz bestimmte Beispiele: die ganze
Funktion von x

<30

2*% x
n—O

(die Hälfte einer Thetareihe) genügt keiner algebraischen
Differentialgleichung, wenn qrational. — Die Differentialgleichung

ym -.m—1
77i—i a y tw—2 ay ay ~x —£ + a x ^ + + a < ir ~ 2/ 0

*rm 1 d/1"1 m_1 dx

ist irreduzibel, in dem Sinne, dass kein Integral von ihr einer
homogenen linearen Differentialgleichung mit rationalen
Koeffizienten genügt, deren Ordnung < m ist.

9. Dr. H. Berliner (Bern). — Ueber zwei projektive natürliche

Geometrien.

Die beiden mittelst der Abszissen und Ordinatenwinkel-
systeme entstehenden projektiven Massgeometrien (s. Berliner,
Verhandlungen der Schweizerischen Naturforschenden Gesellschaft,

1915, Teil II, page 109) führen zu zwei natürlichen
Geometrien. Definieren wir nämlich die Bogenlänge einer
Kurve als den Grenzwert der Länge (im Sinne jener
Massgeometrien) eines dem Kurvenbogen eingeschriebenen Polygons,
dessen Seiten nach 0 streben, so wird die Abszisse und ebenso

der Ordinatemvinkel eines Punktes auf der Kurve (s. a. a. 0.)
eine Funktion der Bogenlänge sein. Die Kenntnis dieser
Funktion genügt nun, um die Gestalt (im Sinne jener
Geometrien) der Kurve, nicht aber um ihre Lage in der Ebene zu
bestimmen. In der Tat setzt man A(BCQP) (QP)2 : (QP)3,
B(CAQP) (QP)3 : (QP)t, C(ABQP) « (QP), : (QP)f, so ist
(QP)i (QPA-^PJ; • • • (P.„_iP„)i(P„P)i für =1,2,3; ferner

y — Zi
ist (QP)j- wo x, ydie Abszissen von Q, P in dem

x zt
QP zugeordneten Systeme bedeuten. Ist also eine stetige
Funktion t s(.s) gegeben, und zieht man durch einen Punkt
P0 die Gerade PoP,, deren Abszisse im Systeme von P0<p(s„)
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ist, dann durch P, die Gerade P,P2, deren Abszisse im Systeme
von Pt® (st) ist, wenn die Entfernung P0P, st — s0 (wenn
also <p(s0) -f- s, — s0 die Abszisse von P, im Systeme von P0 P,

ist), usw., endlich durch Pn l die Gerade deren
Abszisse im Systeme von Pn-1<p 'st> und ist P„_1P„

*n — Sn-1> S0 ist

(P0P„)( (PoP,). • • • (P„_!P„),

_
y(»o) + a. - gp - J, y{an-x) + Sn - sn_1 - zt

V>(*o) -*i V(s„-i) -
X=n—1

As-

LI 1 +
<p(s-j

X—0

Lässt man nun sämtliche As. nach 0 streben und

dementsprechend ihre Anzahl oo werden, so dass 2^ « — s0, so

wird

*

(PoPJ, Um# JI (l +
4s

q>(s) -
U>

V A' r dt

** •(»)—*,- J r«"*t
lim è s° es° (i 1, 2, 3)

sein ; da ex1̂ -j- x Ä ex~x* für | <CV2 — 1 (es ist nämlich

<

also

lieh e*-*1 1 + x - j [2 - (1 - wo 0 < 0 < 1),

N SPP " ^ V^ÖP

.*o

und

lim V o
4,-0 -Ä4 \<p(s)-V

ist. Die Eckpunkte eines, in angegebener Weise konstruierten
Polygons, dessen Seiten nach 0 streben, erfüllen also eine
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durch P0 gehende Kurve, für die die Abszisse t eines jeden
ihrer Punkte P, durch x 'x(s) gegeben ist (wobei s — s0 die
Länge des Polygons und mithin, wie leicht einzusehen, auch
die Länge des Kurvenbogens von P0 bis P8 ist) und deren jeder
beliebige Bogen mittels (1) konstruiert werden kann. Analog
findet man, wenn x= <p(s) nicht die Abszisse, sondern den

Ordinatenwinkel des Kurvenpunktes angibt :

J —<B*.l
(2) (PoP,)( «.*• (i=l, 2, 3).

Es ist also in der Abszissen- und ebenso in der Ordinaten-
winkelgeometrie z <p(s) eine natürliche Gleichung der Kurve.

10. 0. Bloch (Bern). — Zur Geometrie der Gaussischen

Zahlenebene.

Im Zusammenhang mit elektrotechnischen Problemen wurde
der Vortragende zu gebrochenen rationalen Funktionen geführt
von der Form

v ^ A -f By + (V + 4- Mi/"

D Ev + IV H- +

wobei die konstanten Koeffizienten A, B, C, usw. irgendwelche
konstante komplexe Zahlen sein können, wir deuten das durch
Fettdruck an, während v ein reeller Parameter ist. V ist
also wieder eine komplexe Zahl* deren geometrischer Ort in
der Zahlenebene eine Kurve darstellt. Im besonderen führen
Ausdrücke obiger Form zu Unikursalkurven. — Der Beferent
entwickelt einige Ergebnisse seiner Untersuchungen. Um
diese kurz resümieren zu können, nummerieren wir die
einzelnen Glieder von Zähler und Nenner mit arabischenbezw.
römischen Ziffern. Diese setzen wir in Fettdruck, wenn die
Glieder beliebige komplexe Koeffizienten haben und im
gewöhnlichem Druck, wenn sie ein gemeinsames Argument
aufweisen.

Dann bedeutet: (1) fester Punkt; (2) Gerade durch
denUrsprung; (1,2) Gerade von allgemeiner Lage; (1, I, II)
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Kreis durch den Ursprung; (1, 2,1, II) Kreis von
allgemeiner Lage ; (1, I, II) Gerade durch den Ursprung ;

(1, 2, I, II) Gerade von allgemeiner Lage; (1, 2,3)
Parabel von allgemeiner Lage ; (1,2,3,1, II) zirkuläre Kubik ;

(1, 2, 3,1, II) zirkuläre Kubik mit Doppelpunkt im Ursprung;
(1. 2, I, II, III) Kegelschnitt durch den Ursprung ;

(1, 2, 3, I, II, III) Kegelschnitt in allgemeiner Lage;
(1,2, 3,1, II, III) bizirkulare Quartik mit Doppelpunkt im
Ursprung; (1, 2, 3,1, II, III) bizirkulare Quartik in
allgemeiner Lage usw. Die Gleichungen der Paskaischnecken und
die Fokalgleichung der Kegelschnitte werden entwickelt. Die
Diskussion der Gleichungen führt zum Teil auf noch
unbekannte Erzeugungsweisen für bekannte Kurven und gelegentlich

auch zu neuen Kurven. Man erhält die andern Unikursal-
kurven durch systematische Kombination der Glieder im Zähler
und Nenner. Von der Zahl der Möglichkeiten erhält man einen

Begriff, wenn man bedenkt, dass schon zwischen den ersten
vier Gliedern in Zähler und Nenner der Grundgleichung 255

verschiedene Kombinationen möglich sind. Diese stellen aber
erst Gruppen von Kurven dar, in denen noch mehr oder weniger

zahlreiche Sonderfälle möglich sind. So ist z. B.

Y
A -f- t(A -{- C) -f-

1 + iv

die Gleichung der geraden Strophoide in allgemeiner Lage ein
Sonderfall der allgemeinen Gleichung der zirkulären Kubik.
Gelegentlich ergeben auch verschiedene Kombinationen
dieselbe Kurvenart. (Vergl. oben die Gleichungen der Geraden).

Ueber die Behandlung der allgemeinen Probleme der
analytischen Geometrie (Schnitt-, Tangentenprobleme usw.) zu
referieren, fehlt dem Vortragenden die Zeit. Er verweist auf
eine demnächst im Druck erscheinende ausführlichere
Veröffentlichung.

11. W.-H. Young. — Les intégrales multiples et les séries de

Fourier.
Le conférencier passe d'abord en revue quelques points
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dans sa méthode de développer la théorie de l'intégration
simple.

1. La méthode s'applique également quand Vintégration est

ordinaire, ou par rapport à une fonction à variation bornée,
soit continue, soit discontinue;

2. Elle s'applique également quand Vintégration est multiple;
3. Dans cet exposé il n'est pas nécessaire de recourir à une

perspective illimitée de suites monotones. Il s'agit seulement de

définir les intégrales des fonctions semi-continues de M. Baire,
qui sont précisément les intégrales par excès et par défaut de

M. Darboux, et d'appliquer ensuite le théorème suivant :

L'intégrale d'une fonction f(x) est en même temps la borne

supérieure des intégrales des fonctions semi-continue supérieurement

plus petites que f(x), et la borne inférieure des intégrales des

fonctions semi-continues inférieurement plus grandes que f(x).
(Comptes rendus, t. 162. p. 909).

4. La méthode riexige pas une connaissance préalable de

la théorie des ensembles, et en particulier de celle de la
mesure.

L'avantage du point de vue logique est que le traitement est
uniforme. On définit la mesure comme un genre spécial d'intégrale,

où la fonction intégrée ne prend que les valeurs 0 et 1.

En effet, la définition de la mesure en général n'est pas justifiée
sans l'emploi d'un raisonnement identique à celui que le
conférencier adopte dans sa théorie de l'intégration. D'un autre
point de vue, pourquoi définir d'abord, et d'une manière
géométrique les intégrales des fonctions à deux valeurs, pour en
déduire celles des fonctions générales Même les fonctions
continues prennent toutes les valeurs entre leurs bornes
supérieures et inférieures. C'est le nombre des limites nécessaires

pour définir et exprimer une fonction qui en détermine la
place dans l'armée des fonctions, et ceci ne dépend guère du
nombre de valeurs qu'elle prend.

Après ces remarques le conférencier passe à la considération
de l'intégrale multiple / f(x, y, £,....) dg (,x, y, £,....). Ayant
donné la définition, et observé que l'intégration ordinaire est
l'intégration par rapport à la fonction xy, le conférencier mon-



— 108 —

tré sur une planche des formules fondamentales de l'intégration
double. Entre ces formules on peut citer le suivant :

Si Y(x,y) fj(x, y) dx,

fF(*ri y) àg(x,y)=/" [F ~f j~ y)
0,0 J y—0 L J;rxQ •* 0 (XX

ainsi que le théorème de la moyenne, type Ossian Bonnet :

/ '
f{v, y)g(x,y) d{xy) g(y) d(xy)

0,0 J X,Y

°ù V) est monotone non-decroissante par rapport à x à y
et à (a, y).

En conclusion le conférencier parle de l'application de sa

théorie aux Séries de Fourier d'un nombre quelconque de

variables. Il donne les résultats. nouveaux pour le cas d'une
variable. Nous n'en citons que le suivant :

La série de Fourier de f(x) converge au point x, si

i^o (ft'T + u0

existe, et

lJU0\d(u(f(x + u) + f(x-n))
est bornée.

12. W.-H. Young et Mme Young. — La structure des fonctions

à plusieurs variables.
Le sujet de cette conférence est une généralisation pour

plusieurs variables du théorème remarquable donné par M. Young
à la séance de la British Association, à Leiceister, en 1907,

d'après lequel les limites supérieures et inférieures d'indétermination

f(x) et §(x) def(x -f- h), oh h est positif et s'approche
de zéro, sont les mêmes que celles de f(x-h), sauf dans un
ensemble dénombrable de points. On exprime brièvement ce

résultat en disant, qu'ii y a symétrie à droite et à gauche, sauf
dans un ensemble dénombrable de points.

Dans le plan, et dans n dimension, nous trouvons ainsi en

général qu'une fonction quelconque possède une structure, pour
ainsi dire, cristalline, en vertu du théorème suivant :
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Si f(x, y) est unefonction quelconque de (x, y), il y a symétrie
complète autour du point (x, y) par rapport aux limites
supérieures

(ç>+4-, <P+-> <P-+, <P

et inférieures

W+-> V_J
d'indétermination de f(x±h, y±k), sauf pour des points tout à

fait exceptionnels. Ces points gisent sur un ensemble dénombrable

de courbes monotones, et forment en conséquence, un ensemble

simple de mesure nulle.
Pour une fonction de n variables Vensemble exceptionnel est

toujours de mesure nulle, et gise sur un ensemble dénombrable de

variétés de (n-1) dimensions.
Ce théorème gagne en intérêt lorsqu'on le précise davantage.

Si les <p's par exemple, ne sont pas tous égaux, on peut
distinguer les cas suivants :

I) TJn des y's est plus grand que chacun des autres (ensemble

dénombrable)

II) deux des cp's sont égaux et plus grands que chacun des

autres (dénombrable);

III) Deux des s sont égaux, et les deux autres sont égaux »

a) Il y a symétrie latérale

(ç>++ <P <P + -» V-+) (?>++ <p — 5

b) Il y a manque complet de symétrie latérale,

(v>++ <p <p+- <P-+) î

IV) Trois des <p's sont égaux et plus petits que le dernier.
Les cas III& et IV correspondent au cas général de notre

théorème. Le cas Illa est particulièrement intéressant et caractéristique

pour notre système de coordonnées.

Les points où il y a symétrie à droite et à gauche gisent sur un
ensemble dénombrable de lignes horizontales, et ceux où il y a

symétrie au-dessus et au-dessous sur un ensemble dénombrable de

lignes verticales.

La méthode de démonstration dépend du fait que chaque
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fois qu'on a deux <p's différant par une quantité plus grande

que c, où c est fixe, le point x n'est pas un point limite
de points du même genre dans le quadrant correspondant au

plus petit des deux <p's. Attaché au point x on aura donc un
petit « drapeau » dans l'intérieur duquel, au sens étroit, il n'y
aura pas de points de l'ensemble. Il s'agit de démontrer que
les ensembles de points avec un, deux ou trois « drapeaux » par
point, ont certaines propriétés. En particulier les ensembles à

trois « drapeaux » sont dénombrables.

13. Mme Grace Chisholm Young. — Quelques remarques sur
les courbes de Cellérier et Weierstrass.

L'année passée, à l'occasion de la conférence de Mme Young,
sur les courbes sans tangentes, M. Eaoul Pictet a raconté que
M. Cellérier lui avait parlé vers 1860 d'une courbe sans

tangentes que celui-ci aurait construite. Un mémoire de Cellérier
existe sur ce sujet, et a paru après la mort de l'auteur dans
le Bulletin de M. Darboux (1890). Il reste incertain si la courbe
de Cellérier est antérieure à celle de Weierstrass ou vice versa.
En tout cas les deux semblent être indépendantes. Après avoir

parcouru le mémoire du mathématicien genevois, Mme Young
constate avec le plus grand intérêt que la courbe de Cellérier
est une courbe sans tangentes dans le sens le plus large. Elle
n'a pas de tangentes, soit ordinaires, soit singulières.

La méthode de démonstration de Cellérier est tout à fait
originale et d'une exactitude irréprochable. Comme Weierstrasse,
il n'envisage pas la question du point de vue géométrique, et
la question de tangentes singulières n'entre pas dans les recherches

ni de l'un ni de l'autre. Mais la méthode de Weierstrass
est moins profonde que celle de Cellérier ; cette dernière suffit
sans recherches ultérieures à trancher la question proposée.
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