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Mathématiques et Astronomie

(et Séance de la Société Mathématique Suisse)
Mardi 14 septembre 1915

Introductenr : M. le Prof. D* H. Fenr.
Présidents : MM. les Prof. D C. CaiLLER et H. FeHR.
Secrétaire : M. le Prof. D* M. PLANCHEREL.

1. En ouvrant la premiere séance, M. le professeur H. Fehr,
président, a rappelé qu’au moment de la fondation de la
Société Helvétique, la chaire de mathémathique de ’ancienne
Académie était occupée par le géometre Simon L’Huillier, puis
il a indiqué, & grands traits, le role joué par les mathématiciens
suisses du XIXe siecle. Les principaux d’entre eux sont : Louis
Bertrand (de Genéve), 1731-1812; Simon L’Huillier, 1750-1840;
Robert Argand, 1768-1822; Jacob Steiner, 1796-1863, Charles
Sturm, 1803-1855; Ludwig Schlifli, 1814-1895; Gabriel Oltra-
mare, 1816-1906; Ch. Cellérier, 1818-1889; J. Amsler-Laffon,
1823-1912; Georg Sidler, 1831-1907; Charles Ruchonnet, 1832-
1914; Hermann Kinkelin, 1841-1913; Von der Miihll, 1841-1912;
Gustave Cellérier, 1855-1914; Walter Ritz, 1878-1909.

2. M. le professeur L, G. DuPasquier (Neuchﬁ,tel) — Sur les
systemes de nombres complexes.
Soit un systeme de nombres complexes comprenant une mh-
nité de « complexes »
1...r

X = &6 + Xl + ... -{-ac,e,=2az-hex ,
A

ou les x,, ,, ..., zr sont » nombres réels quelconques dits coor-
données du complexe x, et les e, e,, ... e,, ..., e, des symboles

A
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dits les unités relatives du systeme de nombre envisagé. Suppo-
sons définies, dans ce systéme de nombres complexes, les opé-
rations rationnelles de 1’addition et de la multiplication, et
leurs opérations inverses : la soustraction et la division. On
sait qu’alors tout produit e:ex de deux unités relatives quel-
conques s’exprime en fonction linéaire, a coefficients réels, des
mémes unités relatives e, . |

Appelons complexe rationnel un tel nombre complexe dont
toutes les » coordonnées x, sont des nombres rationnels quel-
conques, entiers ou fractionnaires. Li’ensemble de tous les com-
plexes rationnels forme alors un « domaine de rationalité » ou
« corps de nombres complexes », ¢’est-a-dire que ces complexes
rationnels se reproduisent par les 4 opérations de 1’addition,
de la soustraction, de la multiplication et de la division; en
d’autres termes : la somme, la différence, le produit et le quo-
tient (pour autant que la division est définie et possible) de
deux complexes rationnels quelconques est toujours de nouveau
un complexe rationnel.

Pour faire D’arithmétique de ce corps de nombres, c’est-a-
~dire pour ériger une théorie des nombres dans ce domaine de
rationalité, il faut tout d’abord le départager en deux, mettant
d’une part les complexes rationnels « entiers » et, d’autre part,
les complexes rationnels « non entiers ».

La définition suivante se présente le plus naturellement &
Pesprit :

Un complexe rationnel

1.7
= ze
2

est dit entier, si toutes ses r coordonnées sont des nombres
entiers ordinaires; ce complexe x sera dit non entier, si I'une
au moins de ses r coordonnées est un nombre fractionnaire.
Prenant pour base cette définition et envisageant les com-
plexes entiers ainsi définis comme éléments (¢’est-a-dire comme
I’analogue des nombres entiers dans ’arithmétique classique),
-on peut ériger toute une arithmétique du systéme de nombres
complexes considéré. Cette arithmétique généralisée présente
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beaucoup d’analogies avec l'arithmétique ordinaire dont les
éléments sont les nombres rationnels entiers. On retrouve en
général, dans cette arithmétique des complexes, 1’équivalent
du nombre premier, et 1a possibilité de décomposer un complexe
entier quelconque en facteurs premiers; on y retrouve aussi les
diviseurs communs de 2 complexes entiers donnés ou, plus
généralement, de » complexes entiers donnés; on y retrouve
encore un algorithme analogue & celui d’Huclide, permettant
de déterminer, par un nombre fini d’opérations rationnelles,.
le plus grand commun divisewr de plusieurs complexes entiers.
donnés; on y retrouve une théorie des congruences, 1’analogue
du théoréme de Wilson,,l’analogue du théoréme de Fermat, etc..

Mais il y a des cas ol cette analogie ne joue pas. Il'y a des
systemes de nombres ou ’arithmétique généralisée basée sur
~ la définition ci-dessus du nombre complexe enlier présente de
~ curieuses exceptions aux régles générales, des anomalies éton-
nantes et inexplicables. Cela tient & la définition méme du
vcomplyexe, entier, comme 1’a montré pour la premieére fois
M. A. Hurwitz & Zurich, sur 1’exemple des quaternions entiers.

Voici les considérations pouvant conduire & une définition
satisfaisante du nombre complexe enfier : .

Les nombres entiers sont caractérisés par les propriétés fon-
damentales suivantes :

~1° Ils doivent former wun domaine d’mtegmte c’est-a-dire

qu’ils doivent se reproduire par addition, soustraction et mul-
tiplication; en d’autres termes : la somme, la différence et le
produit de deux nombres entiers doit tOllJOllI’S étre de nouveau
un nombre entier.

2° Ce domaine d’intégrité d01t contenir «le nombre 1 » et
« le nombre zéro ». ,

3° Ce domaine d’intégrité doit posséder une base finie; autre-
ment dit : il doit étre possible de choisir, dans ce domaine
d’intégrité, un nombre fini de complexes entiers, disons ¢,,
tyy ««-s tn, jouissant de Ja propriété suivante :

Si m,, m,, ..., mn désignent des nombres entiers ordinaires
quelconques (positifs, nuls ou négatifs), I’expression

(1) o myty + myty -+ e Emt,
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doit pouvoir reproduire, par un choix convenable des nombres
entiers m,, absolument tous les éléments du domaine envisageé.
Réciproquement, le domaine d’intégrité en question doit se
composer de. tous les complexes, et uniquement des complexes,
qu’on obtient en assignant, dans I’expression (1) ci-dessus, aux
nombres ordinaires m,, m,, ... ma, de toutes les maniéres pos-
sibles, des valeurs entiéres positives, nulles ou négatives.

Tout ensemble de complexes jouissant des trois propriétés
ci-dessus est appelé un domaine holoide.

En vertu de cette définition, tout domaine holoide contient
une infinité d’éléments, parmi lesquels « le nombre 1 » et « le
nombre zéro »; de plus, on peut y effectuer sans restriction
I’addition, la soustraction et la multiplication, et cela sans
jamais sortir du domaine; enfin, il posséde une base finie.

Or, pour caractériser les nombres entiers, il faut une qua-
trieme propriété :

4° Ils doivent constituer un domaine holoide qui soit maximal.

Définstion : un domaine holoide [H| est dit mazimal, lorsqu’il
n’existe pas, dans le corps de nombres envisagé, un autre do-
maine holoide contenant fous les éléments de [H], plus encore
d’autres éléments non contenus dans [H]. ‘

La définition du complexe rationnel «entier» est alors la
suivante : un complexe rationnel

est dit entier, s’il fait partie du domaine holoide maximal en
question; le comnlexe rationnel x sera dit non entier, s’il n’est
pas contenu dans ce domaine holoide maximal.

Adoptant cette définition et envisageant comme éléments les
complexes « entiers » définis de cette facon, on peut construire,
dans le domaine des nombres complexes entiers ainsi délimité,
toute une arithmétique et toute une théorie des nombres, d’une
simplicité analogue & celle de I’arithmétique ordinaire et de la
théorie des nombres classique. |

En prenant, comme exemples particuliers, différents sys-
témes de nombres complexes, ’orateur montre ce qui suit :



W | R
‘1° Cette définition du nombre ,complexe entier peut avoir
comme conséquence qu’on appellera « entiers » méme certains
complexes rationnels z & coordonnées . fractionnaires; il peut
arriver aussi que certains complexes rationnels  ne soient pas
des complexes « entiers », bien que toutes leurs coordonnées x:
soient des nombres entiers ordinaires.

2¢ L’opération consistant & partager le corps de nombres
envisagé en deux domaines, mettant d’un c6té les complexes
entiers, de 1’autre les complexes nor entiers, cette opération
peut ne pas étre univoque. Il existe, en effet, des systémes de
nombres complexes tels que le corps constitué par ’ensemble
de tous les complexes rationnels contient plusieurs domaines
holoides maximaux, trés différents entre eux.

3> Etant donné un corps de complexes rationnels faisant
partie d’un systéme déterminé de nombres complexes, il peut
méme arriver que ce corps de nombres ne contienne aucun
domaine holoide maximal. L’auteur cite, & titre d’exemple, un
systéme de nombres complexes 2 trois coordonnées doué de
cette curieuse particularité que, dans ce systéme, le corps
des complexes rationnels ne contient aucun domaine holoide
max1mal

Si 'on fait alors l’arlthmethue d’'un domaine holoide non
maximal, on rencontre dans les théorémes de divisibilité, dans
la théorie du plus grand commun diviseur, etc., des exceptions
curieuses, des anomalies surprenantes. :

Ces anomalies-1a ne se présentent pas quand ’ensemble des
complexes rationnels entiers constitue un domaine holoide
maximal. o '

Discussion : M. Speiser, M=¢ Young et M. DuPasquier.

3. Dr. G. Pérya (Zirich). — Istdie Nwhtfortsetzbarkezt einer
Potenzreihe der allgemeine Fall?

Man pflegt in der Mathematik vom «allgemeinen Fall» zu
sprechen, wenn die Menge der Ausnahmefille

1. vom Masse Null, oder | |

2. von geringerer Dimension, oder

3. von geringerer Machtlgkelt ist, als die Menge der regel-
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missigen Fille. — Die Menge der fortsetzbaren Potenzreihen
und die der nichtfortsetzbaren haben die namliche Michtigkeit,
die Michtigkeit des Kontinuums. Der Begrift des Masses oder
der der Dimension ist in dem Raume, dessen Elemente die
Potenzreihen sind, noch nicht erkldrt worden und allenfalis die
Gedankenginge der Herren Borel und Fabry stiitzen sich auf
keine explicit festgelegte Erklirung dieser Begriffe. Diese Ge-
dankengiinge also, wenn sie auch interessante Einblicke in die
Natur der Potenzreihen eroffnen, erweisen es keineswegs streng,
dass die Potenzreihen im Allgemeinen nicht fortsetzbar sind.

Es ist zweckmissig die Frage anders zu wenden. Man kann
in dem Raume von unendlich vielen Dimensionen, dessen Punkte
die im Einheitskreise konvergierenden Potenzreihen sind, ge-
wisse mengentheoretische Begrifte passend erkldren und folgen-
den Satz beweisen :

Die Menge der nichifortsetzbaren Potenzreihen hat nur innere
Punkte und st iiberall dicht. Die Menge der fortsetzbaren
Potenzreihen ist nirgendswo dicht wnd perfekt.

Dieser Satz kannr bewiesen werden, denn die vorkommenden
Begrifte des inneren Punktes, der iiberalldichten, der nirgends-
wodichten und der perfekten Menge sind mit volliger Bestimmt-
heit definiert worden. Alle diese Begriffe beruhen auf dem
Begriffe der Umgebung. Die volle Umgebung (g,, €5 &5 --.)
des Punktes a,, a,, a@,,... heisst die Gesamtheit aller Punkte
Uyy Uy, Uyy ..., die den Ungleichungen |

ny *°°

lg — g | <&y, |y —ay | <& ,... Ju —al|=<c¢
geniigen, wobei

€ =0 lim Ve, =1

n=— o

vorausgesetzt ist. Wenn die Potenzreihe

Z (, — a,) ®"

in einem grosseren Kreise konvergiert, als der Einheitskreis,
so gehort der Punkt w,, w, , w,, ... zur nichsten Umgebung des
Punktes «,, a,, a,, ... Es sind nur solche Zusammenfassungen
der Potenzreihen zu Mengen zuldssig, die keine Potenzreihe
von ihrer nichsten Umgebung trennen. Endlich heisst der



Punkt a,, a,, a,,... ein Haufungspunkt der Menge M, wenn
in einer beliebigen vollen Umgebung des Punktes a, , a, , @, , ...
ein Punkt gefunden werden kann, der der Menge M angehort
und der aichsten Umgebung des Punktes a,,, 5ty g a, , ... Dicht
angehort. |

Dieser Begriff des Haufungspunktes ist dem erwihnten Satz
zugrunde gelegt. Eine ausfuhrhchere Darstellung erscheint
in den Acta Mathematwa

4~.fM. le Prof. D* M. PLANCHEREL (Fribourg). — Sur la con-

 vergence d'umne classe remarquable d'intégrales définies. -
" Prenons comme champ fonctionnel Q I’ensemble des fonc-
tions f(x), définies dans ’intervalle (0, o) et de carré inté-
grable (au-sens de Lebesgue) dans cet intervalle, c’est-a-dire

telles que -
f fidz
0

soit finie. Coﬂsidéi*ons une transformation T faisant corres-
~pondre & toute fonction /' du champ Q une fonction T (f) du
méme champ. Nous caracterlserons cette transformation par
les propriétés suivantes :

a) linéarité , ‘
: T + fz) = T(fx) . T(fz) ’ :
T&f) = kT(f) , k constante ;
~ b) involution | 4
TT() = f .

c) limitation. 11 existe une constante M telle que

f[T ]2dw<M‘ff2dw.

- Une transformation veuﬁant ces conditions sera dxte une
transformation fonctionnelle linéaire, involutive et bornée. 1l
existe alors une fonction génératrice ® (x, y) permettant d’ex-
primer T (f) presque partout par la formule |

- ’ 3 -]
T() = -a—éf i9) 5 ®(@, 9) dy .

T



- Dansle cas du. g ’
! S ';3’,‘@ ').7 S 3 '
existe ‘presque partout et ot Pon ‘a
ff Bty dwdy— & ( ,y> d?(w; 0) — (0, y) + B0, 0)
0S4 £ SR TN
elle peut s’écrire | |

f) y)j cv(t, y

Dans ce cas @ (x ) est le noyau de la transformation T.
En general il n’est pas permis de permuter les deux inté-
grations successives de la derniére formule et d’écrire

T(f) = f fy)p(@, y) dy

Par contre, il est toujours possible de déterminer uue suite
de constantes an = oo telles.que

= hm ff Z,: 3/) dy
n Py o

presque partout. La suite ox dépend en général de la fonction f
et varie avee -elle. Il est, par suite, naturel de se demander
quelle hypothése sur la fonction £ permettrait de se débarrasser
de la suite paltleuhere an et d’assurer la convergenee pxesque

partout de
Lim f fly w(w, y
Er )

J’ai montré dans les Rendiconti dz Palermo tome 30, qu il suf-
hs(ut pour cela de supposex que

f FHa /wdaz

existe. En transposant aux « repleseutatlons intégrales » la ’
méthode que j’ai- employee pour etudler la convergence des
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séries de fonctions orthogonales j obtlens une hypothese plus
large et je démontre le théoréme suivant : TR
Soit v (x, y) le noyau d'une tmnsformatzon fonctzonnelle T-
linéwire, involutive bornée dans le champ des fonctions de carré
intégrable dans l’mtem;alle (0, o). Pour toute f(mctzon f(x)de
ce cka,mp, telle que -

L B o 7 J 2 (z)- log z dx

sott finte, la limile

lim f fy) ez, y)dy

existe presque pcwtout et elle repfrésente la trcm formee T (f ) de f.

5. M. le me W.-H. Youne (Geneve) — SW l’mtegrdtwn
“par rapport 4 une fonctwn a variation bomee

Dans le rapport que cet auteur a donné lul-méme a la boclete
- mathématique suisse, il n’a pas abordé la partie du sujet qui
se rapporte A la recherche de la fonction primitive. Recemmeﬁtk

il a.obtenu la généralisation parfaite des théorémes de M. Le=

~ besgue et de lui- -méme sur ce sujet. Les démonstrations sont '
fort snnples ‘On peut en eftet employe1 la méthode de M. dela
‘Vallée-Poussin. Les « fonctions majorantes et mmo:antes »
introduites par celui-ci xent;rent en effet d’une maniére tout a
fait natulélle dans le cadre de la theorle de M. Young ‘

Des1gnant par g(x) une fonction' crmssante on aura a cons1—
dérer non seulement des mtegrales et des fonctions sommableb
par rapport a g(x) mais aussi des nom‘”bres dérivés par rappoxt
a g(x) ; la mesure d’un ensemble devmndra la varlaﬁon de g'x)
par rapport a cet ensemble et, dans Ie cas ‘oll'cette vanatlon est
nulle, on dira que l’ensemble complémentaire existe presque par- ‘
: ’tout par rapport & g(x) Pour éviter des répétitions’ ennuyeuses&
- on’peut -omettre 1’expression « par rappoxt Y g(x) » dans les
~ énoncés. On ¢ aura alors cing théorémes prmc:paux N

10 §'il existe une Sonction {(x) intermédiaire (au sens. 7arge)_
enlre les deux- nombwes dérivés d droite d'une fonctzon contmue
F(x), et si f(x) est sommable, o bien
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i) f(x) est infini (4 oo ou — o<) dans tous les points d'un
~ensemble ayant la puissance du contenw ou bien

uw) Fx) — F(a) = f flx) dg(z) .

En particulier, par conséquent, st F(X) a un nombre dérivé A
sommable et fini sauf peut-étre dans un ensemble dénombrable de
points, on aura

Fig) — F(a)‘=f 4dgia) .

2° L'intégrale indéfinie d'une fonction sommable f(x) a f(x)
pour dérivée presque partout. | '

3° Si la fonction F(X), continue ou discontinue, est non-décrois-
sante dans un intervalle (a, b), Uun quelconque A de ses nombres
dérivés est sommable dans cel intervalle et U'on a

' f Adg(xz) = F(b) — Fa) — unefonction positive non décroissante.

4° Une fonction & variation bornée, continue ou discontinue, a
une dérivée presque partout, et les nombres dérwvés de la fonction
sont sommables. , A

5° Une fonction F(x) continue et & variation bornée, dont Tun
des mombres dérivés est fini, sauf peut-étre dans les points d'un
ensemble W ayant pas la puissance du continw est Uintégrale indé-
finie de ce nombre dérivé. _ :

Le premier de ces théorémes est moins général que le théo-
réme suivant obtenu par M. Young : '

Si F(x) est une fonction semi-continue inférieurement & droite

et supérieurement d gawuche, et si elle posséde un nombre dérivé @
droite (gauche) f(x) par rapport a g(x), sommable par rapport d
2(x) sur Uensemble S des points ot f(x) >0, on a les deux possi-
bilités :

1° f(x) = — oo dans les points d'un ensemble de puis-
sance C;
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2° F(x) est une smnz-mtégmle supémeure par mpport a g(x),
en eﬁet » ~

F(z) — F(a) f fz) dg(x) +

une fonctzon posztwe non-décrmssante Pour obtenir ces genera-
lisations il était nécessaire d’élaborer la théorie des nombres
~dérivés par rapport & g(x) d’une fonction F(x) qui est au moins
d’un coté semi-continue. De telles fonctions ont fait leur appa-
ritions & plusieurs reprises dans les recherches de M. Young,

~ et les théorémes qu’il obtient maintenant montrent de nouveau

Dintérét de ces fonctions. Il obtient entre autres un théoréeme
“du genre du théoréme de Dini, et qui contient ce dernier comme

cas spécial : :

St F(x) est semi-conlinue supériewrement & droite dans un
intervalle (a, b), les bornes supérieures des nombres dérivés d
gauche sont: toutes les mémes et coincident avec la borne supéfmeure
du rapport incrémental, les nombres dérivés et le rapport incré-
mental étant pris par rapport & x ou g(x), pourvu que i) g(x)
soit continue & droite, ou ii) F(X) n'est pas monotone et mon-
crowssant partout dans Uintervalle.

Discussion : M. Plancherel.

. Mee Grace Chlsholm YOUNG (Geneve) — Sur les courbes
sams tcmgente
Weierstrass a démontré que la fouction contlnue représentée
par la formule de Fourmer

»

Y b" cosazm

n—o0
n’a pas de dérivée. La question se pose: est-ce que la courbe
y = flx), ou fix) est la fonction de Weierstrass, n’a pas de
tangente? Pour ceci il ne suffit pas que la fonctidn n’ait pas de
- dérivée, car si elle avait une dérivée a-droite et-une dex ivée &
gauche, toutes les deux infinies mais avec des sighes opposés,
la courbe aurait une tangente smgtrhere, dort le point d’inci- -
dence serait un point de rebroussement de la courbe. D’apres
un théoréme connu, ceci ne peut avoir lieu que dans un ensemble
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dénombrable de points. On verra qu’en effetil'y a de tels points
de ,rebrouss'ement sur la courbe de Weierstrass, mais que, sauf
dans un ensemble de premiére catégorie et de mesure nulle,
chaque ligne passant par un point P de la courbe a un caractere
tangentlel pour la courbe dans le point P conmdere. )

‘ Dlscusuon M C. Calller M Raoul Plctet

. M. le Dt D. MIRIMANOFF (Geneve) et Mme Grace Chlsholm
YOUNG — Sur le théoréme des tuiles. -

‘Une tuile d’apres W. H. Young, lauteur du theoreme est
un élément de forme et de grandeur déterminées autour d’un
point spécial dit point d’attachement. L’énoncé est le suivant :
Etant donné un ensemble de tuiles sur ume droite, d(mt chacune
peut étre taallée autant que U'on veut, on peut trouver un nombre
fini ou une mﬁmte denombmble de tuiles, (M/ant les propriétés
suwomtes

‘1° la largeur de chaque tuile est plus petite que e

20 chaque point d’attachement est couvert par au Mmoins ume
des tuiles ;

30 le point A attachement P; de la tuzle dei w'est pas couvert
par une autre tuile; N

40 la somme des largeurs de tuiles differe de la mesure m (S)
de U'ensemble S des points d’ attachement de moins €.

Ici & et & sont des quantités positives choisies.

Si Uensemble est ferme, Zes tuzles peuvent élre trouvées en
nombre  fini.

La démonstration présentée est une élaboration par D. Miri-
manoff de celle donnée par 1’auteur sous une forme incom-
plete.

8. M. le Prof. L. CRB‘LIER (Berne—Blenne) — Stl’l’ un theoweme
partwulzer de geometme cmemm‘zque et quelques constructions de
tangentes lides o ce theoreme _ .
 Les résultats génér aux de la geometrle cmemathue peuvent
etre apphqueb avec succes 4 un trés grand nombre de méca-

1 Vou'L Crelier, Sy.stemes (inematzques (collectlon Sclentza) Gauthlel
Villavs, Paris, Chapmes IV.et VI :
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nismes partlcuhers et conduire ainsi & une:foule de resultats
~ de détail originaux et forts intéressants. . ¢ i oo o
Considérons en particulier, le; mécanisme, blen connu ‘« Ble]le-
- Manivelle ».  La- mamve}le étant- OB et la-bielle ' AB. Nous
prendrons le chemin de 13- bielle suivant le- dlametle OA et
nous le considérerons comme axe- des ok L’orlgme -gera_le
centre O. : : T ‘ .
‘Nous avons, . b
pour la base : ' (x2 —'i— y“‘) (l2 R” ‘-*;,— a:“’)” - R”x" J
pour la roulante : ' R*(x" -y’ flx)"’ =1’ “’(y?,%—,(x,— Z), ) -
- pour la courbe Cq: (2 — 1?) (x* + y*) + R%* = O.
Cette derniére courbe est une conchoide de la base par rapport
au centre O et dont la constante est R = OB

B

TA\TGENTES — 1, De la roulante Il suffit de lappeler que
celle-ci est une conchoide de conique par rapport a un foyer.
La constante de la.conique est 2R et celle de la conchoide — R.
~Soit M un tel point de la roulante; FsM est prolongé jusqu’en a
avec Ma = R ; a est le point de la conique. Nous construisons
la normale en @ au moyen du cercle directeur et du cercle
principal ; nous obtenons aJ. En F,, nous faisons F,J perpen-
diculaire & F,M; c’est la normale de 1’enveloppe de la droite
mobile pour la _position correspondante, et de cette maniére J
est le centre instantané nécessaire. -Nous en déduisons a priore
la tangente et la normale en M.

2. De la base. Soit C le point de la base pour la position
considérée OBA. Nous porterons-Aa = AB =1 sur le prolonge-
ment de la bielle AB et opposé-a B, puis’ OB =.0B = R sur
le prolongement correspondant de la manivelle QB; Nous aurons .
B,a paralléle & Oz, Soit maintenant BaB,d le trapeéze isocele
sur la base B,a et la diagonale B,B. 1l en resu}te B,B = ad =
2R, et B,0 = OB = am = md = R. En désignant le pomt de
coupe des dlagonales par D nous aurons encore Dd = DB et
aD 4+ DB = 2R. ' : PP

De cette maniere-D est un point de la conique (elhpse) de
foyexs o et B.et de constante 2R. Nous avons également, avec
DB’ perpendiculaire a dB, dB" = B'B pms AB' =R et OB =1;
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dans ces conditions D est encore le point de la courbe Cqs, et
nous en tirons DC = R. |

Examinons maintenant la tangente en C. La théorie des
‘mouvements épicycloidaux nous enseigne que la base et la
position correspondante de la roulante pour le point C ont la
méme tangente en C. En outre cette roulante correspond a la
conique de foyers a et B et de constante 2R. Nous appliquons
maintenant la construction de la tangente de la roulante. Nous
savons déja que le point nécessaire de la conique est D et nous
pourrions encore 1’obtenir en portant R depuis C sur OB. La

J

A 9

B.

tangente de la conique en D est évidemment DB’, perpendicu-
laire & ’axe des x, donc la normale est une parallele Dy & ce
- méme axe. D’autre part la normale de 1’enveloppe du segment
mobile OB dans la génération de la roulante est une perpen-
diculaire By & OB. Nous trouvons alors le centre instantané v,
relatif & notre conchoide de conique.

Il est maintenant facile de tracer la normale et la tangente
cherchée en C.

3. De la courbe Cz . Comme celle-ci est une conchoide de la
base, nous utiliserons la normale de la base en C et la normale
de ’enveloppe du segment mobile OB autour de O ; cette der-



niére est 05 perpendiculaire 3 OB. Le point & est ainsi le nou-
veau centre instantané de rotation et nous en déduisons sans
autre la normale, puis la tangente en D.

Trasecroires de a et d. — Nous savons que a est un point
fixe de la bielle avec BA = Aa = [. Sa trajectoire est une
roulette du mécanisme’ considéré. L’équation de cette courbe
s’appelle :

(@ — R* — 41’ + 5¢°)° = 16(R* — ¢*)(I* — ¥) .

Nous devons observer en plus que le mécanisme OBA et le
mécanisme symétrique travaillant & gauche de ’axe des y ont
la méme- base, et la méme courbe Csz . Comme nous avons
aussi B,A, = [, OB,A, est une des positions de ce mécanisme
symétrique. Avec A,d = [, la trajectoire de d est une roulette
analogue a celle décrite par a. En établissant son équation,
nous trouvons le méme résultat que pour le chemin de a ; en
conséquence les points a et d se déplacent sur la méme courbe.

Si nous considérons plus Spécialement la diagonale ad dont
les extrémités s’appuient sur la trajectoire (a) ou (d), nous
avons la une droite de longueur fixe, double de la manivelle,
disposée symétriquement par rapport & celle ci et passant tou-
“jours par le point correspondant D de la courbe Cq. Cette
droite donne lieu au théoréme suivant :

TatorkME : Dans le mouvement du mécanisme « Bielle- Mani-
velle », il existe une droite mobile de longueur fixe 2R, symétrique
avec le rayon OB, passant toujours par le point correspondant D
et telle que som miliew m glisse sur Uaxe des x pendant que ses
extrémités s appuient sur la trajectoire (a) d'un point a de la
bielle, avec Aa =1 -
~ou en d’autres termes : , .

Les cordes de la trajectoire (a) symétriques des rayons OB et
menées par les divers points D correspondants, sont de longueur
Jixe 2R et elles sont divisées en deux parties égales par Uaxe
des X. ' ‘



--9. M. le D* René de: SAD‘SSURE (Berne et Greneve) — La
Géometme des fewillets cotés. v : ’

M. René de Saussure, pouxsulvant l’etude de la Geometne
dite des « feuillets », expose un developpement récent de cette
géométrie obtenu en introduisant la notion du « feuillet coté ».
Les résultats de cette Stude ont été exposes dans les Arch des
Sc. Phys. et Nat de Geneve (1915) Rappelons seulement que
le «feuillet» n’est pas autre chose qu’un corps rlglde quel-
conque, considéré non pas en sa forme ou en sa grandeur, mais
seulement comme position. C’est cette position qui est prise
comme élément spatial primitif, donnant lieu & une nouvelle
géométrie de caractére quadratique et a 6 dimensions (quoique
située dans notre espace & 3 dimensions). En aftectant chaque
feuillet d’un coefficient numérique, appelé cote, on obtient le
feuillet « coté », qui donne lieu 2 une géométrie & 7 dimensions
(toujours située dans notre espace) et dont le caractére n’est
plus quadritique mais linéaire. Les formes fondamentales de
cette géométrie ont recu de ’auteur les noms de Mmono-, bi-,
tri-, tétra-, penta-, et hexacouronne.

L’hexacouronne est le lieu des feuillets cotés (en nomble > )
qul satisfont a l’equatlon

5 f—l—tp—htangz,

f étant la cote d’un feuille fixe F (appelé f‘euilletl\centml) ; o, la
cote du feuillet mobile & qui enigendre 1’hexacouronne ; enfin 4
et w, la translation et la rotation du mouvement hélicoidal qui
permet de passer de la position fixe F & la position .

Toutes les autres polycouronnes peuvent étre définies comme
’ensemble des feuillets cotés communs & 2, 3, 4, 5 ou 6 hexa-
couronnes. Finalement : 7 hexacouronnes ont en commun un
feuillet coté et un seul. De sorte que réciproquement : 7 feuillets
cotés déterminent une hexacouronne, 6 feuillets une pentacou-
ronne, etc., 2 feuillets une monocouronne.

10. M. le Prof. C. CaiLLER (Gen‘éve). — Sur la théorie
analytique des corps solides cotés. ‘ .
M. C. Cailler présente quelques developpements sur ]es prin-
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‘cipes analytiques de la théorie des corps solides cotés ou feuillets
cotés, due essentiellement a M. de Saussure, qui I'a étudiée
surtout par la voie géométrique. C’est M. E. Study qui, le
premier, a représenté par des coordonnées d’un emploi com-
mode les positions d’un solide dans l’espace. Rappelons la
formation de ces coordonnées ou 1nterv1ent la notion du biqua-
ternion qui remonte a Cayley et Chﬁord

Soient 4, , 7,, ¢, les unités quatermonmennes i une nouvelle
unité complexe permutable avec les précédentes et telle que
i* = 0. Un corps solide congruent 3 un systeme 'd’axes coor-
donnes est, equlvalent 4 un mouvement de ce dernier; & son
tour le-mouvement se ramene & une rotation, dont les constantes
de Rodrigues sont ¢, , ¢, , ez , €, combinée avec une translation

de composantes a,, a,, Les 8 coordonnées homogeénes du
corps {jk} seront selon M. Study, les suwan‘ces “
:A‘(‘)' = € , ':Ao" = — é (?1“1_"‘,‘32“\2 = egbaa) s
| A;, = o /5 4, = + % (?oal + et — €303) ,
A, = e, "Az".—:- + % (e0a2 + e a3 — eay) ,
A‘3‘.=‘é3 y AN = + é”(eoag L ea, —.elaz,) .

elles vérifient les conditions

Y4t =1, Y 4,4, =0,
(k) j o (k) :
de sorte que le corps occupe dans 1 espace oo posmons comme
il convient.
Désignons par un accent la partie réelle d’une quantité com-
plexe, par deux accents la partie 1magmau'e de cette méme

o quantlte, ét posons

4 — 4 + mk" et A=dot iy + ipdy + igdy
le blquatermon A ainsi formé represente analythuement le

corps ou le mouvement donné. On montre que si A est le
conjugué de A obtenu en changeant dans A le signe des quatre
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quantités ¢, le déplacement d’un point solidaire du corps mobile
est représenté par la formule quaternionnienne |

dans laquelle

o =14 1(4, + tx’ + ,35') ,
6 =1+ i(ha, + taxs + tax3) ,

z, et x,’ désignant les coordonnées du point avant et aprés le
mouvement.

Pour s’élever a la conception du corps coté, il suffit de
remarquer que la formule précédente ne change pas quand on
multiplie A par le facteur scalaire (1 -+ i), et partant, 4 par
le facteur conjugué 1 — im; en effet, le produit des facteurs
ainsi introduits vaut 1 — ¢%w? = 1.
~ La quantité arbitraire » prendra le nom de cote du corps; le
corps coté aura pour représentant analytique un biquaternion

o= (14 i) 4 = ay + 4, + Gas + 2323 = (7o' + 2z,")
+ 4y (e +4") 4+ ...

ol
de la résultent pour les 8 coordonnées {ak,, } du corps coté les
k
valeurs

a, = 6, a," = we, + A (k=0,1,2,3)"

lesquelles satisfont les équations

(@)’ = a* + o/ + a”* + a5 =1,
1

é (az)" p— ao’aon + al'aln + azlazn + 13’0(3" — w .

De la sorte, un corps et une cote déterminent ensemble, au

4

o4,
signe pres, le tableau {ak,, } ; réciproquement 8 nombres quel-
k

conques o, définissent, d’une maniére unique, un corps coté,
pourvu que ces nombres vérifient la condition (an) = 1.
Il est d’ailleurs aisé d’assigner la signification géométrique

’

- %k . - .
des coordonnées { o }, en la faisant dériver de celle des inva-
k .

riants (o) et (2B)” de deux corps a et 3, de cotes w, et w,. Si
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a et b désignent 1'angle de rotation et le glissement du mouve-
ment hélicoidal conduisant un de ces corps sur I’autre, on
trouve facilement

! a
(2ﬁ)’ = Z ak'pk’ = CO08 § .

(ap)" =§ e B + 4"Br) = (0, + @) cosg — g sing .

Ce dernier invariant qu’on peut nommer le moment relatif
des deux corps joue le role principal dans I’étude des polyséries
linéaires de corps cotés. M. de Saussure a donné la théorie
géométrique de ces polyséries et les a désignées sous le nom
générique de polycouronnes; elles sont semblables aux systémes

A o,
de vis de Ball. L’emploi des coordonnées [ ak,, } permet de pré-
% * " -k

senter d’une maniere tres claire ’ensemble de ces résultats.

M. Cailler termine sa communication en insistant sur les
analogles que présente, avec les théories de la Statique ordi-
naire, celle des corps non cotés mais doués d’une masse ou

’

d’une intensité a. Ce sont les corps { Ak,,

} vérifiant la condition
k

Z iAk'Ak" =" 0
-k
mais donnant

LA,;?—— @, aulinde Y A4f=1.

Un systéme de corps massifs (4, a), (B, b), (C, c)... est
toujours équivalent & un corps coté o : deux systémes S et &',
équivalents au méme corps coté «, sont réductibles’un a I’autre
par une opération toute semblable & la composition des vecteurs
concourants. Ainsi se trouve fermé le cycle des comparaisons
entre la Géométrie réglée d’une part et celle des corps cotés de
Pautre.

11. M. le Dr H. BERLINEB. (Bern), — Eme neue analytisch-
projektive Geometrie.

In der Ebene legen wir ein Dreleck ABC und 3 Zahlen
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2,5 2, 5 2, zu .Grunde und: weisen in einem Grundgebilde um
einen Punkt P und auf einer Geraden g den 3 Strahlen PA, PB,
PC bezw. Punkten gBC, gCA, gAB entweder die Zahlen z,,
2,, 2, selbst als Abszissen oder (bei Zugrundelegung einer
Winkeleinheit) die 3 Winkel z,, z,, 2, als Ordinatenwinkel
(vergl. Berliner, Involutionssysteme in der Ebene des Dreiecks,
Braunschweig 1914, Nr. 26) zu und jedem weiteren Element
s die durch

‘53_zl"z*‘zl

—p—

iy =(PA,PB,PC, )

bezw. = (¢BC, gCA, gAB,s) bestimmte Abszisse z (vergleichen
v. Staudt, Beitrige zur Geometrie  der Lage, § 29), oder den
durch .
1gH —tgx . 180 — 184 _ by pp pg
tgo; —t82 " tgw —tg 2 , o

bzw. = (¢BC, gCA, gAB,s), bestimmten Ordinatenwinkel . Es
sind somit einem Grundgebilde 1. Stufe im allgemeinen ein
Abszissen- und ein Ordinatenwinkelsystem zugeordnet. Sind
P und g inzident und sind « und y die Abszissen oder Ordinaten-
winkel von P in dem g und von g in dem P zugeordneten Systeme,
so ist x = y. Wir kdnnen auch von der Abszisse und dem
Ordinatenwinkel eines Punktes P (und einer Tangente) auf
etner Kurve sprechen; darunter sind diejenigen zu verstehen,
die P in den seiner Tangente zugeordneten Systemen zukommen.

Die Abszissen- und Ordinatenwinkelsysteme fithren nun zu
mehreren Punkt- und Linienkoordinatensystemen in der Ebene.
Davon sei nur folgendes erwihnt. Wird ein auf keiner Seite
von ABC liegender Punkt D festgehalten, so werden durch einen
Punkt P 2 Ordinatenwinkel ¢, ¢ im allgemeinen eindeutig be-
stimmt, ndmlich der Ordinatenwinkel ¢ von DP in dem D und
der Ordinatenwinkel ¢ von P in dem DP zugeordneten Systeme;
v, ¢ sollen dann die 1. und 2. Koordinate von P heissen. An
Stelle der Ordinatenwinkel konnen ebensoorut Abszissen als
Koordinaten verwendet werden. . Cee

Die Abszissen- und Ordmatenwmkeloystexne fithren fer ner zu
je einer Massgeometrie. Wir definieren die Entfernung zweier
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Punkte: und den Wikkel zweier Geraden, als die Differenz der
Abszissen oder Ordinatenwinkel der Punkte bezw. Geradenin dem
" threr: Verbmduﬁgsgemden bezw. ihrem. Schmttpzmkt als Trager
eines. Grundgebtldes Ztigeordneten Systeme. Die Entfernuig und
der Winkel. sind so auch dem Vorzeichen nach bestimmt: ‘Per
Kreis ist eine .C*und durch jeden Punkt gibt. es 3 Parallele zu
~einer Geraden, wenn Gerade parallel genannt werden, wenn sie
den Winkel O bilden.

- Im Raum legen wir ein: Tetraeder ABCD (BCD—— a, CDA= 3,
DAB =, ABC = &) und drei Zahlen z,, 2,, Z;*zu Grunde
und weisen - in einer Punktreihe auf einer-Geradeén g den drei
Punkten go., 93, g7, in* einem Ebenenbiuischel um g den drei
Ebenen gA, ¢gB, ¢gC -und in eiiem Strahlenbuischel, dessen
Triger -ein Punkt P und eine Ebene ¢ sind, entweder (1. Art) -
den 3 Strahlen (P,.cBC), (P, ¢CA), (P, eAB) oder (2. Art)
(P, e37), (P, eya), (P, caf) die 3 Zahlen z,, 2, , 2, , als Abszissen
zu und jedem weitern Element die analog wie oben zu be-
stimmende Abszisse. Anstatt Abzissen konnen auch Ordinaten-
‘winkel zugewiesen werden. Es sind somit einem Grundgebilde
1. Stufe einl bezw. 2 Abszissen- und 1 bezw. 2 Ordinatenwinkel-
systeme Augeordnet Ferner wird durch ABCD einem Grund-
gebllde 2.-Stufe, dessen Trager ein Punkt P oder eine Ebene ¢
ist, ein Koovdmatensystem zuoemduet ‘in dem das Grunddrei-
kant P (ABC), der Gr undstl ahl PD und die Polare i von PD be-

ziiglich P (ABC) als Grundebene bezw. das Gr unddreieck & (2£7v),
die Grundlinie <& und dei Pol von <3 beziiglich ¢(afy) als Grund-
punkt die Basis bllden und fur die Koordlnaten Abszissen oder
Oldmatenwmkel 1. bezw 2. Art zu verwenden sind, Sind P
und ¢ inzident und sind z,y die 1., 2. Koor dinate von P in dem,
e und &, ul die 1., 2. von ¢ in dem P als Trager eines Glund-
’ geblldes 2. Stufe zugeon dueten Koor dmatensysteme S0 ist .= §,
Yy =" Uhnter der 1. und 2. Koordmate eines Punlktes P (einer
Taugentlalebene und Tangente) auf einer Fliche sind dlejeulgen
zu verstehen, die P in dem seiner Tangentzalebene zugeordneten
Koordmatensysteme 2ukomimen. |

Die Abszigsen-oder Ordinatenwinkel- und Koordinatensy steme
der Grundgebilde 1. bezw. 2. Stufe fithren zu mehrei'en Punkt-,
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 Ebenen- und Linienkoordinatensystemen im Raum. Davon sei
nur folgendes erwihnt. Wird ein auf keiner Fliche von ABCD
liegender Punkt E festgehalten, so werden durch einen Punkt
P drei Ordinatenwinkel ¢, , ¢,, ¢, bestimmt. ndmlich die 1.
und. 2. Koordinate ¢, , ¢, von EP in dem E als Triger eines
Biindels zugeordneten Koordinatensysteme und der Ordinaten-
winkel p, von P in dem EP als Triger einer Punktreihe zu-
geordneten Ordinatenwinkelsysteme. Fernes werden dann
durch eine Gerade g vier Ordinatenwinkel ¢, , ¢,, ¢,, ¢, be-
stimmt, ndmlich die 1. und 2. Koordinate ¢, , ¢, der Ebene Eg
in dem E als Tréger eines Biindels und die 1. und 2. Koordinate
Oyy $, VOD g in dem Eg als Triiger eines ebenen Feldes zuge-
ordneten Koordinatensysteme. ¢,, ¢,, ¢, sollen dann die
Koordinaten von P und ¢, ¢,, ¢,, ¢, die vorn g heissen. Eben-
sogut kann man aber auch Abszissen als Koordinaten ver-
wenden. | '

Ausfithrliches hieritber wird der Autor demnichst in einer
grosseren Arbeit verdffentlichen. '

12. M. le professeur Louis Korrros (Zurich). — Sur une
dualité.

On peut établir entre la géométrie ponctuelle a4 4 dimensions
et la géométrie des sphéres une liaison telle qu’a un point, une
droite, un plan et un espace a 3 dimensions de la premiére
correspondent respectivement une sphére, un cercle, une paire
de points et un réseau de sphéres (toutes orthogonales & une
sphere fixe) de la seconde. |

On trouve ainsi (parmi beaucoup d’autres') quelques théo-
remes qui n’ont pas, & notre connaissance, été énoncés jusqu'’ici;

“par exemple :

1. Etant données 2 paires de points p, et p, et une sphere: s,
il existe, en général, une seule paire : « de points de s telle que les
2 paires z et p, d’une part, z et p, d’autre part, soient sur un
cercle. '

2. Etant données 3 paires de points : p, p, p, et une sphére: s,

1 Les nombreuses propri€tés des cyclides s’établissent trés simplement
par ce procédé.
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il existe, en général, un seul cercle de s qui soit sur une sphére
avec p, , respectivement p, et p, . |

3. Etant donnés 3 cercles quelconques ¢, ¢, ¢, de I’espace, il
existe toujours un plan, et en général un seul, qui coupe les
3 cercles en 6 points d’un nouveau cercle : a, (cercle associé
accc).

Sur chaque aréte du triedre formé par les plans des 3 cercles
donnés, il y a un point, et en général un seul, qui a la méme
puissance par rapport aux 2 cercles adjacents. Le plan de jonc-
tion de ces 3 points est le plan cherché.

4. Etant donnés 4 cercles : ¢, ¢,c, ¢, , en les combinant 3 & 3,
on obtient 4 cercles associés : a,a,a,a, (a, est ’associé de
¢, Cs Cy, €tc.). Si ’on désigne par s; la sphére orthogonale aux
deux cercles c; et o, (1 = 1, 2, 3, 4) on peut.prouver que les
4 sphéres : s, s,8,s, sont orthogonales & un méme cercle : ¢; ;
nous ’appellerons le complémentaire du groupe (¢, c, ¢, ¢,)-

Les 5 cercles : c,...c, jouissent de propriétés symétriques ;
chacun est le complémentaire du groupe formé par les 4 autres.
En les combinant 3 & 3, puis 2 4 2, on trouve respectivement
10 cercles associés et 10 sphéres analogues aux s, . Ces
10 sphéres forment avee les 15 cercles une configuration ¢urieuse
telle que chaque sphére soit orthogonale & 6 cercles, chaque
-cercle étant orthogonal & 4 sphéres. Les 15 cercles peuvent se
réunir de 6 maniéres différentes en groupes de 5 jouissant des
mémes propriétés que c,.. .c, .

5. Par une transformation corrélative dans I’espace & 4 dimen-
sions, on trouve que 4 paires de points p, p, p, p, choisies arbi-
trairement déterminent d’une maniére unique 10 sphéres et
11 autres paires de points telles que chaque sphére passe par
6 paires de points et que chacune des 15 paires soient situées
sur 4 spheres.

La paire p, complémentaire du groupe (p, p, p,p,) jouit d’une
propriété intéressante; sur une sphére quelconque, il n’existe
pas, en général, de cercle situé sur une sphére avec p, , respec-
tivement p,, p, et p, ; mais si la sphére passe par p, (condition
suffisante, mais pas nécessaire), elle contient toujours un tel

cercle, et, en général, un seul.
, -
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13. M. le D* Ferd. Goxserd (Zurich). — Extensions d’un théo-
réme de Poncelet. , |

I. M. Gonseth expose trois extensions du théoréme de Pon-
celet : S’il existe un polygone inscrit & une conique et circonscrit
a une seconde conique, il en existe une simple infinité, d'un méme
nombre de cotés.

A) 8’il existe un polygone gauche inscrit & une cubique
gauche C,, et dont les plans joignant deux cOtés consécutifs
sont osculateurs & une seconde cubique gauche T, , si de plus
C, et T, sont réciproques dans un systéme focal arbitraire, il
existe une simple infinité de pareils polygones gauches.

La condition que C, et T, soient réciproques dans un systeme
focal arbitraire est essentielle.

II. Viennent ensuite deux extensions du théoréeme de Weyr*:
S’il existe sur une conique un groupe de » -+ 1 points dont
toutes les droites de jonction de tous les points 2 & 2 sont tan-
gentes & une courbe de classe n, T, il existe sur la conique une
simple infinité linéaire de groupe de = - 1 points dont les
droites de jonction touchent T, . -

Ce théoreéme est évidemment lui-méme une généralisation du
théoréme de Poncelet. Ces extensions sont :

B) S’il existe sur une quadrique une courbe de (n +1)*" ordre
dont toutes les bisécantes sont comprises dans un complexe
de n*™ ordre, C, , il existe sur la quadrique une simple infinité
de courbes de (» 4 1)~ ordre dont toutes les bisécantes sont
comprises dans C,, . g

C) N'il existe sur une cubique gauche C, 2 groupes de 7 -2
points dont tous les plans de jonction de tous les points 3 & 3
dans chaque groupe touchent une méme surface de n*»° classe,
il existe sur la cubique gauche une double inflnité linéaire de
pareils groupes de » + 2 poiits.

Discussion : M. Grossmann.

1 Mathematische Annalen.
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