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I

Sektion für Mathematik und Astronomie

zugleich Hauptversammlung der Schweizerischen

Mathematischen Gesellschaft

1. M. René de Saussure (Berne). — Sur le mouvement le

plus général d'un corps rigide en tenant compte des vitesses.

On admet généralement que le mouvement le plus général
d'un corps rigide de forme quelconque est le mouvement
hélicoïdal, c'est-à-dire que : étant données deux positions
quelconques Cet G d'un corps rigide, on peut toujours faire passer
ce corps de la position C à la position G par une rotation
autour d'une certaine droite X et un glissement le long de cette
droite, et cela n'est possible que d'une seule manière. Il en
résulte que lorsqu'un corps rigide en mouvement passe par
une série de positions connues C, G, Cetc., on peut obtenir
une représentation approchée du mouvement de ce corps, en

remplaçant le mouvement réel par une série de mouvements
hélicoïdaux CG, GC", C"C"', etc. tous parfaitement déterminés

par les positions connues C, G, C", etc. Cette solution se

rapproche d'autant plus du mouvement réel que les positions
données C, G, C", etc. sont plus voisines les unes des autres ;

elle est donc parfaite au point de vue géométrique ; mais au
point de vue mécanique, elle n'est pas complète puisqu'elle ne
tient pas compte de la vitesse avec laquelle le corps rigide C
se déplace.

Comment tenir compte de cette vitesse? Remarquons que
lorsqu'un corps rigide C tourne et glisse sur une droite fixe X,
le glissement n'est pas nécessairement proportionnel à la
rotation ; il y a donc ici un élément arbitraire dont on pourrait
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se servir pour tenir compte de la vitesse avec laquelle se meut
le corps C.

La solution que nous proposons est basée sur la notion des

feuillets cotés, notion que nous avons introduite dans notre
Géométrie des feuillets1. Un feuillet est l'ensemble des

éléments géométriques nécessaires et suffisants pour déterminer
la position 0 d'un corps rigide de forme quelconque. Par
exemple, un point M une droite D passant par M et un plan
P passant par D constituent un feuillet parce que la position
de la figure MDP suffit pour déterminer la position C d'un

corps rigide qui serait invariablement relié au feuillet MDP.
On sait que les systèmes de feuillets sont tout à fait analogues

aux systèmes de droites : on peut définir la position d'un feuillet
au moyen de 8 coordonnées homogènes.

Lorsqu'on associe à une droite un coefficient numérique, on
obtient l'élément que R. S. Bail a appelé une vis2 : au point de

vue géométrique, une vis est une droite ordinaire A affectée

d'une cote a (droite cotée). Les systèmes fondamentaux de

droites cotées ont été étudiés par Bail; ainsi par exemple
deux droites cotées A (a) et B (ß) déterminent la monosérie
fondamentale et cette monosérie a la forme d'un conoïde de

Plücker. De même, si l'on associe à un feuillet C un coefficient

numérique y on obtient un feuillet (ou corps) coté C (y) et les

systèmes de feuillets cotés seront analogues aux systèmes de

droites cotées. Dans une prochaine étude qui paraîtra dans les

Arch, des Sc. Ph. et Nat., je me propose d'étudier les formes
fondamentales de la géométrie des feuillets cotés ; nous verrons
alors que la monosérie fondamentale peut être définie comme
le lieu des corps C symétriques d'un corps fixe G>, par rapport
aux différentes génératrices d'un conoïde de Plücker. Il suffit de

deux corps cotés C(y),C'(y') pour déterminer complètement
ce lieu. En effet, soit X l'axe du mouvement hélicoïdal qui
permet de passer de la position Ch la position C' : considérons

une droite quelconque I rencontrant l'axe X à angle droit et

1 Voir Arch, des Se. Ph. et Nat., un article intitulé La géométrie des
feuillets cotés qui paraîtra en janvier 1915.

2 Voir Theory of Screws, de R. S. Bail, Dublin 1876.
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construisons le corps Co symétrique du corps C par rapport à

la droite 1. Il est facile de voir que le corps C0 sera aussi

symétrique du corps C' par rapport à une droite I rencontrant
aussi l'axe X à angle droit. Si l'on associe à la droite / une cote

égale à la moitié de la cote 7 relative au corps C, et à la droite

T une cote égale à la moitié de la cote 7' relative au corps

C\ les deux droites cotées 1 et T déterminent un

conoïde de Plücker. Si donc on construit tous les corps
symétriques du corps fixe C0 par rapport aux génératrices de ce

conoïde, on obtiendra une monosérie de corps parmi lesquels

se trouveront les deux corps donnés Cet C'. Ce problème n'a
qu'une solution, car cette solution ne dépend pas de la manière

dont on choisit la droite 1. En outre, à chaque génératrice du

conoïde de Plücker correspond une cote déterminée ^ et une

position déterminée Cn du corps qui se meut en restant
symétrique du corps fixe Co.

Supposons maintenent que la cote 7n représente l'époque à

laquelle le corps mobile occupe la position Cn, notre problème
se trouve complètement résolu, puisque étant données deux

\positions C et Cf occupées respectivementpar un corps mobile aux
époques 7 et 7', nous avons réussi à interpoler entre ces deux

positions une série continue de positions Cn à chacune desquelles

correspond une époque définie 7n. La solution reste la même si

les corps Cet C' sont infiniment voisins l'un de l'autre : dans

ce cas les époques correspondantes 7 et 7' sont aussi infiniment
voisines ; la série des corps Cn et des époques 7» représente
donc bien le mouvement le plus général dfun corps rigide
quelconque en tenant compte des vitesses.

2. Dr. S. Mauderli (Bern). — Die Säkularglieder in der
Himmelsmechanik und ihre Bedeutung in der Stabilitätsfrage.

Die Integration der in der Himmelsmechanik auftretenden
Differentialgleichungen kann auch heute noch nur in ganz
seltenen und besonderen Fällen anders als durch sukzessive
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Näherung erfolgen. Die dabei gefundenen Lösungen haben
dann im allgemeinen die Form

(1) ^ Atm cos vt + 2 sin vt,

worin t die Zeit und m eine ganze positive Zahl bedeutet.
Insbesondere ergeben sich solche Lösungen bei der Integration
der linearen Differentialgleichungen zweiter Ordnung mit
periodischen Coeffizienten, die in der Himmelsmechanik eine

hervorragende Stelle einnehmen. Ist m 0, so besteht (1)
aus einer Summe von reinperiodischen Gliedern, die in ihrer
Gesamtheit die hinreichende Bedingung dafür darstellen, dass

das betrachtete System von aufeinanderwirkenden materiellen
Punkten (Himmelskörper) unendlich oft und beliebig nahe zur
Ausgangslage, bezw. zur ursprünglichen Konstellation zurückkehrt.

Notwendige Voraussetzung dabei ist nur, dass die in
(1) auftretenden Coeffizienten A und B die üblichen, für die

Convergenz trigonometrischer Reihen geforderten Bedingungen
erfüllen. Nach dem an anderer Stelle (vergl. des Verfassers

Untersuchungen über Stabilität: 1908 über Stabilität im
strengen Sinne, 1910 über Stabilität dynamischer Systeme in
der Mechanik des Himmels, 1911 über Kommensurabilitäten
im Sonnensystem und 1913 über Stabilität im Sonnensystem
mit besonderer Berücksichtigung der sonnennahen Planeten)
gegebenen Stabilitätsbegriö hat man es also hier mit einem
stabilen System zu tun. Im Gegensatz zu diesem speziellen
Fall steht der ebenso spezielle, wo die Lösung der gegebenen

Differentialgleichung nur Glieder mit reinen Potenzen von t
enthält, also aus reinen Säkulargliedern besteht. Das Auftreten
solcher Glieder wurde von jeher als Kriterium für Unstabilität
angesehen, ebenso wie das Auftreten von nur rein periodischen
Gliedern als Kriterium für die stabile Bewegung gilt. Während
indessen hier, wie in den obengenannten Abhandlungen
verschiedentlich dargetan wurde, noch Voraussetzungen über
Convergenz gemacht werden müssen, ist dort die Unstabilität
der Bewegung ohne Einschränkung als erwiesen anzusehen.

Zumeist ergibt sich diese Tatsache ohne strenge Untersuchung
unmittelbar aus der Art des vorgelegten Bewegungsproblems.
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Ein typisches Beispiel hiezu liefert die Bewegung eines Planeten

in einem circumsolaren Medium (Mitteilungen der Berner
Naturforschenden Gesellschaft 1913) von gegebener Dichtigkeit.

Schon die erste Ueberlegung lässt hier die stetige
Annäherung des Planeten an die Sonne erkennen und der
mathematischen Analyse bleibt nur übrig, die Art und etwa noch die
Dauer der Annäherung festzustellen. Dass da periodische
Glieder nicht auftreten können, dürfte jedenfalls auf den ersten
Blick klar sein. Je nach den Voraussetzungen, unter denen

man die Bewegung vor sich gehen lässt, erhält man denn in
der Tat auch die verschiedensten Resultate, die aber alle nur
rein säkulare Glieder aufweisen. Im einfachsten Falle ergeben
sich beispielsweise für die rechtwinkligen Coordinaten x und y
des Ortes, an dem sich der Planet zur Zeit t befindet, die
Ausdrücke

x — Aexp( — olH) + Bexp (— ß2t)

y Cexp — <z2t) -f Bexp (— ßH)

oder zwischen x und y die Beziehung

(3) (Cx - Ayy : (By - Bxy (BC - ADK~y

Der säculare Charakter der rechten Seite von (2) ist hier
offenbar, indem für zunehmende Werte von t sowohl x als y
sich dem Grenzwert o nähern. Die Bahngleichung (3) stellt
eine spiralähnliche Curve dar, auf der sich der Planet mehr
und mehr der Sonne nähert, um schliesslich mit derselben
zusammenzutreffen. Ist in (1) m 4=0, so sind die rechtsstehenden

Glieder gemischt säcular und die Untersuchung dieser
Lösung führt auf besonders bemerkenswerte Resultate, bemer-
kensweVt namentlich in Hinsicht auf die Art, wie bei der
Integration der Differentialgleichungen der Himmelsmechanik und
verwandten Gebieten solche Glieder auftreten. Der Umstand,
dass dieselben auch in solchen Problemen der Mechanik
auftreten, in denen die Stabilität der in Frage stehenden Bewegung
nicht zweifelhaft ist, hat den Gedanken nahegelegt, dass das

eingangs erwähnte Integrationsverfahren damit in Zusammenhang

stehen könnte. Wie der Verfasser in der zweiten der oben
zitierten Abhandlung gezeigt hat, trifft dies in der Tat in

7*
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einem dort behandelten Falle wirklich zu. Dagegen wäre es

verfrüht, hieraus Schlüsse auch hinsichtlich anderer hieherge-
gehörender Probleme zu ziehen. Jedenfalls sind die Untersuchungen

in dieser Richtung noch fortzusetzen.

3. M. le Prof. Dr D. Mirimanoff (Genève) : Sur le « Tile
Theorem» de M. W.-R. Young.

4. M. le Prof. Dr J. Franel (Zurich) : Sur les formules som-
matoires.

5. M. le Prof. Dr Fr. Daniels (Fribourg). — Nouvelle démonstration

du théorème de Pohlke.

Trois vecteurs coplanaires (OAk) S ci/c (k 1, 2, 3) peuvent
toujours s'obtenir par la projection parallèle de trois vecteurs

égaux rectangulaires, pourvu que parmi les quatre points
0, A1, A2, A3, il n'y ait pas plus de trois en ligne droite.

1. Pour qu'un système de vecteurs-unités rectangulaires
K, h > h > lorsque la projection se fait dans la direction d'un
vecteur r par des droites de longueurs x±, x2, x3, donne des

vecteurs proportionnels aux û^, il faut que les vecteurs

h » \ > V r> ïes scalaires xt, x2, x3 et le facteur de proportionnalité

m satisfassent à

ii — xvc ma i t2.t3 0 h. h 1

(1) t2 — x2x ma2 t3.ti 0 t2.i2 1 r.r 1

i3 — x3x ma2 ti.t2 0 t3.i3 1

Nous cherchons 1° le vecteur x en fonction des û, 2° le

facteur m, 3° les scalaires x*.
2. Les cljc étant coplanaires, il existe des nombres \uc tels que

(2j ßlCL\ 4" JM2Ü2 4~ ^3^3 0 jfi ~h ß 2 4~ ^

Multipliant les équations (1) par les jifc on obtient donc en

ajoutant
(3) r jUii-i H~ fiè-i "H

(4) u^xx + ju2x2 + fox3 + x2\2 + a?3ts) x.% 1
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3. Formons maintenant à l'aide des équations (1) deux
« diadiques » (Gibbs-Wilson, Vectoranalysis Chap. Y) avec
leurs doubles produits scalaires et vectoriels :

(5) 0 (h — a-ir)i, + I - tï
(6) f ad, + n2i2 + a3i3

(7) <P mY

(8) 0"'0: 01 + i.im2 3" + a% + a%)

(9) 02 xk0 x 0ïr m2^a3 h +
0\ 02I 02ï-ï sin2 «, +

' 4m4a2:^W2s
Les angles (flj, a2) etc. sont a,, at, a2. La surface du triangle

formé par les | u.kUk | est o. L'«idemfacteur # est I. Les équations

(8) et (10) fournissent immédiatement

(11) (e - ± i)
2

4. Nous introduisons maintenant trois vecteurs auxiliaires
coplanaires a2iik, faisant des angles (ï1? f2) 2a3 etc. Leur
somme l satisfait aux relations :

1- (a2! -h a22 + a23)2 — 4(a22a23 sin2 at + !P4 — 4!P22

aM.ïi a2i(a2i + a22 cos 2a3 -f a23 cos 2a2) a2tîP2 — 2T\(/jl22 + ß\)

Si donc nous élevons au carré la première des équations (1)
nous aurons

(a, - Ml)22^- [(y2 + e a\ - 2!P2(1 - ^2i)]

2$;(t-h +e|I|)

ce qui n'est positif que lorsque s 1. En appelant (I,h)
2<ï>fc nous aurons enfin

(12) Xk — jUk + £* I ctfc cos VÏJW22 I — P* + £k^k (e ^ 0

5. On démontre ensuite sans peine que les vecteurs, de

grandeurs proportionnelles aux aie |

(13) ik — (jUk -f £kdk)x
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sont coplanaires et font des angles égaux à ceux formés par les

ctfc seulement, lorsque les ont tous les mêmes signes ou tous
des signes contraires à ceux des cos «F*. Il y a donc deux
solutions.

La construction de la normale au plan contenant les vecteurs
(13), donnée par le produit vectoriel de deux de ses vecteurs

(14) (a! + £i^i)ii + (fa 4- i2 + (fa + £3^3)13

ou (a2q3 sin ^ ± a! cos Vï)h -f (fafa sin«2 ^ a2 cos ^2 + • •

ne présente aucune difficulté. Il en est de même du vecteur x

donnant la direction des droites projetantes :

(15) fa ir + fah + fais
ou q2q3 sin ajii 4- a^di sin a2i2 4~ «1^2 sin a3i3

6. M. le Prof. Dr M. Plancherel (Fribourg"): Un théorème

de convergence des représentations intégrales d'une fonction
arbitraire.

7. M. le Prof. Dr Louis Kollros (Zurich). — Quelques
problèmes de géométrie.

1. Sur les sphéroïdes. — Dans la séance du 1er avril 1914 de

la Société mathématique de France, M. Lebesgue a énoncé

quelques propriétés des courbes de largeur constante, des

orbiformes, comme il les appelle ; il a rappelé, en particulier,
que toutes les orbiformes de largeur donnée d ont la même

longueur, que le cercle a la plus grande surface et que l'orbi-
forme d'aire minimum est le triangle curviligne formé de trois
arcs de cercle ayant pour centres les sommets d'un triangle
équilatéral et pour rayon le côté d de ce triangle.

On peut se demander s'il existe des théorèmes analogues
dans l'espace, entre autres si les surfaces de largeur constante
d (que nous appellerons des sphéroïdes) ont toutes la même aire.
Or, les projections orthogonales d'un sphéroïde sur un plan
quelconque, sont évidemment des orbiformes de même largeur
d\ elles ont donc toutes un pourtour de même longueur. De plus,
l'aire d'un corps convexe, en particulier d'un sphéroïde, est
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égale *) à quatre fois la moyenne arithmétique des aires de ses

projections orthogonales dans toutes les directions. Il en résulte
immédiatement que les sphéroïdes de largeur donnée rVont pas
tous la même aire et que la sphère a la plus grande (a fortiori
le plus grand volume).

2. Sur un problème élémentaire. — Une question qui m'a été

posée par un ingénieur, à propos d'une construction économique

de silos en béton, m'a conduit au problème suivant :

TJn carré et un cercle concentriques empiètent Vun sur Vautre;
trouver le minimum de Vaire comprise entre les deux figures.
Ce minimum est différent suivant que le cercle ou le carré
varie.

Si le carré reste fixe, un accroissement

donné au rayon du cercle montre

que l'accroissement correspondant
de l'aire considérée est nul, aux infiniment

petits du second ordre près,
lorsque le point C est le milieu de

l'arc AB. Il y a donc minimum lorsque

le carré fixe divise la circonférence
en huit parties égales.

La question correspondante dans l'espace, relative à un cube

et une sphère concentriques se traite d'une manière analogue.
3. Sur une généralisation de Vhypocyclöide de Steiner. — Une

étude géométrique des principaux covariants des systèmes
linéaires de quadriques m'a conduit, entre autres, au résultat
suivant:

On sait que l'enveloppe des droites de Simson relatives à

un triangle et aux points de la circonférence circonscrite est

une hypocycloïde à 3 rebroussements ; l'enveloppe des axes des

paraboles inscrites à ce triangle est identique à celle des

asymptotes des hyperboles équilatères conjuguées au triangle :

c'est aussi une hypocycloïde à 3 rebroussements : la développée
de la première. —Dans l'espace, le lieu des points, dont les

projections sur les faces d'un tétraèdre sont situées dans un

1) Minkowski, Œuvres, t. II, p. 215.
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même plan 71, est une surface bien connue du 3me ordre, à

4 points doubles, qui est en même temps le lieu des foyers des

paraboloïdes de révolution, p, inscrits au tétraèdre et le lieu
des centres des hyperboloïdes équilatères, h, conjugués au
tétraèdre. L'enveloppe des plans tz est une surface du 6rae ordre
et de la 4me classe que Beltrami *) a appelée : enveloppe steiné-
rienne.

Je trouve que la surface focale de la congruence des axes des

paraboloïdes, p, est identique à l'enveloppe des cônes asymptotes
des hyperboloïdes, h, et qu'elle est en même temps le lieu des

centres de courbure principaux de l'enveloppe steinérienne.

8. Herr H. von Wayer (Oberwil, Baselland) : Eine spezielle
metrische Geometrie.

9. Herr Â. Gioer (Zürich) : Ueber die dritte Steiner'sehe

Erzeugungsweise der Fläche 3. Ordnung.

10. Herr Prof. Dr. K. Merz (Chur). — Die Steiner'sehe Fläche
in quadratischer Transformation.

Durch x, rf y, C z wird die Steinersche Fläche E

übergeführt in das Oktaeder 80.

Einem Punkte ¥{x, y, z) von E entsprechen im allgemeinen
8P(£ y], 0 durch die Wahl der Vorzeichen. 80 besitzt als
zerfallende Fläche 8. Ordnung 28 Doppelgerade, 8 dreifache und
12 vierfache Punkte. Diesen entsprechen die Singularitäten der
Fläche 4. Ordnung E. Den zu vieren in jeder der Koordinatenebenen

gelegenen Oktaederkanten W entsprechen drei Parabeln

W2, längs denen E diese Ebenen berührt. Der vierte
singulare Kegelschnitt von S liegt, wie die ihm entsprechenden
4 Geraden von 80, unendlich fern. Durch jede Oktaederecke
X D1 <3

»
360 3)0, So gehen ferner zwei Gerade je parallel zu

1 Opere matematiche, t. III, p. 57.
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einer Koordinatenebene; ihnen entsprechen die drei

Doppelgeraden von X, die sich im dreifachen Punkte ©(a, ß, 7) treffen.

Den 6 Oktaederecken entsprechen drei Kuspidalpunkte von 1

auf den Achsen in den begl. Abständen a, ß, 7 vom Nullpunkt,
während drei unendlich fern liegen.

Uni eine eindeutige Abbildung zu erzielen und damit zugleich

eine Verauschaulichung der gegenseitigen Lage der Gebiete von

£ durch Teile von Ebenen, werde von 80 nur derjenige Teil

in Betracht gezogen, der in einem der Oktanten liegt, z. B.

(+ + +). Ein solcher Oktaederoktant | 80 kann aus der Ebene

eines Oktaederdreiecks hergestellt werden durch

Aufklappungen längs Kanten W, wie die Figuren P u. Ib zeigen.

Durch kollineare Umformung entsteht daraus ein endlich

begrenzter Oktaederoktant im Innern eines Koordinaten tetraeders,

wie ihn Figur II darstellt sowie das beigefügte Bild neben einem

Modell1 der Steinerschen Fläche. Die 6 Ecken dieses Oktaederoktanten

und seine drei Achsen mit ihrem Schnittpunkt entsprechen

den 6 Kuspidalpunkten, den drei Doppelgeraden und dem

dreifachen Punkte der Steinerschen Fläche. Den siugulären Kegel-

1 Aus dem Verlage von Hr. Martin Schilling, Leipzig', nach Kummer,
Monatsberichte, Ak. Berlin. 1863, S. 539.
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schnitten W2 entsprechen die in den Ebenen des Tetraeders
gelegenen Dreiecke, von denen aus einspringende Raumecken
nach S gehen.

In der Hauptebene X?)3 sind zu 6'©"©'" zwei konjugierte
Gerade G u. G gezeichnet, die einem Hyperboloid H2 angehören,
das in 33" die Hauptebene berührt und Ol II III zum Poltetraeder
hat. Durch centrischeInvolutionen vonl, II, III aus und durch
geschaarte über die Gegenkanten entstehen aus G u. G die
windschiefen Vierecke | 8 G | u. | 8 G | die zwei Ellipsen G2 u. G2

abbilden einer Tangentialebene H der Steinerschen Fläche.
Wenn G ein Strahlbüschel um J beschreibt, so umhüllt G eine

quadratische Kurve C2 u. G erzeugt mit G eine kubische Kurve
C3 mit J als Doppelpunkt. Die Uebertragung von C3 durch die
quadratische Raumabbildung auf die Steinersche Fläche ergibt
die Berührungskurve C6 des Tangentialkegeis, der von einem

Punkte J der Fläche an sie gelegt wird. Aus C2 entsteht die

Restschnittkurve C4.

In der Abbildung in der Hauptebene gehen alle C3 durch die
Ecken des von den W gebildeten Vierseits, wodurch zugleich
die Abbildung der Reciproken zur Steinerschen Fläche erhalten
wird.

Den Tangentialebenen, die von einem beliebigen Punkte ¥{Xi)
an die Steinersche Fläche gehen, entsprechen diejenigen Flächen
des Bündels der H2 durch die 8P(£ï). welche die Hauptebene
berühren. Der Ort der Berührungspunkte ist eine allgemeine
C3, und ihre Uebertragung ergibt die Berührungskurve C6 eines

allgemeinen Tangentialkegels an die Steinersche Fläche.
Eine eingehendere analytische Darstellung findet sich in der

Programmbeilage 1913/14 der Bündnerischen Kantonsschule ;

K. Merz, « Parallelflächen und Centraifläche eines besonderen

Ellipsoïdes und die Steinersche Fläche. »
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