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I

Sektion fiir Mathematik und Astronomie

zugleich Hauptversammlung der Schweizerischen
Mathematischen Gesellschaft

1. M. René pE Saussure (Berne). — Sur le mouvement le
plus général d’un corps rigide en tenant compte des vitesses.

On admet généralement que le mouvement le plus général
d’un corps rigide de forme quelconque est le mouvement héli-
coidal, c’est-a-dire que: étant données deux positions quel-
conques C'et C” d’un corps rigide, on peut toujours faire passer
ce corps de la position C & la position C’ par une rotation
autour d’une certaine droite X et un glissement le long de cette
droite, et cela n’est possible que d’une seule maniére. Il en
‘résulte que lorsqu’un corps rigide en mouvement passe par
une série de positions connues C, C', C", etc., on peut obtenir
une représentation approchée du mouvement de ce corps, en
remplacant le mouvement réel par une série de mouvements
hélicoidaux CC’, C°C", C"C", ete. tous parfaitement déterminés
par les positions connues C, C’, C", ete. Cette solution se rap-
proche d’autant plus du mouvement réel que les positions
données C, (', C", ete. sont plus voisines les unes des autres
elle est donc parfaite au point de vue géométrique; mais au
point de vue mécanique, elle n’est pas complete puisqu’elle ne
tient pas compte de la vitesse avec laquelle le corps rigide C
se déplace.

Comment tenir compte de cette vitesse? Remarquons que
lorsqu’un corps rigide C tourne et glisse sur une droite fixe X,
le glissement n’est pas nécessairement proportionnel a la
rotation ; il y a donc ici un élement arbitraire dont on pourrait
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se servir pour tenir compte de la vitesse avec laquelle se meut
le corps C.

La solution que nous proposons est basée sur la notion des
Jeuillets cotés, notion que nous avons introduite dans notre
Géométrie des feuillets*. Un jfeuillet est ’ensemble des élé-
ments géométriques nécessaires et suffisants pour déterminer
la position C d'un corps rigide de forme quelconque. Par
exemple, un point M une droite D passant par M et un plan
P passant par D constituent un feuillet parce que la position
de la figure MDP suffit pour déterminer la position C d’un
corps rigide qui serait invariablement relié au feuillet MDP.
On sait que les systéemes de feuillets sont tout & fait analogues
aux systemes de droites : on peut définir la position d’un feuillet
au moyen de 8 coordonnées homogenes.

Lorsqu’on associe & une droite un coefficient numérique, on
obtient I’élément que R.S. Ball a appelé une vis®: au point de
vue géométrique, une vis est une droite ordinaire 4 affectée
d’une cote a (droite cotée). Les systemes fondamentaux de
droites cotées ont été étudiés par Ball; ainsi par exemple
deux droites cotées A (o) et B () déterminent la monosérie
fondamentale et cette monosérie a la forme d’un conoide de
Pliicker. De méme, si 1’on associe a un feuillet C un coefticient
numérique - on obtient un feuillet (ou corps) coté C (y) et les
systemes de feuillets cotés seront analogues aux systemes de
droites cotées. Dans une prochaine étude qui paraitra dans les
Arch. des Sc. Ph. et Nat., je me propose d’étudier les formes
fondamentales de la géométrie des feuillets cotés; nous verrons
alors que la monosérie fondamentale peut étre définie comme
le liew des corps C symétriques d'un corps fixe Co, par rapport
aux différentes génératrices d'un conoide de Pliicker. 1l suffit de
deux corps cotés C(y), C'(y") pour déterminer complétement
ce lieu. En effet, soit X 1’axe du mouvement hélicoidal qui
permet de passer de la position C & la position C": considérons
une droite quelconque I rencontrant 1’axe X & angle droit et

1 Voir Arch. des Sc. Ph. et Nat., un article intitulé La géométrie des
feuillets cotés qui paraitra en janvier 1915.
2Voir Theory of Screws, de R. S. Ball, Dublin 1876.
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construisons le corps Co symétrique du corps C par rapport a
la droite Z. Il est facile de voir que le corps C, sera aussi
symétrique du corps C' par rapport & une droite I’ rencontrant
aussi ’axe X & angle droit. Si ’on associe & la droite I une cote
égale & la moitié de la cote ¢ relative au corps C, et & la droite
I’ une cote égale a la moitié de la cote " relative au corps

C’, les deux droites cotées [ (%) et I’ (:-;—) déterminent un

conoide de Pliicker. Si donc on construit tous les corps symé-
triques du corps fixe Co par rapport aux génératrices de ce
conoide, on obtiendra une monosérie de corps parmi lesquels
se trouveront les deux corps donnés C'et C'. Ce probleme n’a
qu'une solution, car cette solution ne dépend pas de la maniére
dont on choisit la droite Z. En outre, & chaque génératrice du

conoide de Pliicker correspond une cote déterminée -2'-' et une

position déterminée C, du corps qui se meut en restant symé-
trique du corps fixe Co.

Supposons maintenent que la cote y. représente 1’époque &
laquelle le corps mobile occupe la position Cr, notre probléme
se trouve complétement résolu, puisque étant données deux
positions C et C’ occupées respectivement par un corps mobile aux
époques « et y', nous avoms réussi 4 interpoler entre ces deux
positions une série continue de positions Cn d chacune desquelles
correspond une époque définie yo. La solution reste la méme si
les corps C et C’ sont infiniment voisins 1’'un de ’autre: dans
ce cas les époques correspondantes y et ' sont aussi infiniment
voisines ; la série des corps C. et des époques 7. représente
donc bien le mouvement le plus général d'un corps rigide quel-
conque en tenant compte des vitesses.

2. Dr. S. MauperLt (Bern). — Die Stkularglieder in der
Himmelsmechanik und ihre Bedeutung in der Stabilitdtsfrage.
Die Integration der in der Himmelsmechanik auftretenden
Difterentialgleichungen kann auch heute noch nur in ganz
seltenen und besonderen Fillen anders als durch sukzessive
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Néaherung erfolgen. Die dabei gefundenen Losungen haben
dann im allgemeinen die Form

(1) Y Atm cos vt 4+ Y Btm sin »t,

worin ¢ die Zeit und m eine ganze positive Zahl bedeutet.
Insbesondere ergeben sich solche Ldosungen bei der Integration
der linearen Differentialgleichungen zweiter Ordnung mit
periodischen Coeffizienten, die in der Himmelsmechanik eine
hervorragende Stelle einnehmen. Ist m =0, so besteht (1)
aus einer Summe von reinperiodischen Gliedern, die in ihrer
Gesamtheit die hinreichende Bedingung dafiir darstellen, dass
das betrachtete System von aufeinanderwirkenden materiellen
Punkten (Himmelskorper) unendlich oft und beliebig nahe zur
Ausgangslage, bezw. zur urspriinglichen Konstellation zuriick-
kehrt. Notwendige Voraussetzung dabei ist nur, dass die in
(1) auftretenden Coeffizienten A und B die tblichen, fiir die
Convergenz trigonometrischer Reihen geforderten Bedingungen
erfiilllen. Nach dem an anderer Stelle (vergl. des Verfassers
Untersuchungen tiber Stabilitit: 1908 iiber Stabilitit im
strengen Sinne, 1910 itber Stabilitit dynamischer Systeme in
der Mechanik des Himmels, 1911 iiber Kommensurabilititen
im Sonnensystem und 1913 tiber Stabilitit im Sonnensystem
mit besonderer Beriicksichtigung der sonnennahen Planeten)
gegebenen Stabilititsbegrift hat man es also hier mit einem
stabilen System zu tun. Im Gegensatz zu diesem speziellen
Fall steht der ebenso spezielle, wo die Losung der gegebenen
Difterentialgleichung nur Glieder mit reinen Potenzen von ¢
enthilt, also aus reinen Sikulargliedern besteht. Das Auftreten
solcher Glieder wurde von jeher als Kriterium fiir Unstabilitét
angesehen, ebenso wie das Auftreten von nur rein periodischen
Gliedern als Kriterium fiir die stabile Bewegung gilt. Wahrend
indessen hier, wie in den obengenannten Abhandlungen ver-
schiedentlich dargetan wurde, noch Voraussetzungen Ttber
Convergenz gemacht werden miissen, ist dort die Unstabilitit
der Bewegung ohne Einschrinkung als erwiesen anzusehen.
Zumeist ergibt sich diese Tatsache ohne strenge Untersuchung
unmittelbar aus der Art des vorgelegten Bewegungsproblems.



— 97 —

Ein typisches Beispiel hiezu liefert die Bewegung eines Planc-
ten in einem circumsolaren Medium (Mitteilungen der Berner
Naturforsehenden Gesellschaft 1913) von gegebener Dichtig-
keit. Schon die erste Ueberlegung lidsst hier die stetige Anni-
herung des Planeten an die Sonne erkennen und der mathe-
- matischen Analyse bleibt nur iibrig, die Art und etwa noch die
Dauer der Anndherung festzustellen. Dass da periodische
Glieder nicht auftreten konnen, diirfte jedenfalls auf den ersten
Blick klar sein. Je nach den Voraussetzungen, unter denen
man die Bewegung vor sich gehen ldsst, erhdlt man denn in
der Tat auch die verschiedensten Resultate, die aber alle nur
rein sikulare Glieder aufweisen. Im einfachsten Falle ergeben
sich beispielsweise fiir die rechtwinkligen Coordinaten x und y
des Ortes, an dem sich der Planet zur Zeit ¢ befindet, die
Ausdriicke

x = Aexp (— a%) + Bexp (— f%)

y = Cexp (— o’t) + Bexp (— p°t)

(2)

oder zwischen « und y die Beziehung
3 (Cx — Ay)= : (By — Dx)#* = (BC — AD)<*-#

Der siculare Charakter der rechten Seite von (2) ist hier
offenbar, indem fiir zunehmende Werte von ¢ sowohl x als
sich dem Grenzwert o nidhern. Die Bahngleichung (3) stellt
eine spiralihnliche Curve dar, auf der sich der Planet mehr
und mehr der Sonne nihert, um schliesslich mit derselben
zusammenzutreften. Ist in (1) m 30, so sind die rechtsstehen-
den Glieder gemischt sicular und die Untersuchung dieser
Losung fiihrt auf besonders bemerkenswerte Resultate, bemer-
kenswert namentlich in Hinsicht auf die Art, wie bei der Inte-
gration der Differentialgleichungen der Himmelsmechanik und
verwandten Gebieten solche Glieder auftreten. Der Umstand,
dass dieselben auch in solchen Problemen der Mechanik auf-
~ treten,in denen die Stabilitat der in Frage stehenden Bewegung
nicht zweifelhaft ist, hat den Gedanken nahegelegt, dass das
eingangs erwidhnte Integrationsverfahren damit in Zusammen-
hang stehen konnte. Wie der Verfasser in der zweiten der oben
zitierten Abhandlung gezeigt hat, trifft dies in der Tat in

7%
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einem dort behandelten Falle wirklich zu. Dagegen wire es
verfritht, hieraus Schliisse auch hinsichtlich anderer hieherge-
gehorender Probleme zu ziehen. Jedenfalls sind die Untersu-
chungen in dieser Richtung noch fortzusetzen.

3. M. le Prof. D* D. Mirimanorr (Genéve): Sur le « Tile
Theorem» de M. W.-H. Young.

4. M. le Prof. D* J. FraneL (Zurich) : Sur les formules som-
matoires.

- 5. M. le Prof. D* Fr. DamigLs (Fribourg). — Nouwvelle démons-
tration du théoréme de Pohlke.

Trois vecteurs coplanaires (OAx) = ax (k = 1, 2, 3) peuvent
toujours s obtenir par la projection paralléle de trois vecteurs
égaux rectangulaires, pourvu que parmi les quatre points
0, A,, A, A,, il Wy ait pas plus de trois en ligne droite.

1. Pour quun systéme de vecteurs-unités rectangulaires
i, 1,, 1., lorsque la projection se fait dans la direction d’un vec-
teur * par des droites de longueurs z,, x,, x,, donne des
vecteurs proportionnels aux ag, il faut que les vecteurs
i,1,,1,t, les scalaires z,, z,, x, et le facteur de proportion-

nalité m satlstassent a

i — &yr = may 15.13, = 0 .y = 1
(1) i2 — Xt = My ig.il =0 iz.ig =1 r.r =1
i3 — &3t = Mag 1.1 =0 3.3 = 1

0

Nous cherchons 1° ]le vecteur T en fonctlon des 1, le

facteur m, 3° les scalaires xk.
2. Les ax étant coplanaires, il existe des nombres px tels que

(2) oy + pats + psts =0t +pt o =1

Multipliant les équations (1) par les px on obtient donc en

ajoutant
(3) t = il 4 Mais + Msis

(4) WXy 4 Moty + Mz = t.(Taly + @ala + Xslg) = 1.8 =1
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3. Formons maintenant & 1’aide des équations (1) deux -

«dyadiques » (Gibbs-Wilson, Vectoranalysis Chap. V) avec
Jeurs doubles produits scalaires et vectoriels : '

(5) D= (i, — ax)iy + ... =1- 1

(6) ' ¥ = a3ty + asty + asis

(7) | & =m¥?

(8) PP=¢: b =1 + r.r = mP¥P? = m*a® + a* + a%)

9) - Gy =@ ¥ D = tr = m?¥, = may X a3 i, + ...)

(10) D = @, [Py =1 = wty?, = m‘*(ai’za,ﬁ3 sin® a; + ...)

= 4m*c” | uhutu’s

Les angles (a,, a,) etc. sont «,, o, , a,. La surface du triangle
formé par les | prar | est . L’«idemfacteur» est I. Les équa-
tions (8) et (10) fournissent immeédiatement

,  Pte VI 4V

,11 _ & == j: 1
(11) m S, ( )

4. Nous introduisons maintenant trois vecteurs auxiliaires
coplanaires a%lx, faisant des angles ({,, [,) = 2a, etc. Leur
somme [ satisfait aux relations: :

? —( -+ a% + a%)? — 4(aa% sin? a, 4+ ...) = P — 4¥7,
@l = ah(a oy cos 273 + oy cos 2) = @} W — 2WH(uty + %)

Si donc nous élevons au carré la premiere des équations (1)
nous aurons

(1 — u)* = 2-1:42 [(Tz + & VI T 4P a2 — 2¥5L(1 — u?)]
—-2TJ (I I1 +8[Ii
ce qui n’est positif que lorsque : — 1. En appela.nt ([, le) =

2k nous aurons.enfin

(12) xx = —{—thakCOS@k‘/Z/TzlEﬂk-i-SkAk (e==1)

5. On démontre ensuite sans peine que les vecteurs, de
grandeurs proportionnelles aux | ax |

(13) ik — (ux + exdi)x
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sont coplanaires et font des angles égaux & ceux formés par les
ar seulement, lorsque les ¢« ont tous les mémes signes ou tous
des signes contraires & ceux des cos ®x. Il y a donc deux
solutions.

La construction de la normale au plan contenant les vecteurs
(13), donnée par le produit vectoriel de deux de ses vecteurs

(14) (U + e d)iy + (ue + &245)1 + (us + 334’3)i3_
ou (a.agsina; + a, cos @, V)i, + (asa, sina, = a,cos @, Vilis +. ..

ne présente aucune difficulté. Il en est de méme du vecteur v
donnant la direction des droites projetantes :

(15) ' Mty + st + pgis
ou ayds sin a1, + asa, sin a,iy; 4+ a,a, sin agis

6. M. le Prof. D* M. Praxcuerern (Fribourg): Un théorémne
de convergence des représentations intégrales d'une fonction arbi-
traire.

7. M. le Prof. Dr Louis KorLros (Zurich). — Quelques pro-
blemes de géométrie.

1. Sur les sphéroides. — Dans la séance du 1° avril 1914 de
la Société mathématique de France, M. Lebesgue a énoncé
quelques propriétés des courbes de largeur constante, des
orbiformes, comme il les appelle; il a rappelé, en particulier,
que toutes les orbiformes de largeur donnée d ont la méme
longueur, que le cercle a la plus grande surface et que 1’orbi-
forme d’aire minimum est le triangle curviligne formé de trois
arcs de cercle ayant pour centres les sommets d’un triangle
équilatéral et pour rayon le coté d de ce triangle.

On peut se demander §’il existe des théorémes analogunes
dans 1’espace, entre autres si les surfaces de largeur constante
d (que nous appellerons des sphéroides) ont toutes la méme aire.
Or, les projections orthogonales d’un sphéroide sur un plan
quelconque sont évidemment des orbiformes de méme largeur
d, elles ont done toutes un pourtour de méme longueur. De plus,
Paire d’un corps convexe, en particulier d’un sphéroide, est
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égale ') & quatre fois la moyenne arithmétique des aires de ses
projections orthogonales dans toutes les directions. Il en résulte
immédiatement que les sphéroides de largeur donnée w’ont pas
tous la méme aire et que.la sphére a la plus grande (a fortiori
le plus grand volume).

2. Sur un probléme élémentaire. — Une question qui m’a été
posée par un ingénieur, & propos d’une construction écono-
mique de silos en béton, m’a conduit au probléme suivant :
Un carré et un cercle concentriques empictent U'un sur Uautre;
trouver le minitmum de laire comprise entre les deux figures.
Ce minimum est différent suivant que le cercle ou le carré
varie. ‘

Si le carré reste fixe, un accroisse-
ment donné au rayon du cercle mon-
tre que ’accroissement correspondant
de P’aire considérée est nul, aux infini-
ment petits du second ordre pres,
lorsque le point C est le milieu de
I’arc AB. Il y a donc minimum lors-
que le carré fixe divise la circonférence
en huit parties égales. v

La question correspondante dans 1’espace, relative & un cube
et une sphere concentriques se traite d’'une maniére analogue.

3. Sur une généralisation de hypocycloide de Steiner. — Une
étude géométrique des principaux covariants des systémes
linéaires de quadriques m’a conduit, entre autres, au résultat
suivant:
~ On sait que I’enveloppe des droites de Simson relatives &

un triangle et aux points de la circonférence circonscrite est
une hypocycloide a 3 rebroussements; I’enveloppe des axes des
paraboles inscrites & ce triangle est identique & celle des
asymptotes des hyperboles équilatéres conjuguées au triangle :
¢’est aussi une hypocycloide & 3 rebroussements : la développée
de la premiére. — Dans ’espace, le lieu des points, dont les
projections sur les faces d’un tétraeédre sont situées dans un

1) Minkowski, Buvres, t. 11, p. 215,
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méme plan =, est une surface bien connue du 3™° ordre, &
4 points doubles, qui est en méme temps le lieu des foyers des
paraboloides de révolution, p, inscrits au tétraedre et le lieu
des centres des hyperboloides équilatéres, A, conjugués au
tétraédre. L’enveloppe des plans = est une surface du 6™ ordre

et de la 4™ classe que Beltrami?) a appelée : enveloppe steiné- . -

rienne. |

Je trouve que la surface focale de la congruence des axes des
paraboloides, p, est identique a U'enveloppe des comes asymptotes
des hyperboloides, h, et qu’elle est en méme temps le liew des
centres de courbure principaux de Uenveloppe steinérienne.

8. Herr H. von Waver (Oberwil, Baselland) : Fine spezielle
metrische Geometrie.

9. Herr A. Giser (Ziirich): Ueber die dritte Steiner’sche -
zeugungsweise der Fliche 3. Ordnung.

10. Herr Prof. Dr. K. Merz (Chur). — Die Steiner’sche F'liiche
wn quadratischer Transformation.

Durch & = z, * = y, {* = 2z wird die Steinersche Fliche ¥
ibergefiihrt in das Oktaeder 80.

WL y \/Ezl . 805 4 L4 S
Z-\/a+\/ﬁ+ y va T vp T,

Einem Punkte P(z, v, 2) von ¥ entsprechen im allgemeinen
8P(£, 1, ¢) durch die Wahl der Vorzeichen. 80 besitzt als zer-
fallende Fliche 8. Ordnung 28 Doppelgerade, 8 dreifache nnd
12 vierfache Punkte. Diesen entsprechen die Singularititen der
Flidche 4. Ordnung X. Den zu vieren in jeder der Koordinaten-
ebenen gelegenen Oktaederkanten W entsprechen drei Para-
beln W, , lings denen X diese Ebenen berithrt. Der vierte sin-
gulire Kegelschnitt von X liegt, wie die ihm entsprechenden
4 Geraden von 80, unendlich fern. Durch jede Oktaederecke
X,9,38.%.9,, 8, gehen ferner zwei Gerade je parallel zu

1 Opere matematiche, t. 111, p. 57.
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einer Koordinatenebene; ihnen entsprechen die drei Doppel-
geraden von X, die sichim dreifachen Punkte € (a, §, ) treffen.
Den 6 Oktaederecken entsprechen drei Kuspidalpunkte von X
auf den Achsen in den begl. Abstinden o, 2, 1 vom Nullpunkt,
withrend drei unendlich fern liegen.

Um eine eindeutige Abbildung zu erzielen und damit zugleich
eine Veranschaulichung der gegenseitigen Lage der Gebiete von
¥y durch Teile von Ebenen, werde von 80O nur derjenige Teil
in Betracht gezogen, der in einem der Oktanten liegt, z. B.
(4 -+ -1). Ein solcher Oktaederoktant | 80 | kann aus der Ebene
eines Oktaederdreiecks X3)3 hergestellt werden durch Auf-
klappungen lings Kanten W, wie die Figuren I* u. I* zeigen.
Durch kollineare Umformung entsteht daraus ein endlich be-
grenzter Oktaederoktantim Innern eines}ioordinatentetraeders,

wie ihn Figur II darstellt, sowie das beigefiigte Bild neben einem
Modell * der Steinerschen Flache. Die 6 Ecken dieses Oltaeder-
olctanten wnd seine drei Achsen wit ilhrem Schnittpunkt entsprechen
den 6 Kuspidalpunkten, den drei Doppelgeraden wund dem drei-
Fachen Punlite der Steinerschen Fliche. Den singuliren Kegel-

1 Aus dem Verlage von Hr. Martin ScHiLLING, Leipzig, nach KuMMER,
Monatsherichte, Ak. Berlin, 1863, S. 539.
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schnitten W, entsprechen die in den Ebenen des Tetraeders
gelegenen Dreiecke, von denen aus einspringende Raumecken
nach & gehen.

In der Hauptebene X9)8 sind zu ©'&" &  zwei konjugierte
Gerade G u. G gezeichnet, die einem Hyperboloid H, angehoren,
dasin B** die Hauptebene beriihrt und OIIIIII zum Poltetraeder
hat. Durch centrische Involutionen von I, II, III aus und durch
geschaarte iiber die Gegenkanten entstehen aus G u. G die wind-
schiefen Vierecke | 8G | u. | 8G |, die zwei Ellipsen G, u. G,
abbilden einer Tangentialebene H der Steinerschen Fliche.
Wenn G ein Strahlbiischel um J beschreibt, so umhiillt G eine
quadratische Kurve C, u. G erzeugt mit G eine kubische Kurve
C, mit J als Doppelpunkt. Die Uebertragung von C, durch die
quadratische Raumabbildung auf die Steinersche Fliche ergibt
die Beriihrungskurve C, des Tangentialkegels, der von einem
Punkte J der Flache an sie gelegt wird. Aus C, entsteht die
Restschuittkurve C,. :

" Inder Abbildung in der Hauptebene gehen alle C, durch die
Ecken des von den W gebildeten Vierseits, wodurch zugleich
die Abbildung der Reciproken zur Steinerschen Fliche erhalten

© wird.

Den Tangentialebenen, die von einem beliebigen Punkte P (x;)
an die Steinersche Fliche gehen, entsprechen diejenigen Flichen
des Biindels der H, durch die 8P (£;). welche die Hauptebene
berithren. Der Ort der Berithrungspunkte ist eine allgemeine
C, , und ihre Uebertragung ergibt die Berithrungskurve C, eines
allgemeinen Tangentialkegels an die Steinersche Fliche. ,

Eine eingehendere analytische Darstellung findet sich in der
Programmbeilage 1913,14 der Bundnerischen Kantonsschule ;
K. MErz, « Parallelflichen und Centralfiiiche eines besonderen
Ellipsoides und die Steinersche Fliche. »
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