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I

Mathematische Sektion

zugleich Versammlung der Schweizerischen Mathematischen
Gesellschaft

Sitzung : Montag, den 9. September 1913

Einführender : Herr Prof. D1 K. Matter.
Präsident : » Prof. Dr H. Fehl*.

Sekretär: » Prof. Dr M. Plancherel.
» Dr E. Châtelain.

1. M. le Prof. L. Crelier (Berne-Bienne). — Sur les

correspondances en géométrie synthétique.
Dans diverses notes parues dans YEnseignement mathématique

en 1906, 1907 et 1908, l'auteur a essayé d'étendre quelque peu
la théorie géométrique des correspondances (m.n). En
considérant principalement les correspondances (1. n), il a pu
simplifier et généraliser les résultats de Weyr et indiquer quelques
constructions originales pour les cubiques à point double.

En continuant ses recherches, il a observé que l'emploi des

correspondances (1.2) peut conduire à la construction des points
d'inflexion et des tangentes d'inflexion dans les cubiques à point
de rebroussement, ainsi qu'à la construction des tangentes et
des points de rebroussement dans les courbes de 3me classe à

tangente d'inflexion.
Dans ce cas, toutes les constructions sont réalisables avec la

règle et le compas.
Le développement des constructions nécessaires peut être

résumé dans la remarque dualistique suivante :

Une cubique CB à point de Une courbe de 3me classe Kz
rebroussement S2 étant donnée à tangentes d'inflexion P2 étant

par les points nécessaires, la donnée par les éléments néces-
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ligne de jonction de S2 avec

chaque point 8± est univoque-
ment conjuguée avec la ligne de

jonction de S2 avec le point de

tangence de la tangente de C3

menée par 8±.
Ces droites forment deux

faisceaux homographiques
concentriques en S2 dont les rayons
doubles sont la tangente de

rehaussement et la droitepassant

par le point d'inflexion.

saires, le point de coupe de P2

avec chaque tangente simple P1

est univoquement conjugué au
point de coupe de P2 avec la
tangente de K3 menée par le point
d'intersection de P± avec Ks.

Cespointsforment deux
ponctuelles homographiques sur la
même base P2; les points doubles

sont le point d'inflexion et

le point de coupe de P2 avec la
tangente de rebroussement.

Les mêmes méthodes de recherches peuvent être appliquées
aux cubiques crunodales, ainsi qu'aux courbes de 3me classe à

tangente double, avec points de tangence distincts ou
imaginaires. Les constructions conservent la même valeur théorique,
mais elles ne sont plus comme les précédentes, exclusivement
réalisables par la règle et le compas. Elles nécessitent l'intersection

d'une conique et d'un cercle dont un point commun
est connu.

La remarque dualistique résumant les constructions prend
la forme suivante :

Une cubique C3 à point double

S2 est donnée par les éléments

nécessaires; la ligne de jonction
de S2 avec chaque point S1 de la
courbe est conjuguée aux deux
lignes de jonction de 82 avec les

points de tangence des deux
tangentes de la courbe menées par
8t et rencontrant C3 en dehors
de Sx.

Les droites considérées

forment une correspondance (1.2)
de rayons concentriques admettant

un ou trois rayons doubles

Une courbe de 3me classe K3
à tangente double P2 est donnée

par les éléments nécessaires ; le

point de coupe de P2 avec chaque

tayigente simple P1 est

conjugué aux deux points de coupe
de P2 avec les tangentes de K3
menées par les points d'intersection

de P± avec K3.

Lespoints considérésforment
une correspondance (1.2) de

base P2 ; les points doubles

conjugués sont sur les tangentes



— 127 —

conjuguées réels. Ceux-ci pas- par les points de rebroussement

sent ensuite par les points d'in- Il y a un ou trois points dou-

flexion de la courbe. bles réels.

Le développement des détails de construction permet d'établir

qu'un des éléments doubles conjugués seul est réel dans

le cas des cubiques crunodales et dans celui des courbes de
3me classe dualistiques des cubiques crunodales.

Si le point double est isolé* ou si la tangente double est isolée,
les éléments doubles conjugués des correspondances (1.2) sont
tous les trois réels.

Le cas d'un seul élément double conjugué réel conduit à un
intéressant groupement de triangles dans lesquels :

Les paires de côtés homolo- Les paires de sommets homo-

gues sont les éléments conjugués logues sont les éléments conju-
de trois involutions de rayons gués de trois involutions de
dont les sommets sont des points points dont les bases sont des

fixes. droites fixes.

Les triangles sont liés involutivement dans chacune des
constructions dualistiques.

Les sommets des triangles Les côtés des triangles enve-
sont sur trois coniques passant loppent trois coniques n'admet-

par un seul point commun. tant qu'une seule tangente com¬

mune.

Une étude plus approfondie de ces triangles conduit à un très
grand nombre de propriétés fort intéressantes.

Les involutions supérieures J+1 ou J+1 peuvent être
établies au moyen des courbes engendrées par les correspondances
(1 .m) ou (n.m—w + 1).

J+1 s'obtient en coupant la courbe d'une correspondance

(1 .m) par un faisceau de droites issues d'un point extérieur et
en joignant les poiuts de coupe avec le point multiple d'ordre m.
Chaque rayon ainsi obtenu n'appartient qu'à un seul groupe de
(m-|-l)) rayons conjugués.

J+1 s'obtient en coupant la courbe d'une correspondance
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\\.m) comme précédemment et en joignant les points de coupe
avec un point multiple d'ordre m—2. Chaque rayon appartient
à deux groupes de m+ 1 rayons conjugués.

(2 .m — 1) coupée comme avant et en joignant les points de coupe
avec le point multiple d'ordre m — 1, dont l'existence est
certaine. Chaque rayon appartient aussi à deux groupes de m +1
rayons conjugués.

On voit de suite par cet aperçu que l'étude des involutions
supérieures est liée à celle des correspondances analogues.

Pour les cas faciles (1.1), (1.2), (1.3), (2.3), l'étude
géométrique est relativement simple et conduit aisément aux

propriétés des involutions J*, J*, et J*.

2. R. Fueter: lieber algebraische Gleichungen mit
vorgeschriebener Gruppe.

Der Vortragende greift aus dem grossen Problem, zu einer
gegebenen Gruppe eine zugehörige algebraische Gleichung zu
finden, den speziellen Fall heraus, dass die Gruppe durch zwei

unabhängige Substitutionen gegeben ist:

wo s zum Exponenten 2, S zum Exponenten lv gehört, und l
eine beliebige Primzahl ist. Aus der Gruppeneigenschaft folgt,
dass auch

sein muss. Wäre x 0, so würde s S^-1 entgegen der
Annahme, dass s und S unabhängig sind. Also # 1, und es wird

J+1 s'obtient également avec la courbe d'une correspon-

Ss

oder, wegen: s—1 =s
S

S s { sSvs

Nun ist aber wegen s2= 1

j j2 — s&s. sSvs sS2vs { sSvs
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Somit ist
S s.sSv^s s Sf*

oder
y* m. (l)

Wean l ungerade ist, so ist î/e± 1 (Zü). Dem Fall
y + l Gv) entsprechen Kreiskörper, dem Fall y — 1 (lv)
Körper der komplexen Multiplikation.

Wenn dagegen Z 2, so gibt es ausser den Lösungen y =t 1

(mod 2V) noch die weitern

y =±= 1 + 2V—1(mod 2V). (v >- 2)

Während die ersten Lösungen wieder auf Kreiskörper bezw.
Körper der singulären Moduln führen, fragt es sich, ob auch
im letzten Fall Körper existieren. Das ist in der Tat der Fall,
wie der Vortragende für v 3 zeigt. Nimmt man

x i j/"— 1 ; y y 2

so hat x die Gruppe s, wos2 1. Geht man zum Körper K
] j 2

(i, y2), so kann man, da die 8. Einheitswurzel durch
Y2

gegeben ist, die konjugierten von y so ausdrücken :

yi y 2= y oder wenn S — (y I
1 ~yt y

1 + * 8/2 1 + i
2/2 ~~W * ~¥~~y* Sy

8 fnys — i y2— iy

-
* * Vö — _ ;

1 *

Y2 ^ y3• 1 8 nz A Ty* - 1 1/ 2 - t —3- 2/4 Shj

2/5 - y SV
1 + ^ 052/6 - 2fe S*y

2/7 iy 2/7 s8y
1 -f

2/"
îfe S72/

s8 1

Somit ist s* Sf die Galois'sche Gruppe von K, und wegen

sS2/ « I-^ 2/4 S3S2/

wird
sS S3s oder y — 1 + 4 (mod 8).

9*
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3. M. le Prof. Gustave Dumas (Zurich). — Sur les singularités
des surfaces.

M. G. Dumas donne, en grands traits, un aperçu général de

sa méthode de résolution des singularités des surfaces analytiques

dans le voisinage d'un point donné. Faisant un parallèle
entre la théorie des courbes et celles des surfaces, il en signale
les analogies et les différences et montre comment se posent les

problèmes dans le dernier de ces deux cas.

4. Andreas Speiser (Strassburg.) — Ueber die Zerlegung
der algebraischen Formen.

Im Mittelpunkt der Theorie der linearen quadratischen Formen

steht bei Gauss der Begriff der Composition. Dieser
Begriff gestattet eine viel weitergehende Verallgemeinerung als

ihn selbst die Theorie der algebraischen Zahlen liefert.
Wir sagen: die Form f(xt x,n gestattet eine Composition

mit sich selbst, wenn die Gleichung:
(fz1 Zm) f(xx Xm)f(y! ym)

zur Identität wird durch die bilineare Substitution

zi J] UiMXiyk (S)

i k

Ist die Form/ unzerlegbar im Gebiet der rationalen Zahlen,
so gelangt man zu den algebraischen Zahlen, indem man Zahlen

e± em definiert, welche die Eigenschaft haben, dass die

Gleichung:

+ + emZm {exxx + + emym) (e1y1 -f + emym)

zur Identität wird durch die Substitution (S). Dazu müssen die

Zahlen et em den Gleichungen genügen.

exk ^ aikiei
i

Wenn diese Multiplication das associative und communitative
Gesetz erfüllt, so ist das Zahlengebiet

d\Xt -|- -f- emXm

wenn xl xm alle rationalen Zahlen durchlaufen, holoedrisch

isomorph mit einem algebraischen Zahlkörper und seinen

konjugierten Körpern.
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Wenn die Multiplication dagegen nur das associative Gesetz

erfüllt, so erhält man « hypercomplexe » Zahlen. Gewisse qua-
ternäre Formen liefern in dieser Weise neue Zahlen, zu denen
insbesondere die Quaternionen gehören, deren Zahlentheorie
durch Herrn Hurwitz gegeben worden ist. Sie ist ein Spiegelbild

der Zahlentheorie der zugehörigen quaternären Form.
Ferner gilt die Tatsache, dass die Form, welche die Composition

gestattet, in zwei Faktoren zerfällt, deren einer durch

+ emXm gebildet wird.
Ebenso gestattet die Gruppendeterminante eine Composition.

Sie bildet die Grundlage für die tiefgehenden Untersuchungen
von Herrn Frobenius. Insbesondere führt die Zerlegung des

zugehörigen Systems hyperkomplexer Zahlen in Teilsysteme,
wobei das Produkt zweier Zahlen aus verschiedenen Systemen
verschwindet, auf die Gruppencharaktere.

In allen Fällen wird sich jeder hyperkomplexen Zahl eine
Norm zuordnen, welche die Eigenschaft hat, dass das Produkt
der Normen zweier Zahlen gleich der Norm des Produktes der
beiden Zahlen ist.

• 5. Prof. L. Bieberbach (Basel). — Ueber eine neue Methode
der konformen Abbildung.

Sei f(x) eine im Kreise von Radius R um den
Koordinatenanfangspunkt reguläre Funktion mit/(o) o u. /' (o) 1 also

f{x) x + arx2 + aV +
so wird dadurch der Kreis auf einen Bereich abgebildet, für
dessen (inneren) Flächeninhalt man den Ausdruckffff'dxdx
erhält, das Doppelintegral über jenen Kreis erstreckt (x und x

und J' je konjugiert imaginär.) Setzt man x=
R 2TC

so wird dies fdrfävrf'f oder nach leichter Ausrechnung
o o

4öt2^2R^ WClnCln'R"*1
1ttK- -f — 1 h H

0
1 • • •

4 6 2 n

und dies ist grösser als ttR2, also grösser als der Inhalt unseres

Kreises. Bei konformer Abbildung eines, Kreises durch eine
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in seinem Inneren reguläre Funktion f (x) mit f (o) — 0, f'(o) 15

wird also der Flächeninhalt vergrössert. Diejenige Funktion
also, die einen gegebenen Bereich auf einen Kreis abbildet und
dabei einen gegebenen Punkt festlässt und daselbst das Ver-
grösserungsVerhältnis 1 besitzt, ist als Lösung des Variations-

problemes Jjffdtdx Min charakterisiert.

Die Anwendung dieses Prinzips erlaubt es sehr elementar,
die Abbildbarkeit eines beliebigen einfach zusammenhängenden

Bereiches auf einen Kreis nachzuweisen. Nachdem der
Vortragende noch einen sehr kurzen Beweis des Caratheodo-

ryschen Satzes von der stetigen Aenderung der Abbildungsfunktion

bei stetiger Aenderung des Bereiches gegeben hat,
der auf einer Bemerkung über die Konvergenz der
Umkehrungsfunktionen einer konvergenten Reihe analytischer Funktionen

beruht, führt er ein einfaches Rechen verfahren zur
wirklichen Bestimmung der Abbildungsfunktiou vor. Dabei

muss, wenn das Resultat gelten soll, die Beschränkung auf
solche Gebiete Platz greifen, deren Komplementärmenge selbst
ein Gebiet ist, das mit dem abzubildenden die volle Grenze
gemein hat. Das Verfahren besteht in der Approximation der
Abbildungsfunktion durch diejenigen Polynome n-ten Grades,
die unter allen des gleichen Grades dem Bereich einen
möglichst kjeinen Inhalt erteilen f{o) 0 f'(o) 1. Die Berechnung

dieser eindeutig bestimmten Polynome läuft jedesmal
auf die Auflösung eines eindeutig lösbaren Systems linearer
Gleichungen hinaus.

6. M. le Dr E. Marchand (Neuchâtel). — Sur la règle de

Neivton, dans la théorie des équations algébriques.

Newton a publié, dans son « Arithmetica universalis» (1707),
une règle pour la détermination du nombre des racines
positives, négatives et imaginaires d'une équation algébrique à

coefficients réels, qui permet de préciser les résultats obtenus

par l'application de la règle des signes de Descartes. Newton
n'a pas jugé à propos d'en donner la démonstration. C'est à

Sylvester (1865) que revient l'honneur d'avoir trouvé le prin-
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cipe d'une démonstration, en même temps qu'une
généralisation1.

Les travaux de Newton et de Sylvester, ainsi que leur exposé
dans les traités d'algèbre supérieure de Petersen2 etdeH.Weber3,
renferment bien des lacunes que j'ai essayé de combler, sur le
conseil de M. le Prof. Dr Hurwitz. Il s'agissait avant tout de

trouver une démonstration complète de la règle de Newton,
démonstration qui embrasse tous les cas possibles.

Yoici l'énoncé que je propose pour la règle de Newton :

Règle de Newton.

Soit f{x) aoxn + aix*1-1 an-ix -j- an 0, une

équation à coefficients réels du nme degré (ao 4= 0, an =1= 0).
Formons la différence

Al (r+T^^l^T) - a-iai+1 »' i > »* • - »' (» ~ *>

et considérons, au point de vue des signet, la double suite (I) :

ClO dl d2 dit—2 dn— 1 dn

-f- Al A2 An—2 An — 1 -f~

Désignons par
vP-, le nombre total des variations-permanences4 de (I), par
pP, » » » permanences-permanences4de(I),etpar
V, » » » variations que présente la série

-J- Al A 2 An—2 An — 1 -f-

avec les conventions suivantes au sujet des zéros qui peuvent
se présenter dans (I) :

1° Si ßi—i 0 at ai+1 ...-= ai+y-i 0 ai+v =|= 0

i étant l'un des nombres 1, 2, (n— 1), et i\ l'un des

nombres 1,2, ..-. (n — i), on donnera aux zéros représentant
ai-, ai+i, ai+i'-i, le même signe que celui de at-x.

2° Si Afc_i 0 Ak — Afc+i Afc+fc'-i 0 Afc+fc'4= 0,

1 J.-J. Sylvester, Transactions of the Royal Irish Academy ,\q\, 24,1871.
J.-J. Sylvester, Philosophical Magazine, 4mesér., vol. 31, p. 214.

2 Jul. Petersen, Theorie der algebraischen Gleichungen, 1878, p. 203.
3 Heinrich Weber. Lehrbuch der Algebra, 1895, t.l, p.304.
* Voir H. Weber, loc. cit.

(i)
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k étant l'un des nombres (1,2 ,n — 1) et k\ l'un des nombres

1,2, (w — k), on donnera, en général,

au zéro représentant Aie le signe contraire de celui de Afc_i,
» » .Afc+i, le même signe que » Ak-i,

etc., en variant toujours les signes; sauf toutefois dans le cas

où les aie correspondants sont tels que

ak -i=#0 a,k ak+i =«*+&'-i 0 at-f&'4=0 et au—i 0

Il faut alors que le zéro représentant AÄ+fc'-i ait le même

signe que A.
Il y a encore un cas d'exception, celui ou f{pc) (x — a)n 0;

dans ce cas Ai A2 Aw_i — 0; ces zéros-là doivent
tous être considérés comme des quantités positives.

La règle de Newton s'exprime alors par les formules :

N+ vF - 2Àt N- pF - 2à2 I V + 2Â3

N+, N_ et J désignant les nombres de racines positives, négatives

et imaginaires de f(x) 0, chaque racine étant comptée
autant de fois qu'il y a d'unités dans son ordre de multiplicité.

\, X2 et à3 sont des nombres entiers non négatifs1.

7. M. le Dr D. Mirimanoff (Genève). — Sur quelques points,
de la théorie des ensembles. (En l'absence de l'auteur, le mémoire
est déposé sur le bureau de la présidence.)

M. Mirimanoff donne, en se bornant aux ensembles linéaires,
une démonstration nouvelle du théorème de Cantor-Bendixson:
tout ensemble fermé F se compose d'un ensemble dénombrable D

et d'un ensemble parfait P. Cette démonstration peut être

rapprochée de celles de W. H. Young, F. Bernstein, L. E. J.
Brouwer dans lesquelles la partie dénombrable de F est détachée

à l'aide d'un ensemble d'intervalles auxiliaires convenablement

choisis. Les intervalles auxiliaires de M. Mirimanoff,
qu'il appelle crochets, ont pour extrémités les milieux (ou des

points intérieurs quelconques) des intervalles contigus à F et
deux points arbitraires pris sur les demi-droites extérieures à F.

1 La démonstration complète de la règle complète de Newton paraîtra dans la
Bulletin de la Société neuchâteloise des Sciences naturelles, t. 40 ; 1912-1913.
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8. M. le Prof. Dr W. H. Young, F. R. S. (Liverpool et Genève).
— L'intégrale de Stieltjes et sa généralisation. (En l'absence de

l'auteur, son mémoire est déposé sur le bureau de la présidence.)
L'intégrale de Stieltjes est une limite formée de la même

manière que l'intégrale d'une fonction continue. C'est la
limite d'une somme de termes de la forme f(xi)&g(xï),
(Ag(xt) g(xi+i) — g(xi)) g(x) étant une fonction non
décroissante.

Lebesgue a montré que l'intégrale de Stieltjes se ramène à

l'intégrale de Lebesgue d'une fonction bornée et il a indiqué la
possibilité de prolonger l'opération de l'intégrale de Stieltjes à

tout lé champ des fonctions continues. Il se sert pour cela d'un
changement de variable élégaut, mais d'application difficile.
Il remarque encore que procéder d'une autre manière à cette
extension ne lui paraît guère possible.

Cette dernière remarque ne paraît pas fondée pour celui qui
examine la théorie de l'intégration par rapport à une fonction à
variation bornée, telle que la développe M. Young. Cette théorie
n'exige pas la connaissance des théories modernes de l'intégration,

mais procède uniquement par la considération de suites
monotones de fonctions. Le principe est le suivant :

On dira qu'une fonction f (x) possède une intégrale par rapport
à unefonction positive non décroissante g (x), si ellepeut s'exprimer
comme limite d'une suite monotone defonctions ft, f2, dont les

intégrales par rapport à g (x) sont déjà définies, pourvu que la
limite des intégrales de toute suite ayant ces propriétés soit la même
et ait une valeur finie. Cette limite s'appelle l'intégrale de f(x) par
rapport à g (x).

En partant de fonctions constantes à l'intérieur (au sens
étroit) d'un nombre fini d'intervalles, on obtient au moyen de
suites monotones de fonctions des fonctions de classes l, u, lu, ul,
lui, ulu, etc, et des fonctions qui n'appartiennent à aucune
de ces classes. Après avoir démontré l'unicité du problème
d'intégration pour les fonctions de classes l, u, lu et ul, on se sert
ensuite du théorème suivant :

Etant donnée une fonction f(x), bornée et représentable analy-
tiquement, on peut trouver une fonction lu qui ne dépassepas f(x)
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et une Jonction ul qui n'est pas moindre que f(x), ces deux fonctions

auxiliaires ayant la même intégrale par rapport à une
fonction positive non décroissante g (x).

Par conséquent, toute fonction bornée représentable analyti-
quement a une intégrale par rapport à une fonction positive
non décroissante. L'extension aux fonctions non bornées se fait
sans nouvelles difficultés et le passage à intégration par rapport
à une fonction à variation bornée est immédiate.

Un exemple de l'utilité de l'intégration par rapport à une
fonction à variation bornée nous est donnée dans la théorie
des séries trigonométriques. De même que l'intégrale de

Lebesgue a élargi le champ des séries trigonométriques
maniables en étendant la signification de l'expression série de

Fourier, l'intégration par rapport à une fonction à variation
bornée a permis à M. Young d'agrandir encore plus ce champ
en remplaçant la classe des séries de Fourier par la classe plus
étendue des séries obtenues par dérivation terme à terme des

séries de Fourier des fonctions à variation bornée. Parmi les

propriétés des séries de Fourier qui restent vraies pour cette
classe plus étendue, M. Young en cite deux : 1° les coefficients
d'une série impaire (paire) de cette classe, introduits comme

multiplicateurs dans une série de Fourier (dans sa série alliée),
engendrent la série de Fourier d'une fonction de même somma-
bilité que celle de la fonction associée à la première série de

Fourier; 2° une telle série converge (CJ ou (Cô) (0<C§<;1)
presque partout vers la dérivée de la fonction à variation bornée
attachée à cette série.

Le mémoire se termine par une démonstration en quelques
lignes et n'employant que des théorèmes bien connus d'un
résultat établi jadis par M. Young au moyen d'un raisonnement
long et difficile faisant usage du changement de variable indiqué
par Lebesgue.

9. Prof. Rtjdio (Zürich) berichtet kurz über den Stand der

Eulerausgabe.
Bis jetzt sind 9 Bände erschienen (Herr Prof. Matter hatte

die Freundlichkeit, die Bände aus der Kantonsbibliothek her-
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beizuholen und der Versammlung vorzulegen.) Schon letztes
Jahr war in Altdorf darauf hingewiesen worden, dass die
Gesamtzahl der Bände wesentlich höher bemessen werden müsse,
als ursprünglich vorgesehen war, und dass dem entsprechend
auch die Gesamtkosten grösser sein werden. Der Referent
macht nun die Mitteilung, dass eine Leonhard Euler-Gesell-
schaft gegründet worden sei, die sich die Aufgabe gestellt
habe, dem grossen Unternehmen als Hilfsgesellschaft zur Seite
zu stehen. Diese Gesellschaft hat, trotz der Kürze ihres
Bestehens, bereits eine recht erfreuliche Entwicklung genommen.
Der Vortragende richtet die dringende Bitte an alle schweizerischen

Mathematiker, dieser Gesellschaft beizutreten und
tatkräftig mitzuwirken, dass die Schweiz. Naturforschende
Gesellschaft die mit der Eulerausgabe übernommene Ehrenpflicht

in würdiger Weise zu erfüllen vermöge.

10. Prof. Dr A. Einstein. — Gravitationstheorie.
Eines der merkwürdigsten und am exaktesten geprüften

Naturgesetze ist dasjenige von der Identität der trägen und
schweren Masse der Körper; dasselbe äussert sich darin, dass

die Fallbeschleunigung in einem Schwerfelde unabhängig ist
vom Material des fallenden Körpers. Dies Gesetz legt die
Auffassung nahe, dass in einem beschleunigten Bezugssystem alles
so vor sich gehe wie in einem Gravitationsfelde. Man erhält
durch diese Auffassung (Aequivalenzhypothese) ein Mittel, um
Eigenschaften des Schwerefeldes auf theoretischem Wege
abzuleiten. Als Hauptergebnis findet man so eine Krümmung
der Lichtstrahlen im Gravitationsfeld, die für einen an der
Sonne vorbeistreichenden Lichtstrahl 0,84" betragen, also in
den Bereich des Beobachtbaren fallen soll.

Dies Ergebnis steht mit der jetzigen Relativitätstheorie nicht
im Einklang, weil es zu einer Abhängigkeit der
Vakuumlichtgeschwindigkeit vom Gravitationspotential führt. Mit Herrn
Grossmann zusammen habe ich aber gezeigt, dass man die
Relativitätstheorie derart verallgemeinern kann, dass man mit
jener Aequivalenzhypothese im Einklang bleibt.

Nach dieser Theorie ist das Gravitationsfeld durch einen
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symmetrischen Tensor gw» mit 10 Komponenten definiert.
An Stelle des Linienelementes

dx2 + dy2 + dz2 — c2dt2

der gewöhnlichen Relativitätstheorie tritt das allgemeinere

V] 9r>dx[xdx-,
(av

als fundamentale Invariante auf.
Die Beziehungen des vierdimensionalen Vektolkalküls gehen

in die des absoluten Differentialkalküls über. Jedes physikalische

Gleichungssystem enthält nach dieser Verallgemeinerung

den Einfluss, den das Gravitationsfeld auf die dem

Gleichungssystem entsprechende Phänomengruppe ausübt.
Jene verallgemeinerten Gleichungen sind allgemein kova-

riant. Dagegen erweist es sich als logisch unmöglich,
Gleichungen zur Bestimmung des Gravitationsfeldes (d. h. der g^,)
aufzustellen, die bezüglichen beliebigen Substitutionen ko-
variant sind. Wir gelangen, ausgehend von den Erhaltungssätzen

des Impulses und der Energie, dazu, das Bezugssystems

(auf welches die raumzeitlichen «Koordinaten» x,y,z,t
bezogen werden) derart zu wählen, dass nur mehr lineare, aber
im Gegensatz zur gewöhnlichen Relativitätstheorie beliebige

lineare Substitutionen die Gleichungen kovariant lassen. Bei
* dieser Einschränkung des Bezugssystems gelangt man zu ganz

bestimmten Gleichungen der Gravitation, die allen Bedingungen

genügen, die wir an Gravitationsgleichungen stellen
dürfen.

Insbesondere ergibt sich aus den Gleichungen die Auffassung,

dass die Trägheit der Körper nicht eine Eigenschaft der
einzelnen beschleunigten Körper allein, sondern eine Wechselwirkung,

d. h. ein Widerstand gegen eine Relativbeschleunigung

der Körper gegenüber den andern Körpern sei — eine

Auffassung, die bereits von Mach und anderen mit
erkenntnistheoretischen Gründen vertreten wurde.

11. Prof. Dr Marcel Grossmann (Zürich). Mathematische
Begriffsbildimgen, Methoden und Probleme zur Gravitationstheorie.

Zur Ueberwindung der mathematischen Schwierigkeiten der
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Gravitationstheorie von Einstein hat es sich als notwendig
erwiesen, die Vektoranalysis auf eine allgemeinere analytische
Basis zu stellen. Denkt man sich die in Betracht fallende

Mannigfaltigkeit auf ein beliebiges krummliniges Koordinatensystem

bezogen, so hat das Linienelement die Form

ds2 V gikdxidxk ; (i, Tc 1, 2, 3, 4)
ik

Führt man beliebige neue Koordinaten ein gemäss den

Formeln

Xi Xi (x\ x'2 x'o, x'é) (t 1, 2, 3, 4)

so dass

oder

ist, so transformieren sich die Koeffizienten guc nach den

Formeln

g'rs £ JßikJ)k$gik

ik

wenn ds ein Skalar sein soll. Unter einem kovarianten Vektor A
verstehen wir den Inbegriff von vier Funktionen Ai{x±x2x3xJ,
die sich transformieren nach den Formeln

A'* 2 Pk*Ak
k

Dagegen sei A ein kontravarianter Vektor, wenn seine

Komponenten At sich transformieren nach den Formeln

A. t TZkiAt

k

Bildet man aus den Komponenten Ai, Bjt zweier kovarianten
Vektoren die 16 Produkte

Tifc AiBi

dxi

jiktdxk
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so erhält man die Komponenten eines kovarianten Tensors

(zweiten Ranges), die sich transformieren nach den Formeln

TV« ^ pirpksTik
ik

Die Grössen gm bilden demnach einen kovarianten Tensor
zweiten Ranges, während die adjungierten Unterdeterminanten

joe einen kontravarianten Tensor zweiten Ranges bilden.
Es wird an einigen Beispielen gezeigt, wie die allgemeine

Vektoranalysis ihre Begriffe und Sätze nach invarianten-theo-
retischer Methode bildet.

12. Partie administrative de la Société mathématique. M. H.

Fehr, président, rappelle d'abord le souvenir du professeur
H. Weber (Strasbourg), membre honoraire, décédé au mois de

juin dernier ; puis il présente le rapport annuel. Sur la proposition

des vérificateurs des comptes, la Société approuve le
rapport du caissier. Le nombre des membres s'élève à 132.

Sur la proposition de son Comité, l'Assemblée décide d'adhé- -

rer à la Société Léonhard Euler ; « elle engage ses membres et
le public scientifique à s'associer aux efforts faits dans le monde
entier pour élever un monument impérissable à l'un des plus
illustres savants suisses. »
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