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I

Mathématiques et Astronomie

(et Séance de la Société Mathématique Suisse)

Mardi 14 septembre 1915

Introducteur : M. le Prof. Dr H. Fehr.
Présidents : MM. les Prof. Drs G. Cailler et H. Fehr.
Secrétaire : M. le Prof. Dr M. Plancherel.

1. En ouvrant la première séance, M. le professeur H. Fehr,
président, a rappelé qu'au moment de la fondation de la
Société Helvétique, la chaire de mathémathique de l'ancienne
Académie était occupée par le géomètre Simon L'Huillier, puis
il a indiqué, à grands traits, le rôle joué par les mathématiciens
suisses du XIXe siècle. Les principaux d'entre eux sont : Louis
Bertrand (de Genève), 1731-1812; Simon L'Huillier, 1750-1840;
Robert Argand, 1768-1822; Jacob Steiner, 1796-1863, Charles

Sturm, 1803-1855; Ludwig Schläfli, 1814-1895; Gabriel Oltra-
mare, 1816-1906; Ch. Cellérier, 1818-1889; J. Amsler-Laffon,
1823-1912; Georg Sidler, 1831-1907; Charles Ruchonnet, 1832-

1914; Hermann Kinkelin, 1841-1913; Yon derMühll. 1841-1912;
Gustave Cellérier, 1855-1914; Walter Ritz, 1878-1909.

2. M. le professeur L.-G. DuPASQuiER(Neuchâtel). — Sur les

systbnes de nombres complexes.
Soit un système de nombres complexes comprenant une infinité

de « complexes »

l...r
X #!<?! -f x2e2 + + xrer 2] XKei >

où les xt, xs,xrsontr nombres réels quelconques dits
coordonnées du complexe x, et les elt eî( ex, erdes symboles
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dits les unités relatives du système de nombre envisagé. Supposons

définies, dans ce système de nombres complexes, les
opérations rationnelles de l'addition et de la multiplication, et
leurs opérations inverses : la soustraction et la division. On
sait qu'alors tout produit eteic de deux unités relatives
quelconques s'exprime en fonction linéaire, à coefficients réels, des

mêmes unités relatives eK.

Appelons complexe rationnel un tel nombre complexe dont
toutes les r coordonnées x,K sont des nombres ratiounels
quelconques, entiers ou fractionnaires. L'ensemble de tous les

complexes rationnels forme alors un « domaine de rationalité » ou
« corps de nombres complexes », c'est-à-dire que ces complexes
rationnels se reproduisent par les 4 opérations de l'addition,
de la soustraction, de la multiplication et de la division; en
d'autres termes : la somme, la différence, le produit et le
quotient (pour autant que la division est définie et possible) de

deux complexes rationnels quelconques est toujours de nouveau

un complexe rationnel.
Pour faire l'arithmétique de ce corps de nombres, c'est-à-

dire pour ériger une théorie des nombres dans ce domaine de

rationalité, il faut tout d'abord le départager en deux, mettant
d'une part les complexes rationnels « entiers » et, d'autre part,
les complexes rationnels « non entiers ».

La définition suivante se présente le plus naturellement à

l'esprit :

Un complexe rationnel

X

est dit entier, si toutes ses r coordonnées sont des nombres
entiers ordinaires; ce complexe# sera dit non entier, si l'une
au moins de ses r coordonnées est un nombre fractionnaire.

Prenant pour base cette définition et envisageant les

complexes entiers ainsi définis comme éléments (c'est-à-dire comme

l'analogue des nombres entiers dans l'arithmétique classique),
on peut ériger toute une arithmétique du système de nombres

complexes considéré. Cette arithmétique généralisée présente
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beaucoup d'analogies avec l'arithmétique ordinaire dont les

éléments sont les nombres rationnels entiers. On retrouve en

général, dans cette arithmétique des complexes, l'équivalent
du nombre premier, et la possibilité de décomposer un complexe
entier quelconque en facteurs premiers; on y retrouve aussi les

diviseurs communs de 2 complexes entiers donnés ou, plus
généralement, de n complexes entiers donnés; on y retrouve
encore un algorithme analogue à celui d'Euclide, permettant
de déterminer, par un nombre fini d'opérations rationnelles,,
le plus grand commun diviseur de plusieurs complexes entiers
donnés ; on y retrouve une théorie des congruences, l'analogue
du théorème de Wilson, l'analogue du théorème de Fermât, etc.

Mais il y a des cas où cette analogie ne joue pas. 11 y a des

systèmes de nombres où l'arithmétique généralisée basée sur
la définition ci-dessus du nombre complexe entier présente de

curieuses exceptions aux règles générales, des anomalies
étonnantes et inexplicables. Cela tient à la définition même du
complexe entier, comme l'a montré pour la première fois
M. A. Hurwitz à Zurich, sur l'exemple des quaternions entiers.

Voici les considérations pouvant conduire à une définition
satisfaisante du nombre complexe entier :

Les nombres entiers sont caractérisés par les propriétés
fondamentales suivantes :

1° Ils doivent former un domaine d'intégrité, c'est-à-dire
qu'ils doivent se reproduire par addition, soustraction et
multiplication; en d'autres termes : la somme, la différence et le

produit de deux nombres entiers doit toujours être de nouveau
un nombre entier.

2° Ce domaine d'intégrité doit contenir « le nombre 1 » et
« le nombre zéro ».

3° Ce domaine d'intégrité doit posséder une base finie; autrement

dit : il doit être possible de choisir, dans ce domaine
d'intégrité, un nombre fini de complexes entiers, disons t±,

tg, fci, jouissant de la propriété suivante :

Si mL, m2, mn désignent des nombres entiers ordinaires
quelconques (positifs, nuls ou négatifs), l'expression

(1) wMi + m2t2 + + mntn
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doit pouvoir reproduire, par un choix convenable des nombres
entiers mv absolument tous les éléments du domaine envisagé.
Réciproquement, le domaine d'intégrité en question doit se

composer de tous les complexes, et uniquement des complexes,
qu'on obtient en assignant, dans l'expression (1) ci-dessus, aux
nombres ordinaires mt, m.2, m», de toutes les manières
possibles, des valeurs entières positives, nulles ou négatives.

Tout ensemble de complexes jouissant des trois propriétés
ci-dessus est appelé un domaine holoïde.

En vertu de cette définition, tout domaine holoïde contient
une infinité d'éléments, parmi lesquels « le nombre 1 » et « le
nombre zéro » ; de plus, on peut y effectuer sans restriction
l'addition, la soustraction et la multiplication, et cela sans

jamais sortir du domaine; enfin, il possède uue base finie.
Or, pour caractériser les nombres entiers, il faut une

quatrième propriété :

4° Ils doivent constituer un domaine holoïde qui soit maximal.
Définition : un domaine holoïde [H] est dit maximal, lorsqu'il

n'existe pas, dans le corps de nombres envisagé, un autre
domaine holoïde contenant tous les éléments de [H], plus encore
d'autres éléments non contenus dans [H].

La définition du complexe rationnel « entier » est alors la
suivante : un complexe rationnel

1 ...r

x — V xKe-t

est dit entier, s'il fait partie du domaine holoïde maximal en

question; le complexe rationnel x sera dit non entier, s'il n'est

pas contenu dans ce domaine holoïde maximal.
Adoptant cette définition et envisageant comme éléments les

complexes « entiers » définis de cette façon, on peut construire,
dans le domaine des nombres complexes entiers ainsi délimité,
toute une arithmétique et toute une théorie des nombres, d'une
simplicité analogue à celle de l'arithmétique ordinaire et de la
théorie des nombres classique.

En prenant, comme exemples particuliers, différents
systèmes de nombres complexes, l'orateur montre ce qui suit :



— 95 —

1° Cette définition du nombre .complexe entier peut avoir
comme conséquence qu'on appellera « entiers » même certains
complexes rationnels x à coordonnées fractionnaires; il peut
arriver aussi que certains complexes rationnels œ ne soient pas
des complexes « entiers », bien que toutes leurs coordonnées x\
soient des nombres entiers ordinaires.

2° L'opération consistant à partager le corps de nombres
envisagé en deux domaines, mettant d'un côté les complexes
entiers, de l'autre les complexes non entiers, cette opération
peut ne pas être univoque. Il existe, en effet, des systèmes de

nombres complexes tels que le corps constitué par l'ensemble
de tous les complexes rationnels contient plusieurs domaines
holoïdes maximaux, très différents entre eux.

3° Etant donné un corps de complexes rationnels faisant
partie d'un système déterminé de nombres complexes, il peut
même arriver que ce corps de nombres ne contienne aucun
domaine holoïde maximal. L'auteur cite, à titre d'exemple, un
système de nombres complexes à trois coordonnées doué de

cette curieuse particularité que, dans ce système, le corps
des complexes rationnels ne contient aucun domaine holoïde
maximal.

Si l'on fait alors l'arithmétique d'un domaine holoïde non
maximal, on rencontre dans les théorèmes de divisibilité, dans
la théorie du plus grand commun diviseur, etc., des exceptions
curieuses, des anomalies surprenantes.

Ces anomalies-là ne se présentent pas quand l'ensemble des

complexes rationnels entiers constitue un domaine holoïde
maximal.

Discussion : M. Speiser, Mmo Young et M. DuPasquier.

3. Dr. G. PÖLYA (Zürich). — 1st die Nichtfortsetzbarkeit einer
Potenzreihe der allgemeine Fall

Man pflegt in der Mathematik vom « allgemeinen Fall » zu
sprechen, wenn die Menge der Ausnahmefälle

1. vom Masse Null, oder
2. von geringerer Dimension, oder
3. von geringerer Mächtigkeit ist, als die Menge der regel-
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mässigen Fälle, r— Die Menge der fortsetzbaren Potenzreihen
und die der nichtfortsetzbaren haben die nämliche Mächtigkeit,
die Mächtigkeit des Kontinuums. Der Begriff des Masses oder
der der Dimension ist in dem Räume, dessen Elemente die
Potenzreihen sind, noch nicht erklärt worden und allenfalls die

Gedankengänge der Herren Borel und Fabry stützen sich auf
keine explicit festgelegte Erklärung dieser Begriffe. Diese

Gedankengänge also, wenn sie auch interessante Einblicke in die

Natur der Potenzreihen eröffnen, erweisen es keineswegs streng,
dass die Potenzreihen im Allgemeinen nicht fortsetzbar sind.

Es ist zweckmässig die Frage anders zu wenden. Man kann
in dem Räume von unendlich vielen Dimensionen, dessen Punkte
die im Einheitskreise konvergierenden Potenzreihen sind,
gewisse mengentheoretische Begriffe passend erklären und folgenden

Satz beweisen :

Die Menge der nichtfortsetzbaren Potenzreihen hat nur innere
Punkte und ist überall dicht Die Menge der fortsetzbaren
Potenzreihen ist nirgendswo dicht und perfekt.

Dieser Satz kann bewiesen werden, denn die vorkommenden

Begriffe des inneren Punktes, der überalldichten, der
nirgendswodichten und der perfekten Menge sind mit völliger Bestimmtheit

definiert worden. Alle diese Begriffe beruhen auf dem

Begriffe der Umgebung. Die volle Umgebung (s0, et, s2,...)
des Punktes a0, a±, ß2,... heisst die Gesamtheit aller Punkte

u0, u2, die den Ungleichungen

n0 - a0 | < £0 | ux - at | ^ ex | un - an | S en

genügen, wobei

^ 9 lim y en 1

n oo

vorausgesetzt ist. Wenn die Potenzreihe

y, (Un —

in einem grösseren Kreise konvergiert, als der Einheitskreis,
so gehört der Punkt u0, u1, u2,... zur nächsten Umgebung des

Punktes a0, a1? a2, Es sind nur solche Zusammenfassungen
der Potenzreihen zu Mengen zulässig, die keine Potenzreihe

von ihrer nächsten Umgebung trennen. Endlich heisst der
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Punkt a0, at,at,...ein Häufungspunkt der Menge M, wenn
in einer beliebigen vollen Umgebung des Punktes
ein Punkt gefunden werden kann, der der Menge M angehört
und der nächsten Umgebung des Punktes nicht
angehört.

Dieser Begriff des Häufungspunktes ist dem erwähnten Satz

zugrunde gelegt. Eine ausführlichere Darstellung erscheint
in den Acta Mathematica.

4. M. le Prof. Dr M. Plancherel (Fribourg). — Sur la
convergence d'une classe remarquable d'intégrales définies.

Prenons comme champ fonctionnel ß l'ensemble des fonctions

f(x), définies dans l'intervalle (0, œ) et de carré inté-
grable (au- sens de Lebesgue) dans cet intervalle, c'est-à-dire
telles que

f2dx

soit finie. Considérons une transformation T faisant
correspondre à toute fonction / du champ Q une fonction T (f) du
même champ. Nous caractériserons cette transformation par
les propriétés suivantes :

a) linéarité
T(ft -f f2) « T(/i) + W2)

T(kf) — kT(f) k constante ;

b) involution
TT(f) « f

t) limitation. Il existe une constante M telle que

p<*>

I [T(f)fdx S. M2 I fdx
4/0 «^0

Une transformation vérifiant ces conditions sera dite une
transformation fonctionnelle linéaire, et bornée. Il
existe alors une fonction génératrice $ (x, y) permettant
d'exprimer T (f) presque partout par la formule

1*
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Daus le cas ou "

" ' -d-<p':
'

:

existe "presque partout et oil l'on a

S tf ^ôÊydxdy fp(xi y) — °) - ^(° 5 y} +' °)

elle peut s'écrire

- 4. "W)=^J |/'lyiJ <p(

Dans ce cas <p fx, y) est le noyau de la transformation T.
En général, il n'est pas permis de permuter les deux

intégrations successives de la dernière formule et d'écrire

W) I ..f\y)<p(x, y) dy
0

Par contre, il est toujours possible de déterminer uue suite
de constantes an - ^ telles que

« yV'-tv

T(f)= lim I f(y)<p{x, y) dy
"^t/o

presque partout. La suite a» dépend en général de la fonction /
et varie avec elle. Il est, par suite, naturel de se demander

quelle hypothèse sur la fonction/permettrait de se débarrasser
de la suite particulière v.n et d'assurer la convergence presque
partout de

iim- rJ 0

f(y)<p[x, y) dy

J'ai montré dans les Rendiconti di Palermo, tome 30, qu'il
suffisait pour cela de supposer que \

/><».

I f2(x) Yx dx
:J o -

'

existe. En transposant aux « représentations intégrales » la
méthode que j'ai employée pour étudier la convergence des
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séries de fonctions orthogonales, j'obtiens une, hypothèse plus
large et je démontre le théorème suivant :

Soit rp (x, y) le noyau d'une transformation fonctionnelle T
linéaire, involutive bornée dans le champ des fonctions de carré
intégràble dans Tintervalle (0, oq). Pour toute fonction f (x) de

ce champ, telle que

-a J •
' f'J (x) log3 X âx

soit finie, la limite

lim f f(y)<p(x, y)dy
J o

existe presque partout et elle représente la transformée T (f) de f.

5* M. le Prof. W.-H. Young (Genève). — Sur l'intégration
par rapport à une fonction à variation bornée.

Dans le rapport que cet auteur a donné lui-même à la Société

mathématique suisse, il n'a pas abordé la partie du sujet qui
se rapporte à la recherche de la fonction primitive. Récemment
il a obtenu la généralisation parfaite des théorèmes de M. Lé-
besgue et de lui-même sur ce sujet. Les démonstrations sont
fort simples. On peut en eflet employer la méthode de M. de la
Vallée-Poussin. Les « fonctions majorantes et minorantes »

introduites par celui-ci rentrent en effet d'une manière tout à
fait naturelle dans le cadre de la théorie de M. Young.

Désignant par g(x) une fonction croissanté,on aura à considérer

non seulement des intégrales et des fonctions sommables

par rapport à g(x) mais aussi des nombres dérivés par rapport
à g(x) ; la mesure d'un "ensemble deviendra la variation de g x)
par rapport à cet ensemble, et, dans le cas Où cette variation est
qulle, on dira que l'ensemble complémentaire existe presque partout

par rapport à g(x). Pour éviter des répétitions ennuyeuses
on peut omettre l'expression « par rapport à g(x) » dans les
énoncés. On aura alors cinq théorèmes principaux : ^ '

1° S'il existe une fonction f(x) intermédiaire (au sens large)
mire les' deux nombres dérivés à droite d'une fonction continue
F(x), et si f(x) est sommable, ou bien
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i) f(x) est infini (+ 00 ou — »=) dans tous les points d'un
ensemble ayant la puissance du contenu ou bien

U) F(x) — F(a) f f{x) dg(x)

jEn particulier, par conséquent, si F(x) a un nombre dérivé A
sommable et fini saufpeut être dans un ensemble dénombrable de

points, on aura

2° L'intégrale indéfinie d'une fonction sommable f(x) a f(x)

pour dérivée presque partout
3° Si la fonction F(x), continue ou discontinue, est non-décroissante

dans un intervalle (a, b), l'un quelconque A de ses nombres

dérivés est sommable dans cet intervalle et l'on a

^ A dg(x) F(6) — F [a) — unefonction positive non décroissante,

4° Une fonction à variation bornée, continue ou discontinue, a

une dérivée presque partout, et les nombres dérivés de la fonction
sont sommables.

5° Une fonction F(x) continue et à variation bornée, dont l'un
des nombres dérivés est fini, sauf peut-être dans les points d'un
ensemble n'ayant pas la puissance du continu est Vintégrale indéfinie

de ce nombre dérivé.

Le premier de ces théorèmes est moins général que le
théorème suivant obtenu par M. Young :

Si F(x) est une fonction semi-continue inférieurement à droite
et supérieurement à gauche, et si elle possède un nombre dérivé à
droite (gauche) f(x) par rapport à g(x), sommable par rapport à

g(x) sur l'ensemble S des points où f(x) > 0, on aies deux possibilités

:
1° f(x) — oc» dans les points d'un ensemble de puis-

sance c ;
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2° F(x) est une semi-intégrale supérieure par rapport à g(x),
en effet

F (a?) - F (a) J* f(x) dg(x) +

une fonction positive non-décroissante. Pour obtenir ces
généralisations il était nécessaire d'élaborer la théorie des nombres
dérivés par rapport à g{x) d'une fonction F(a?) qui est au moins
d'un côté semi-continue. De telles fonctions ont fait leur
apparitions à plusieurs reprises dans les recherches de M. Young,
et les théorèmes qu'il obtient maintenant montrent de nouveau
l'intérêt de ces fonctions. Il obtient entre autres un théorème
du genre du théorème de Diui, et qui contient ce dernier comme
cas spécial :

Si F(#) est semi-continue supérieurement à droite dans un
intervalle (a, b>, les bornes supérieures des nombres dérivés à

gauche sont toutes les mêmes et coïncident avec la borne supérieure
du rapport incrémental, les nombres dérivés et le rapport
incrémental étant pris par rapport à x ou g(x), pourvu que i) g(x)
soit continue à droite, ou ii) F(x) riest pas monotone et non-
croissant partout dans Vintervalle.

Discussion : M. Plancherel.

6. Mwe Grace Chisholm Young (Genève). — Sur les courbes

sans tangente.
Weierstrass a démontré que la fonction continue représentée

par la formule de Fournier

.£ bn cos rixn
«—0

n'a pas de dérivée. La question se pose : est-ce que la courbe

y f(x), où f(x) est la fonction de Weierstrass, n'a pas de

tangente? Pour ceci il ne suffit pas que la fonction n'ait pas dé
dérivée, car si elle avait une dérivée à droite et une dérivée à

gauche, toutes les deux infinies mais avec des signes opposés,
la courbe aurait une tangente singulière, dont le point d'incidence

serait un point de rebroussement de la courbe. D'après
un théorème connu, ceci ne peut avoir lieu que dans un ensemble
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çlénombvable de points. On verra qu'en effet il y a de tels points
de rebroussement sur la courbe de Weierstrass, mais que, sauf
dans un ensemble de première catégorie et de mesure nulle,
chaque ligne passant par un point P de la courbe a un caractère

tangentiel pour la courbe dans le point P considéré.
Discussion r M. C. Cailler, M. Raoul Pictet.

7. M. le D1 D. Mirimanoff (Genève) et Mme Grace Chisholm
Young. — Sur le théorème des tuiles.

Une tuile d'après W. H. Youiig, l'auteur du théorème, est

un élément de forme et de grandeur déterminées autour d'un

point spécial dit point d'attachement. L'énoncé est le suivant :

Etant donné un ensemble de tuiles sur une droite, dont chacune

peut être taillée autant que Von veut, on peut trouver un nombre

fini ou une infinité dénombrable de tuiles, ayant les propriétés
suivantes :

1° la largeur de chaque tuile est plus petite que e ;

2° chaque point d7attachement est couvert par au moins une
des tuiles;

3° le point d7attachement Pi de la tuile dn riest pas couvert

par une autre tuile ;
4° la somme des largeurs de tuiles diffère de là mesure m (S)

de Vensemble S des points d'attachement de moins e'.

Ici e et e' sont des quantités positives choisies.

Si l'ensemble est fermé, les tuiles peuvent être trouvées en

nombre fini.
La démonstration présentée est une élaboration par D. Miri-

manoff de celle donnée par l'auteur sous une forme incomplète.

8e M. le Prof. L. Crelier (Berne-Bienne). —-. Sur un théorème

particulier de géométrie cinématique et quelques constructions de

tangentes liées à ce théorème1.

Les résultats généraux de la géométrie cinématique peuvent
être appliqués avec succès à un très grand nombre de méca-

1 Voir-Ii. Crelier, Systèmes cîhématiques (collection Scientia), Gauthier
ViIlavs, Paris. Chapitres IV et VI.
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nismes particuliers ;et conduire ainsi à une foule deu résultats
de détail originaux et forts intéressants,. t b

Considérons en particulier le,mécanisnie bien connu « jBielle-
Manivelle La; inanivéûe étant OB et la bielle AB. Nous
prendrons le chemin de 1^ bielle suivant le diamètre OA et
nous le considérerons comme axe des qo, L'origine sera le
centre 0. ^ 1 ;

•

v

Nous avons, v\;\pour la base : : 7 (&2 jf-. yfy (V R? ^ v. m

pour lu roulante : ; W{%hrby* =p,;ZV(y î -hix— Z)

pour la courbe Cd : (x2 — l2) (cx2 -f- y2) -f- B2y2 0.
Cette dernière courbe est une conchoïde de la base par rapport
au centre 0 et dont la constante est R OB.

Tangentes. — 1. De la roulante: Il suffit de rappeler que
celle-ci est une conchoïde de conique par rapport à un foyer.
La constante de laconique est 2R et celle de la conchoïde — R.
Soit M un tel point de la roulante ; FéM est prolongé jusqu'en a
avec Ma R ; a est le point de la conique. Nous construisons
la normale en a au moyen du cercle directeur et du cercle

principal; nous obtenons ai. En F2, nous faisons F2J
perpendiculaire à F2M ; c'est la normale de l'enveloppe de la droite
mobile pour la position correspondante, et de cette manière J
est le centré instantané nécessaire. Nous en déduisons a priori
la tangente et la normale en M.

2. De la base. Soit C le point de la base pour la position
considérée OBA. Nous porterons ka AB =Msur le prolongement

de la bielle AB et opposé à B, puis 0B2 OB — R sur
le prolongement correspondant de la manivelle OB. Nous aurons
B2a parallèle à, Ox. Soit maintenant BaB2d le trapèze isocèle

sur la base B2a et la diagonale B2B. Il en résulte B2B —

2R, et B20 0B= am md R. En désignant le point de

coupe des diagonales par D, nous aurons encore Dd DB et
aD + DB 2R:

De cette manière D est un point de la conique (ellipse) de

foyers a et B.et de constante 2R. Nous avons également, avec
DB' perpendiculaire à dB, dB' B'B ppis AB' R et OB' — l ;
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dans ces conditions D est encore le point de la courbe Cd et

nous en tirons DC R.
Examinons maintenant la tangente en C. La théorie des

mouvements épicycloïdaux nous enseigne que la base et la
position correspondante de la roulante pour le point C ont la
même tangente en C. En, outre cette roulante correspond à la
conique de foyers a et B et de constante 2R. Nous appliquons
maintenant la construction de la tangente de la roulante. Nous

savons déjà que le point nécessaire de la conique est D et nous

pourrions encore l'obtenir en portant R depuis C sur OB. La

tangente de la conique en D est évidemment DB', perpendiculaire

à l'axe des x, donc la normale est une parallèle D? à ce

même axe. D'autre part la normale de l'enveloppe du segment
mobile OB dans la génération de la roulante est une
perpendiculaire By à OB. Nous trouvons alors le centre instantané y,
relatif à notre conchoïde de conique.

Il est maintenant facile de tracer la normale et la tangente
cherchée en C.

3. De la courbe Cd Comme celle-ci est une conchoïde de la

base, nous utiliserons la normale de la base en C et la normale
de l'enveloppe du segment mobile OB autour de 0 ; cette der-
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nière est OS perpendiculaire à OB. Le point S est ainsi le
nouveau centre instantané de rotation et nous en déduisons sans
autre la normale, puis la tangente en D.

Trajectoires de a et d. — Nous savons que a est un point
fixe de la bielle avec BA ka Z. Sa trajectoire est une
roulette du mécanisme4 considéré. L'équation de cette courbe
s'appelle :

(x2 - R2412 + 5y2)2 16 (R2 - y2)(l2 - y2)

Nous devons observer en plus que le mécanisme OBA et le
mécanisme symétrique travaillant à gauche de l'axe des y ont
la même base, et la même courbe Cd Comme nous avons
aussi B2A2 — Z, OB2A2 est une des positions de ce mécanisme
symétrique. Avec A2d Z, la trajectoire de d est une roulette
analogue à celle décrite par a. En établissant son équation,
nous trouvons le même résultat que pour le chemin de a; en
conséquence les points a et d se déplacent sur la même courbe.

Si nous considérons plus spécialement la diagonale ad dont
les extrémités s'appuient sur la trajectoire (a) ou (d), nous
avons là une droite de longueur fixe, double de la manivelle,
disposée symétriquement par rapport à celle ci et passant
toujours par le point correspondant D de la courbe Cd Cette
droite donne lieu au théorème suivant :

Théorème : Dans le mouvement du mécanisme « Bielle-Manivelle

», il existe une droite mobile de longueur fixe 2R, symétrique
avec le rayon OB, passant toujours par le point correspondant D
et telle que son milieu m glisse sur Vaxe des x pendant que ses

extrémités s'appuient sur la trajectoire {s) d'un point a de la
bielle, avec Aa Z

ou en d'autres termes :

Les cordes de la trajectoire (a) symétriques des rayons OB et

menées par les divers points D correspondants, sont de longueur
fixe 2R et elles sont divisées en deux parties égales par l'axe
des x.
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9. M. le Dr René de Saussure (Berne et Genève). La
Géométrie des feuillets cotés, >

M. René de Saussure, poursuivant l'étude de la Géométrie
dite des « feuillets », expose un développement récent de cette
géométrie obtenu en introduisant la notion du « feuillet coté».
Les résultats de cette étude ont été exposés dans lés Arch, des

Sc. Phys. et Nat. de Genève (1915). Rappelons seulement que
le «feuillet» n'est pas autre chose qu'un corps rigide
quelconque, considéré non pas en sa forme ou en sa grandeur, mais
seulement comme position. C'est cette position qui est prise
comme élément spatial primitif, donnant lieu à une nouvelle
géométrie de caractère quadratique et à 6 dimensions (quoique
située dans notre espace à 3 dimensions). En afleetant chaque
feuillet d'un coefficient numérique, appelé cote, on obtient le
feuillet «coté», qui donne lieu à une géométrie à 7 dimensions

(toujours située dans notre espace) et dont le caractère n'est
plus quadritique mais linéaire/Les formes fondamentales de

cette géométrie ont reçu de l'auteur les noms de : mono-, bi-,

tri-, tétra-, penta-, et hexacouronne.
L'hexacouronne est le lieu des feuillets cotés (en nombre coG)

qui satisfont à l'équation :

; f + (p h tang ^

/ étant la cote d'un feuille fixe F (appelé feuillet central) ; <p, la
cote du feuillet mobile qui engendre l'hexacouronne ; enfin h

et a), la translation et la rotation du mouvement hélicoïdal qui
permet de passer de la position fixe F à la position d>.

Toutes les autres polycouronnes peuvent être définies comme
l'ensemble des feuillets cotés communs à 2, 3, 4. 5 ou 6 hexa-

couronnes. Finalement : 7 hexaçouronnes ont en commun un
feuillet coté et un seul. Dé sorte que réciproquement : 7 feuillets
cotés déterminent une hexacouronne, 6 feuillets une pentacou-
ronne, etc., 2 feuillets une monocouronne.

10. M. le Prof. C. Cailler (Genève). — Sur la théorie

analytique des corps solides cotés.

M. C. Cailler présente quelques développements sur les prin-
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cipes analytiques de la thêôYxe Aes eonps solides cotés ou feuillets*
cotés, due essentiellement à M. de Saussure, qui l'a étudiée
surtout par la voie géométrique. C'est M. E. Study qui, le

premier, a représenté par des coordonnées d'un emploi
commode les positions d'un solide dans l'espace. Rappelons la
formation de ces coordonnées où intervient la notion du biqua-
ternion qui remonte à Cayley et Clifford.

Soient iL, i2, i3 les unités quaternionniennès, i une nouvelle
unité complexe permutable avec les précédentes et telle que
i2 0. Un corps solide congruent à un système d'axes
coordonnés est équivalent à un mouvement de ce dernier ; à son
tour le mouvement se ramène à une rotation, dont les constantes
de Rodrigues sont e0, e±, e.2, es, combinée avec une translation
décomposantes at, a2, a3. Les 8 coordonnées homogènes du

[Ak\
'

'
•

corps | seront, selon M. Study, les suivantes :

Aq e0 A0" - ^ (e,a, + e2a2 + e3a3)

Ai ex Ai" + ^ («o«! + e3a2 — e2a3)

A2 e2 A2 ~ + - (e0a2 + exa3 - e3ax)

As e3 A3" + ^ (e0a3 4- e2a, - eta2) ;.

elles vérifient les conditions

I A'21 Z Vv o >

(fc) (Ä)

de sorte,que le corps occupe dans l'espace °o6 positions, comme
il convient.

Désignons par un accent la partie réelle d'une quantité
complexe, par deux accents la partie imaginaire de cette même
quantité, et posons

Afc Aft -\r iAf et A A0 +.Mi 4~ + hA3

le biquaternion A ainsi formé représente analytiquement le
corps ou le mouvement donné. On montre que si A est le
conjugué de A obtenu en changeant dans A le signe des quatre



quantités i, le déplacement d'un point solidaire du corps mobile
est représenté par la formule quaternionnienne

G Agâ
dans laquelle

0' 1 + «(«lV + >

cr=l+ + 4^2 + hXs)

xk et xk désignant les coordonnées du point avant et après le

mouvement.
Pour s'élever à la conception du corps coté, il suffit de

remarquer que la formule précédente ne change pas quand on

multiplie A par le facteur scalaire (1 + ©t partant, A par
le facteur conjugué 1 — ; en effet, le produit des facteurs
ainsi introduits vaut 1 — iW «« 1.

La quantité arbitraire co prendra le nom de cote du corps ; le

corps coté aura pour représentant analytique un biquaternion

Cf. — (1 + Cùï) A — <X0 + + &2Ä2 + ^*3^3 (7q' + iz0")
+ h (a/ + ixi") + ;

f ak }
de là résultent pour les 8 coordonnées j „ \ du corps coté les

valeurs

< ek > a" Mk + Ak"; (k 0, 1, 2, 3)

lesquelles satisfont les équations

(aocY «o'2 -f a/2 + a2'2 + a3'2 1

l (aa)w a0'a0" + + a2'<*2" + x3'x3"

De la sorte, un corps et une cote déterminent ensemble, au

signe près, le tableau I k„ i ; réciproquement 8 nombres quel-
\ak

conques ak définissent, d'une manière unique, un corps coté,

pourvu que ces nombres vérifient la condition (a?.)' 1.

Il est d'ailleurs aisé d'assigner la signification géométrique

ak ]
des coordonnées { „ >, en la faisant dériver de celle des inva-

l ak
riants (aß)' et (aß)" de deux corps a et ß, de cotes wa et Si
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a et b désignent l'angle de rotation et le glissement du mouvement

hélicoïdal conduisant un de ces corps sur l'autre, on

trouve facilement

W £ «kßt cos i •

k

(ocß)" =£ cxk'ßk" + *k"ßk) K + w?) cos sin t •

k

Ce dernier invariant qu'on peut nommer le moment relatif
des deux corps joue le rôle principal dans l'étude des polyséries
linéaires de corps cotés. M. de Saussure a donné la théorie
géométrique de ces polyséries et les a désignées sous le nom
générique de polycouronnes; elles sont semblables aux systèmes

de vis de Bail. L'emploi des coordonnées j k„ 1

permet de pré-
{ afc J

senter d'une manière très claire l'ensemble de ces résultats.
M. Cailler termine sa communication en insistant sur les

analogies que présente, avec les théories de la Statique
ordinaire, celle des corps non cotés mais doués d'une masse ou

iAk\dune intensité a. Ce sont les corps j ^ „ j vérifiant la condition

Zw= 0
k

mais donnant

2 -dfc'2 a2 au lieu de 2] -dfc2 ^ 1 *

k k

Un système de corps massifs (.A, a), (JS, 6), (C, c)... est

toujours équivalent à un corps coté a : deux systèmes S et S\
équivalents au même corps coté a, sont réductibles l'un à l'autre
par une opération toute semblable à la composition des vecteurs
concourants. Ainsi se trouve fermé le cycle des comparaisons
entre la Géométrie réglée d'une part et celle des corps cotés de

l'autre.

11. M. le Dt H. Berliner (Bern). — Eine neue analytisch-
projektive Geometrie.

In der Ebene legen wir ein Dreieck ABC und 3 Zahlen
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zi9 :z2 r z3 zu Grunde und weisen in einem Grundgebilde um
einen Punkt P und auf einer Geraden # den 3 Strahlen PA, PB,
PC bezw. Punkten #BC, gCA, gÄB entweder die Zahlen z19

z29 z3 selbst als Abszissen oder (bei Zugrundelegung einer
Winkeleinheit) die 3 Winkel z19 z2, zs als Ordinatenwinkel
(vergl. Berliner, Involutionssysteme in der Ebene des Dreiecks,
Braunschweig 1914, Nr. 26) zu und jedem weiteren Element
s die durch

#3 — Z

— z2 z — z2
(PA, PB, PC,

bezw. (#BC, gCk, ^AB,#) bestimmte Abszisse z (vergleichen
v. Staudt, Beiträge zur Geometrie der Lage, § 29), oder den

durch
tgZZ — tgZy tg (Ô tg Zi

tg &3 - tg Z2 tg CO tg *2 - (PA, PB, PC,

bzw. (gBC, gCA9 #AB,s), bestimmten Ordinatenwinkel ca. Es
sind somit einem Grundgebilde 1. Stufe im allgemeinen ein
Abszissen- und ein Ordinatenwinkelsystem zugeordnet. Sind
P und g inzident und sind x und y die Abszissen oder Ordinatenwinkel

von P in dem g und von g in dem P zugeordneten Systeme,
so ist x y. Wir können auch von der Abszisse und dem

Ordinatenwinkel eines Punktes P (und einer Tangente) auf
einer Kurve sprechen; darunter sind diejenigen zu verstehen,
die P in den seiner Tangente zugeordneten Systemen zukommen.

Die Abszissen- und Ordinatenwinkelsysteme fuhren nun zu
mehreren Punkt- und Linienkoordinatensystemen in der Ebene.
Davon sei nur folgendes erwähnt. Wird ein auf keiner Seite

von ABC liegender Punkt D festgehalten, so werden durch einen
Punkt P 2 Ordinatenwinkel im allgemeinen eindeutig
bestimmt, nämlich der Ordinatenwinkel y von DP in dem D und
der Ordinatenwinkel <b von Pin dem DP zugeordneten Systeme;

y, sollen dann die 1. und 2. Koordinate von P heissen. An
Stelle der Ordinatenwinkel können ebensogut Abszissen als
Koordinaten verwendet werden.

Die Abszissen- und Ordinatenwinkelsysteme führen ferner zu
je, einer Massgeometrie. Wir definieren die Entfernung zweier
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Punkte und dien Wihkel zwéièr Geraden, als die Differenz der

Abszissen öder Ordinatenwinkel der Punkte bezw. Geraden in dem

ihrer Verbindungsgeraden bezW. ihrem Schnittpunkt als Träger
einesGrundgebildes zugeordneten Systeme. Die Entfernung und
der Winkel sind so auch dem Vorzeichen nach bestimmt; Der
Kreis ist eine G8 und durch jeden Punkt gibt es 3 Parallele zu
einer Geraden, wenn Gerade parallel genannt werden, wenn sie

den Winkel 0 bilden.
Im Baum legen wir ein Tetraeder ABCD (BCD a, CDA — ß,

DAB Er- y ABC s 8) und drei Zahlen zL, z2, z3> zu Grunde
und weisen in einer Punktreihe auf einer Geraden g den drei
Punkten ga, g$, <77, in einem Ebenenbüschel um g den drei
Ebenen ^A, <?B, gC und in eiiiem Strahlenbüschel, dessen

Träger ein Punkt P und eine Ebene s sind* entweder (1. Art)
den 3 Strählen (P, eBC), (P, eCA), (P, eAB) oder (2. Art)
(P, eß7), OP, 57a), (P, ezß) die 3 Zahlen z2, z2, zt, als Abszissen

zu und jedëm weitern Element die analog wie oben zu
bestimmende Abszisse. Anstatt Abzissen können auch Ordinatenwinkel

zugewiesen werden. Es sind somit eiuem Grundgebilde
1. Stufe ein bezw. 2 Abszissen- und 1 bezw. 2 Ordinatenwinkel-
systeme zugeordnet. Ferner wird durch ABCD einem Grundgebilde

2. Stufe,, dessen Träger ein Punkt P oder eine Ebene s

ist, ein Koordinatensystem zugeordnet, in dem das Grunddreikant

P (ABC), der Grundstrahl PD und die Polare von PD
bezüglich P (ABC) als Grundebene bezw. das Grunddreieck s (aß7),
die Grundlinie sS und der Pol von s3 bezüglich s(aß7) als Grundpunkt

die Basis bilden und für die Koordinaten Abszissen oder
Ordinatenwinkel 1. bezw. 2. Art zu verwenden sind. Sind P

und s inzident ünd sind x, y die 1., 2. Koordinate von P in dem,
e und £, y] die 1., 2. von s in dem P als Träger eines
Grundgebildes 2. Stufe zugeordneten Koordinatensysteme, so ist x-= £,

y Tj. Unter der 1. und 2. Koordinate eines Punktes P (einer
Tangentialebene und Tangente) aufeiner Flache sind diejenigen
zu verstehen, die P in dem seiner Tangentialebene zugeordneten
Koordinatensysteme zukommen.

DieAbszissen- oder Ordinatenwinkel- und Koordinatensysteme
der Grundgebilde 1. bezw. 2. Stufe führen zu mehreren Punkt-,
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Ebenen- und Linienkoordinatensystemen im Raum. Davon sei

nur folgendes erwähnt. Wird ein auf keiner Fläche von ABCD
liegender Punkt E festgehalten, so werden durch einen Punkt
P drei Ordinatenwinkel <p4, 2, <ps bestimmt, nämlich die 1.

und 2. Koordinate von EP in dem E als Träger eines

Bündels zugeordneten Koordinatensysteme und der Ordinatenwinkel

rps von P in dem EP als Träger einer Punktreihe
zugeordneten Ordinatenwinkelsysteme. Fernes werden dann
durch eine Gerade g vier Ordinatenwinkel §±, <j>2, <]>8, <]>4

bestimmt, nämlich die 1. und 2. Koordinate <J>2 der Ebene Eq
in dem E als Träger eines Bündels und die 1. und 2. Koordinate
<J>3, <j>4 von g in dem Eg als Träger eines ebenen Feldes
zugeordneten Koordinatensysteme. <pt, <p2, f3 sollen dann die

Koordinaten von P und tyL, ^2, <|>3, ^4 die von ^heissen. Ebensogut

kann man aber auch Abszissen als Koordinaten
verwenden.

Ausführliches hierüber wird der Autor demnächst in einer

grösseren Arbeit veröffentlichen.

12. M. le professeur Louis Kollros (Zurich). — Sur une
dualité.

On peut établir entre la géométrie ponctuelle à 4 dimensions

et la géométrie des sphères une liaison telle qu'à un point, une
droite, un plan et un espace à 3 dimensions de la première
correspondent respectivement une sphère, un cercle, une paire
de points et un réseau de sphères (toutes orthogonales à une

sphère fixe) de la seconde.

On trouve ainsi (parmi beaucoup d'autres1) quelques
théorèmes qui n'ont pas, à notre connaissance, été énoncés jusqu'ici ;

par exemple :

1. Etant données 2 paires de points etp2 et une sphère: s,

il existe, en général, une seule paire : x de points de s telle que les

2 paires x et_px d'une part, x et jp2 d'autre part, soient sur un
cercle.

2. Etant données 3 paires de points : ptp2pz et une sphère : s,

1 Les nombreuses propriétés des cyclides s'établissent très simplement
par ce procédé.



— 113 —

il existe, en général, un seul cercle de s qui soit sur une sphère
avec pt, respectivement p2 et p8.

3. Etant donnés 3 cercles quelconques ctc2cs de l'espace, il
existe toujours un plan, et en général un seul, qui coupe les
3 cercles en 6 points d'un nouveau cercle : aé (cercle associé

à q C2 q).
Sur chaque arête du trièdre formé par les plans des 3 cercles

donnés, il y a un point, et en général un seul, qui a la même

puissance par rapport aux 2 cercles adjacents. Le plan de jonction

de ces 3 points est le plan cherché.
4. Etant donnés 4 cercles : qqqq, en les combinant 3 à 3,

on obtient 4 cercles associés : aia2a3a4 (at est l'associé de

qqq, etc.). Si l'on désigne par si la sphère orthogonale aux
deux cercles q et at (i 4, 2, 3, 4) on peut prouver que les

4 sphères : q s2 s3 q sont orthogonales à un même cercle : q ;

nous l'appellerons le complémentaire du groupe (q c2 c3 q).
Les 5 cercles : cL.. .c6 jouissent de propriétés symétriques ;

chacun est le complémentaire du groupe formé par les 4 autres.
En les combinant 3 à 3, puis 2 à 2, on trouve respectivement
10 cercles associés et 10 sphères analogues aux q. Ces

10 sphères forment avec les 15 cercles une configuration curieuse
telle que chaque sphère soit orthogonale à 6 cercles, chaque
cercle étant orthogonal à 4 sphères. Les 15 cercles peuvent se

réunir de 6 manières différentes en groupes de 5 jouissant des

mêmes propriétés que q.. .q.
5. Par une transformation corrélative dans l'espace à 4 dimensions,

on trouve que 4 paires de points choisies
arbitrairement déterminent d'une manière unique 10 sphères et
11 autres paires de points telles que chaque sphère passe par
6 paires de points et que chacune des 15 paires soient situées

sur 4 sphères.
La paire p5 complémentaire du groupe (pLp2psPi) d'une

propriété intéressante; sur une sphère quelconque, il n'existe

pas, en général, de cercle situé sur une sphère avec pt,
respectivement p2, p8 et Pt ; mais si la sphère passe par ps (condition
suffisante, mais pas nécessaire), elle contient toujours un tel
cercle, et, en général, un seul.

8*
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13. M. le DrFerd. Gonseth (Zurich).— Extensions d'un théorème

de Poncelet.

I. M. Gonseth expose trois extensions du théorème de
Poncelet : S'il existe un polygone inscrit à une conique et circonscrit
à une seconde conique, il en existe une simple infinité, d'un même

nombre de côtés.

A) S'il existe un polygone gauche inscrit à une cubique
gauche C3, et dont les plans joignant deux côtés consécutifs

sont osculateurs à une seconde cubique gauche T3, si de plus
C3 et T3 sont réciproques dans un système focal arbitraire, il
existe une simple infinité de pareils polygones gauches.

La condition que C3 et T3 soient réciproques dans un système
focal arbitraire est essentielle.

II. Viennent ensuite deux extensions du théorème de Weyr1:
S'il existe sur une conique un groupe de n + I points dont
toutes les droites de jonction de tous les points 2 à 2 sont
tangentes à une courbe de classe n, Tn, il existe sur la conique une
simple infinité linéaire de groupe de n 4*1 points dont les

droites de jonction touchent Tn.
Ce théorème est évidemment lui-même une généralisation du

théorème de Poncelet. Ces extensions sont :

B) S'il existe sur une quadrique une courbe de (n -\- l)ème ordre
dont toutes les bisécantes sont comprises dans un complexe
de nèm0 ordre, Cn, il existe sur la quadrique une simple infinité
de courbes de (n -j- l)ème ordre dont toutes les bisécantes sont

comprises dans Cw.
C) S'il existe sur une cubique gauche C3 2 groupes de n -j- 2

points dont tous les plans de jonction de tous les points 3 à 3

dans chaque groupe touchent une même surface de n*m& classe,

il existe sur la cubique gauche une double infinité linéaire de

pareils groupes de n + 2 points.
Discussion : M. Grossmann.

1 Mathematische Annalen.
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