Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 89 (1906)

Protokoll: Sektion für Botanik

Autor: Goebel / Christ, H. / Fischer, Ed.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

II. Sektion für Botanik

zugleich Versammlung der schweizerischen botanischen Gesellschaft.

Sitzung: Dienstag den 31. Juli 1906.

Ehrenpräsident: Herr Prof. Dr. Goebel, München.

Präsidenten: Herr Dr. H. Christ, Basel.

Herr Prof. Dr. Ed. Fischer, Bern.

Sekretär: Herr Dr. H. Rehsteiner, St. Gallen.

1. Herr Prof. Dr. H. Bachmann-Luzern spricht über seine Planktonstudien an den schottischen Seen.

Einer Einladung von Sir John Murray folgend, bearbeitet der Referent einen Vergleich des Phytoplanktons der Schweizerseen und der schottischen Seen. Aus seinen Studien besprach er folgende Punkte:

- 1. Orographische Orientierung über die Lochs Duddingston, Leven, Earn, Lomond, Lochy, Oich, Ness, Uanagan, Morar;
- 2. Charakterisierung des Phytoplanktons;
- 3. Notwendigkeit der Untersuchung lebender Planktonten;
- 4. Verbindung benachbarter Seen;
- 5. Vorkommen der Desmidiaceen;
- 6. Periodicität des Planktons;
- 7. Tiefenplankton;
- 8. Epiphyten.
- 2. M. le *Prof. Dr. F.-A. Forel*-Morges continue son rapport de l'année dernière (v. Actes de Lucerne, pag. 49) sur la floraison en Suisse de deux espèces de Bambous.

Phyllostachys puberula Miq. fleurit pour la seconde fois dans la Suisse romande (la troisième fois pour une touffe de Morges). Les épis sont moins nombreux et moins serrés que l'année dernière. La floraison est moins opulente; il y a un plus grand nombre de bourgeons à feuilles; certaines touffes sont entourées de nombreuses repousses feuillées partant directement des rhizomes. On peut espérer que la plante, dans certaines touffes du moins, survivra à la crise de la floraison et que l'espèce sera conservée. — Les graines de l'année dernière, très rares (une graine sur trois cents épis), ont mal germé et les semis se sont mal développés.

Arundinaria Simoni Rivière, fleurit pour la troisième ou quatrième fois; plusieurs touffes donnent une abondante production de jeunes pousses feuillées; les rhizomes semblent en bonne végétation.

3. Herr *Prof. Dr. O. Roth-*Zürich demonstriert einen von ihm konstruierten *Apparat zur Entnahme von Wasser-* proben für bakteriologische Tiefsee-Untersuchungen.

Er benutzte bis jetzt einen Apparat, der im wesentlichen demjenigen von Russel nachgebildet war, bei dem ein enges Glasrohr, das mittels einer abschraubbaren Metallkapsel auf einem weitern Rohr befestigt war, durch ein Laufgewicht abgeschlagen wurde, worauf das Wasser in das vorher luftleer gemachte Rohr eintrat.

Der neue Apparat besteht aus einem eisernen Gestell, an dem jeweilen eine sterilisierte, auswechselbare Kappenflasche befestigt wird. Nachdem zuvor die Kappe abgenommen, wird der Griff des Glasstöpsels in einen Halter eingeklemmt, der

an dem einen Ende eines doppelarmigen Hebels drehbar befestigt ist und dadurch gehoben wird, dass der andere Hebelarm durch ein an einem Drahtseile heruntergelassenes Laufgewicht nach unten gedrückt wird. So wird die Flasche geöffnet und das Wasser kann in dieselbe eintreten. Durch einen zweiten Hebel wird eine Feder ausgelöst, die den Pfropfenhalter wieder nach unten drückt, wodurch die Flasche geschlossen wird. Auch die Bewegung dieses Hebels geschieht durch ein Laufgewicht. Eine genaue Beschreibung des Apparates ist ohne Zeichnung nicht möglich.

Sowohl das Leerpumpen (resp. Erwärmen) des Glasgefässes, als das Zuschmelzen einer Glasröhre, durch welche das Wasser in dasselbe eintritt, kommt hier in Wegfall.

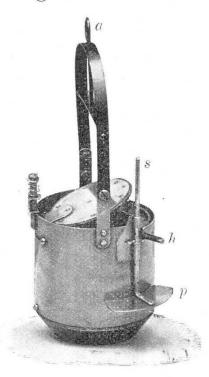
4. Herr Dr. H. Rehsteiner-St. Gallen weist einen selbstkonstruierten Apparat zur gleichzeitigen Entnahme von bakteriologischen Wasserproben und Vornahme von Temperaturbestimmungen bei Tiefsee-Untersuchungen vor.

Der Apparat hat sich seit 12 Jahren bei regelmässigen Tiefseeuntersuchungen im Bodensee bewährt. Er zeichnet sich durch leichte Transportfähigkeit und bequeme Handhabung aus. An einem leichten brettchenförmigen eisernen Gestell wird einerseits ein Negretti-Zambra-Tiefseethermometer (mit Schiffschrauben-Kipp-Vorrichtung) angeschraubt, anderseits ein kleines sterilisiertes, in eine zugeschmolzene Capillare ausgezogenes Kölbchen, verdünnte Luft enthaltend, mit einer Klemme befestigt. Das Abschlagen der Capillare geschieht

in bekannter Weise durch ein Laufgewicht, das beim Aufschlagen auf eine starke Spiralfeder zu liegen kommt, die das Thermometer vor heftiger Erschütterung schützt.

Besonders für grössere Tiefen bedeutet diese Kombination eine wesentliche Zeitersparnis, indem sich während des Heruntergleitens des Laufgewichtes das Thermometer auf die betreffende Temperatur einstellt. Zahlreiche Kontrollproben haben ergeben, dass der Apparat auch bei starkem Wellenschlag sicher funktioniert.

5. Herr *Dr. E. Rübel*-Berninahospiz erläutert seine orientierenden Versuche über *Lichtmessungen unter Schnee*.


Über Lichtmessungen unter Schnee habe ich in der Literatur noch nichts gefunden. Diese sind jedoch besonders für die Alpenpflanzen mit ihrer kurzen Vegetationszeit von hoher Bedeutung. Vermittels Wynnes Printmeter habe ich mir einen Apparat konstruiert, der gestattet, unter Schnee Lichtaufnahmen zu machen. Einstweiliges Ergebnis:

- 1. Es dringen beträchtliche Mengen Licht durch den Schnee ein (eine Messung ergab ¹/₃ des Gesamtlichtes in 11 cm Tiefe).
- 2. Das Licht dringt weit hinein (bei 80 cm war es noch sehr deutlich).
- 3. Die Menge des durchgehenden Lichtes ist stark abhängig von der Schneedichte.
- 6. Herr Dr. H. Brockmann-Jerosch-Zürich spricht über die an seltenen alpinen Pflanzenarten reichen Gebiete der Schweizeralpen. (Folgt in extenso unter "Vorträge").

7. Herr Prof. Dr. Heuscher-Zürich demonstriert einen neuen Apparat zur Entnahme von Stichproben aus dem Grunde von Gewässern.

Die Vorrichtung ermöglichtes, neben qualitativer auch quantitative Bestimmung der auf und im Grunde der Gewässer lebenden Organismen vorzunehmen, sowie die Struktur der Ablagerungen auf den See-

gründen genau zu studieren. Für den letzteren Zweck kann der Apparat so gebaut werden, dass ein Schlammzylinder von 30 cm, event. auch mehr Tiefe ohne wesentliche Schichtenstörung ausgehoben und in einem durchsichtigen Gefässe (aus Celluloid) untergebracht werden kann. Der Apparat funktioniert automatisch, ohne Fallgewichte und hat in seiner jetzigen Konstruktion bei keiner Probe versagt. — Nebenstehende Figur zeigt eine verkleinerte Abbildung des-

selben. Er besteht im wesentlichen aus zwei Hohlzylindern, einem schweren unteren, scharf in den Schlamm einschneidenden Endstücke, einer obern und einer untern Abschlussvorrichtung, einem verstellbaren Auslöseapparat und einer umlegbaren Aufhängevorrichtung. — Bevor der Apparat an einer starken, oben bei a befestigten Leine in die Tiefe versenkt wird, stellt man die mittels der Stange s verschiebbare Auslösevorrichtung je nach der Höhe der Schlammsäule, die man ausheben

will, ein; dann wird die zwischen dem innern und äussern Hohlzylinder angebrachte starke Feder des irisblendenartigen untern Verschlussapparates mittels des Hebels h, der in einen Einschnitt des Mantels geführt wird, gespannt und dadurch der innere Zylinder (Durchmesser 12 cm) unten vollständig geöffnet. - Beim Versenken des Apparates hebt sich der am äussern Zylinder befestigte, aber den innern abschliessende Deckel, und das Wasser hat freien Durchtritt. Auf dem Grunde angekommen (die Tiefe spielt hiebei keine Rolle), sinkt der Apparat mit seinem schneidenden Unterrande durch sein Eigengewicht in den Grundschlamm ein. Wenn der letztere die Platte p erreicht, wird die Stange s in die Höhe geschoben. Ein an derselben befestigter Querstift drückt den Hebel h aus dem Einschnitt des Mantels heraus, die Verschlussfeder ist ausgelöst und der untere Verschlussapparat schneidet den Schlamm ab, während die durch eine Metallplatte beschwerte obere Verschlussklappe zufällt. - Nun wird der Apparat gehoben, es kann dabei nichts entweichen. — Die Konstruktion ist gemeinsame Arbeit des Vorweisenden und seines Freundes, des tüchtigen Konstrukteurs E. Weber-Stierlin in Zürich.

8. Herr Institutslehrer A. Heyer-St. Gallen spricht über variationsstatistische Untersuchungen am Laubblatte von Prunus spinosa L.

Die Messung eines möglichst heterogenen Blattmaterials, bestehend aus 7500 Blättern, aus der Umgebung von St.Gallen ergab folgende Hauptresultate:

1. Das Verhältnis der Breite zur Länge (der Spreite)

- des Blattes schwankt zwischen den Grenzen 1:3 und 4:5.
- 2. Bei konstanter Länge variiert die Breite stets um das dominierende Verhältnis 1:2.
- 3. Bei konstanter Breite variiert die Länge um das zum letztern reziproke Verhältnis.
- 4. Das Verhältnis 2:3 zwischen Breite und Länge scheint ebenfalls ein bevorzugtes zu sein.
- 5. Die gesamte Breitenvariation zeigt die grösste Frequenz bei der Breite 13 mm.
- 6. Die gesamte Längenvariation ergibt zwei Hauptgipfel bei 28 und 33 mm.
- 7. Die grösste absolute Länge war 70 mm (bei 33 mm Breite). Die grösste absolute Breite war 44 mm (bei 62 mm Länge).
- 9. Herr Regierungsrat Dr. Otto Appel-Berlin erläutert die Blütenbiologie von Carex baldensis L.