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indications relatives à différents polyèdres rencontrés dans le

cours de ses recherches.

8. Prof. Dr M. PjjAncherel, Fribourg. Unicité du développement

d'une fonction en série de polynômes de Legendre et expression

analytique des coefficients de ce développement.

1 dn
Pn (x) désignant le polynôme de Legendre ——- {x-—1)

<4, Yb CtX

nous appellerons série de polynômes de Legendre toute série de
OD

la forme X « n P,, (x). f (x) étant une fonction sommable
n~o

dans l'intervalle (— lt-J- 1), on peut former les coefficients de

2n
1

1
1

Legendre fn —5— / (x) P« (x) dx. La série £ Jh P« (x)
z J - i

formée au moyen de ces coefficients n'est pas nécessairement

convergente ; nous l'appellerons la série de Legendre def (x),

f (a;) en sera dite la génératrice.
On peut se poser au sujet de ces séries des questions analogues

à celles que Cantor et Dubois-Reymortd ont posées et
partiellement résolues dans la théorie des séries trigonométriques.
Les théorèmes suivants constituent une réponse partielle à ces

questions.
I. La condition nécessaire et, suffisante pour que dans tout

l'intervalle (—11 +1) à l'exception auplus d'un ensemble réductible

de points, £ an Pn (x) converge vers zéro, est que an o (n 1,

2,3,...,). Ce théorème est dû à M. Dini. La méthode qui me
donne les théorèmes suivants m'en fournit une démonstration

plus simple.
IL Si la série £ an Pn (oc) converge dans tout l'intervalle f— lt

Jr 1), à l'exception au plus d'un ensemble réductible de points,

vers une fonctionf (x) bornée, c'est une série de Legendre dont

f (x) est la génératrice.

III. La condition nécessaire et suffisante pour qu'une série

£ a,iPn (x) (convergente ou non) possède une fonction génératrice
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X

f (x) est que la série Ï anJ Pn (x) dx converge dans lout Vinter-
— i

X

volle {— lt 4-1) versJf (x) dx.
— i

Dans les théorèmes analogues de Cantor et de Dubois-Rey-
mond, l'élément analytique qui joue un grand rôle dans la

2 f(x)] dont la limite pour h — o donne la dérivée seconde

généralisée dé/(ag|, Pour trouver dans notre cas une expression
jouant un rôle analogue, nous considérerons une fonction F
(o,©) sur la sphère de rayon 1. Décrivant autour du point (§,<p)

comme centre un petit cercle de rayon sphérique h, appelant
(§V/) les points de ce petit cercle, ds' l'élement d'are et s le

périmètre de ce petit cercle, nous formerons l'expression

Notant A, F (8,©) la limite de cette expression pour H o,

il vient, si F possède une différentielle seconde,

En particulier, A„ P» (cos 3) — n (n + 1) P« (cos g).

L'expression A2 F (3, © ; h) jouit de propriétés d'extrémum qui
permettent de suivre dans la démonstration de nos théorèmes une
marche analogue à celle donnée par Holder dans le cas des

séries trigonométriques. Faisant correspondre maintenant par
la substitution x *=* cos 3, à toute série E an Pn (x) une fonction

F (3) — E ———- P« (cos 3), on démontre que 7
sinw n(n-\-l) n=o

— A»- F (3, h) o et qu'en tout point de convergence de la série

E ari Pn (x)., A2 F (3) -f- a0 E an P» (cos S). L'utilisation de ces

propriétés conduit sans difficulté aux théorèmes énoncés plus
haut.

démonstration est l'expression [f {x + h) +/(x — 1Î) —

m h) —
sin2 -

\] IF (ô',<p'W - F(ô,ç>) j
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