Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 73 (1890)

Rubrik: Vorträge

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

C. Vorträge.

Leere Seite Blank page Page vide

Das Klima der Eiszeit.

Vortrag von Prof. Dr. Ed. Brückner in Bern.

So alt die Erkenntniss ist, dass einst die Gletscher der Alpen, zu riesenhafter Grösse angeschwollen, das ganze Schweizerland unter ihrer eisigen Last begruben, so alt ist die Frage nach dem Klima, welches jene Eisausdehnung verursachte. Zahllos sind die Hypothesen, die auf jene Frage die Antwort zu liefern suchten. Bald deutete man die Eiszeit als einen gewaltigen Schüttelfrost der Erde, bald als eine Periode sindfluthartiger Regen. Man versuchte das eine oder das andere durch terrestrische oder kosmische Vorgänge zu erklären und verlor sich in ein Gewirr von Hypothesen, von denen die Mehrzahl heute durch die Beobachtung gänzlich widerlegt ist. Die Spekulation war der Feststellung der Thatsachen weit voraus geeilt.

Erst das extensive und intensive Studium der diluvialen Ablagerungen in den letzten 15 Jahren hat eine Reihe von Thatsachen erkennen lassen, welche eine feste Basis für die Beantwortung der Frage nach dem Klima der Eiszeit abgeben.

Einer der hervorragendsten Züge, welcher die Gletschererscheinungen der Diluvialzeit auszeichnet, ist die Allgemeinheit des Phänomens. Die ganze Erde ist von einer Eiszeit betroffen worden, die sich jedoch in den verschiedenen Gebieten verschieden intensiv

Durchweg bestand sie in einer Potenzierung der jetzigen Vergletscherung. Wo heute grosse Gletscher existiren, von dort sehen wir in der Diluvialzeit gigantische Eismassen ausstrahlen, so das nordeuropäische, das nordamerikanische und das patagonische Inlandeis; wo heute nur Gletscher von mässiger Grösse anzutreffen sind, begegnen wir auch in der Eiszeit zwar im Verhältniss zu den heutigen immer noch riesengrossen, jedoch im Vergleich zu den Inlandeismassen kleinen Gletschern, so in den Alpen, den Pyrenäen, im Kaukasus, Himalaya, Kuen-lun, Thian schan, in der Sierra Nevada des Great Basin, in Neuseeland, auf den Kerguelen, in Südgeorgien etc. Endlich trugen Gebirge, die sich heute nicht mehr in die Region des ewigen Schnees erheben, in der Diluvialzeit auch nur ganz kleine Gletscher, wie die Vogesen, der Schwarzwald, die Karpathen, der Ural, die Australischen Berge, die Falklandsinseln etc.

Noch deutlicher tritt die Allgemeinheit des Phänomens hervor, wenn wir die Spuren der diluvialen. abflusslosen Seen über die Erde hin verfolgen. die Gletscher, so sind auch die abflusslosen Seen in ihrer Grösse durchaus von den klimatischen Elementen abhängig, von dem Niederschlag, der sie direkt oder durch Vermittlung der Flüsse nährt und von der Wärme, die an ihnen durch Verdampfung, wie an jenen durch Schmelzung zehrt. Auch sie waren in der Diluvialzeit gewaltig angeschwollen, wie der Bonneville- und der Lahontansee mit ihren zahlreichen kleinen Nachbarn im Great Basin von Nordamerika, wie die Seen in der Sahara, in Tibet, in Turkestan, wie das Kaspische Meer und der Aralsee, das Todte Meer etc. Bei einigen der Seen im Great Basin liess sich direkt der Nachweis führen, dass dieses Anschwellen gleichzeitig mit der Vergletscherung der benachbarten Gebirge stattfand.

Es ist sehr wichtig, dass auch die Tropen keine Ausnahme machen; auch sie haben, wie die übrigen Gebiete der Nordhemisphäre und der Südhemisphäre, in der Diluvialzeit einerseits eine bedeutende Vergrösserung ihrer Gletscher und andererseits eine solche ihrer abflusslosen Seen erlebt; auch sie haben ihre Eiszeit gehabt, wenn auch deren Spuren sich hier nicht in dem Masse aufdrängen wie in höheren Breiten. Allein die diluviale Vergletscherung war, verglichen mit der heutigen, in den Tropen nicht kleiner, als bei uns oder in Amerika. So gibt es kein Land der Erde, das nicht seine Eiszeit gehabt hätte. 1)

Diese Allgemeinheit der Eiszeit auf der ganzen Erde weist mit Entschiedenheit auf eine Gleichzeitigkeit derselben hin; so lange man glauben konnte, dass die Tropen keine Eiszeit erlebt hätten und dass die Südhemisphäre sich heute in einem Stadium der grössten Vergletscherung befinde, so lange konnte man an eine Ungleichzeitigkeit der nord- und der südhemisphärischen Eiszeit glauben. Heute geht das nicht mehr.

Noch etwas anderes lehrt die Allgemeinheit des Eiszeitphänomens auf der Erde und die Thatsache, dass dasselbe durchweg in einer Potenzierung der heutigen Gletscher bestand, nämlich dass im Grossen und Ganzen die Vertheilung von Hoch und Niedrig, von Wasser und Land die gleiche war wie heute, ein Schluss, der mit der geringen Verbreitung diluvialer Meeresablagerungen auf dem Festlande ganz in Uebereinstimmung steht.

Heute treffen wir Gletscher nur dort an, wo mehr oder minder ausgedehnte Theile des Felsgerüstes der Erde über die Schneegrenze emporragen. Wenn wir in der Eiszeit die Gletscher gewaltig angeschwollen

¹⁾ Der Vortragende hatte eine Karte ausgestellt, welche die Verbreitung der diluvialen Gletscher und Seen erkennen liess.

sehen, so müssen wir offenbar schliessen, dass weit ausgedehntere Theile der Erde sich oberhalb der Schneegrenze befanden, dass also die Schneegrenze tiefer lag als heute. Penck hat mit Hülfe einer sinnreichen Methode den Betrag der Depression der Schneegrenze in der Eiszeit für eine Reihe von Gebirgen zu bestimmen gesucht und gefunden. dass erstere rund 1000 m tiefer lag als heute, an einigen Orten etwas tiefer, an andern etwas weniger tief. Eine allgemeine, auch in den Tropen deutlich auftretende Depression der Schneegrenze zeichnete also die Eiszeit aus.

Eine zweite Thatsache von grosser Wichtigkeit hat die Erforschung der Diluvialablagerungen zu Tage gebracht — die Thatsache der Wiederholung der Vergletscherung. Es hat nicht eine Eiszeit gegeben, sondern deren zwei, die durch eine Zeit relativ kleinen Gletscherstandes getrennt waren. Ja, Penck vertritt für das deutsche Alpenvorland und vor allem für das Etschgebiet drei Eiszeiten, und ich konnte mich seinen Resultaten auf Grund eigener Beobachtungen an der Salzach und im Gebiete der südöstlichen Alpen anschliessen.

Die Zahl derjenigen geologischen Profile, deren Erklärung nicht anders als durch die Annahme einer Wiederholung der Vergletscherung möglich ist, mehrt sich von Tag zu Tag. Sie haben alle das Gemeinsame, dass in ihnen, zwischen zwei Moränen lagernd, einer älteren untern und einer jüngern oberen, Bildungen auftreten, die nicht unter dem Gletscher entstanden sein können, wie mächtige Lager von Flussgeröllen und Gehänge- oder Wildbachschutt, in denen sich mehrfach fossile Pflanzen fanden, Lager von Torf, gelegentlich selbst marine Sedimente und Löss. Das gilt von den Alpen, wie von den Pyrenäen und dem Felsengebirge,

vom nordeuropäischen Inlandeis, wie vom nordamerikanischen.

Man streitet heute schon nicht mehr über die Thatsache der Wiederholung der Vergletscherung, sondern über den Betrag des Rückzuges der Eismassen in der Interglacialzeit. Hierüber aber muss die geographische Verbreitung der interglacialen Profile Auskunft geben.

Leider bringt es die Natur der Sache mit sich, dass interglaciale Profile vorwiegend in der Nähe der Peripherie der Gletscher-Gebiete auftreten, wo allein eine ungestörte Ablagerung der Moränen stattfand, während gegen das Innere des vergletscherten Gebietes hin ein immer vollständigeres Ausfegen alles lockeren Materials erfolgen musste. So kommt es, dass bis heute nur in den Alpen, hier jedoch an mehreren Stellen, die interglacialen Profile bis tief in das Herz des Gebirges hinein verfolgt werden konnten. Offenbar hatten sich die Gletscher in der Interglacialzeit sehr weit zurückgezogen. Zu dem gleichen wichtigen und interessanten Resultat, dass die Gletscher der Interglacialzeit ihrer Grösse nach nicht wesentlich von den heutigen verschieden gewesen sein können, führt auch die Untersuchung der interglacialen Flora. Was nun aber von den Alpen gilt, gilt bei der Harmonie, die sich in allen Erscheinungen der Eiszeit überall ausspricht, auch mehr oder weniger sicher für die übrigen Gletschergebiete. Auch hier schaltete sich zwischen die beiden Vergletscherungen eine Zeit kleinen Gletscherstandes ein.

Voll und ganz werden diese Schlüsse durch die Untersuchungen amerikanischer Gelehrter im Gebiete der beiden grossen diluvialen Seen des Grossen Beckens von Nordamerika, des Lake Bonneville und des Lake Lahontan, bestätigt.

An beiden Seen lassen sich mit aller Sicherheit

zwei Perioden hohen Wasserstandes unterscheiden, die durch eine Zeit getrennt erscheinen, in welcher die Seen mindestens auf ihren heutigen Umfang zusammengeschwunden waren. Ueberall nämlich, wo man durch nachträgliche Erosion in den Boden der alten eingetiefte Thäler antrifft, da sind drei Schichten übereinander zu beobachten: zu unterst der Niederschlag eines alten Sees; darüber eine Schicht typischer Flussund Bachablagerungen, endlich im Hangenden ebenfalls lacustre Bildungen. Diese drei Horizonte sind durch Discordanzerscheinungen von einander getrennt; der Kies vor allem lagert oft in Thälern, die in die liegende Seeablagerung geschnitten sind. Es schaltet sich also zwischen die beiden Perioden hohen Wasserstandes eine Zeit ein, in welcher der alte Seeboden von Flüssen durchflossen wurde, die auf ihm ihre Gerölle ablagerten. Diese interlacustren Profile, wie man sie nicht unpassend nennen könnte, lassen sich im Gebiet des Grossen Salzsees abwärts bis 50 m Höhe über dem jetzigen Spiegel des Sees verfolgen, wo die beiden untern Ablagerungen unter den obern jüngern verschwinden. Analoges ist am Lake Lahontan constatirt. Russell und Gilbert machen es sogar wahrscheinlich, dass in der Zeit zwischen den beiden Seeperioden überhaupt alle stehenden Gewässer des Beckens geschwunden waren.

Angesichts der Ausdehnung desjenigen Gebietes der Erde, für welches eine Zweizahl der Eiszeiten oder der Hochstände der Seen nachgewiesen ist, darf man heute wohl an der Allgemeinheit dieser Wiederholung nicht zweifeln und den Satz aussprechen: Die ganze Erde hat mindestens zwei Eiszeiten erlebt, getrennt durch eine Interglacialzeit, zwei Perioden tiefer Lage der Schneegrenze und grossen Standes der Gletscher und abflusslosen

Seen, getrennt durch eine Periode hoher Lage der Schneegrenze und kleinen Standes der Gletscher und Seen. Es sind grossartige Schwankungen der hydrographischen Phänomene der Erde, von welchen uns die Diluvialablagerungen zeugen; nur in entsprechenden Schwankungen des Klimas können sie ihre Ursache besitzen.

Die diluvialen Schwankungen der Gletscher, wie der abflusslosen Seen, können sowohl durch einen Wechsel von kalten und warmen Perioden, als auch durch einen solchen von feuchten und trockenen erklärt werden. Gegenwärtig neigt man unter den Geologen, nach dem Vorgange von Lecoq, de la Rive, Tyndall und Frankland, vielfach der Ansicht zu, es sei die Eiszeit durch eine Vermehrung der Niederschläge veranlasst worden; die Temperaturverhältnisse hätten dagegen nur eine mehr untergeordnete Rolle gespielt. Ja, Whitney, der diese Hypothese weiter ausgebaut hat, verficht sogar, ebenso wie Frankland, die Anschauung, dass die Eiszeit bei höherer Temperatur stattfand, da bei höherer Temperatur die Verdunstung und damit die Niederschläge gesteigert gewesen sein müssten. Ihm ist das Schwinden der Gletscher und Seen eine Folge der allmäligen Abkühlung des Erdenklimas. Aenderung Niederschläge ohne wesentliche Aenderung der Temperatur, das ist die Parole, die ausgegeben wird. Man stützt sich hierbei zum Theil auf die Ausführungen Woeikof's, deren Anwendung jedoch übertrieben wird. Woeikof selbst hat sich gegen jene Theorie Whitney's, wie früher Sartorius von Waltershausen gegen diejenige Frankland's, gewandt und ihre Haltlosigkeit aus meteorologischen Gründen dargethan. Eine Erhöhung der Temperatur der Luft und der Meere würde freilich mehr Verdunstung und mehr Niederschlag verursachen, aber die Schneemenge in den Gebirgen

vermindern; denn Schnee würde nur in grössern Höhen fallen als jetzt, und da die Schneegrenze selbst in den feuchtesten Gegenden der Tropen jetzt bedeutend höher als 4000 m liegt, so würde sie dann noch höher rücken.

Ueberblickt man die Sachlage, so ist ersichtlich, dass man bis heute der Frage fast ausschliesslich in Speculationen näher zu treten suchte. Wie schwierig es jedoch bei solchen ist, die einzelnen Factoren gegen einander abzuwägen, zeigt die Thatsache, dass die einen für die Eiszeit unbedingt ein etwas wärmeres, die andern aber ein etwas kälteres Klima annehmen wollen. Wirklich positive Anhaltspunkte zur Klärung der Frage hatte bis vor Kurzem nur Woeik of beigebracht, indem er die klimatischen Bedingungen der heutigen Gletscher eingehend feststellte. Da schlug im Jahre 1885 Lang einen neuen Weg ein; er suchte, wie schon vor ihm Sonklar, Forel und Richter, durch eine Discussion der meteorologischen Beobachtungen in der Umgebung der Alpen festzustellen, welcherlei Ursachen die Schwankungen der Alpengletscher bedingen, die wir im laufenden Jahrhundert deutlich erkennen können und deren Studium vor allem Forel sich zur Aufgabe gemacht hat. fand, dass diese Schwankungen parallel gehen Schwankungen des Niederschlags, während ein Parallelgang mit der Temperatur sich nicht mit gleicher Schärfe Eine Vermehrung des Niederschlags, so schloss er, muss also auch in erster Reihe die Eiszeit heraufbeschworen haben.

Es war mir vergönnt, die Untersuchungen Lang's, welche sich auf die Alpen beschränkten, über die ganze Erde hin auszudehnen. An der Hand der Beobachtungen von im Ganzen 800 Stationen mit insgesammt 37,000 Beobachtungsjahren gelanges mir darzuthun, dass

das Klima auf der ganzen Erde in einer beiläufig 35jährigen Periode Schwankungen erleidet.

Die Klimaschwankungen der historischen Zeit bestehen in Schwankungen der Temperatur, des Luftdrucks und des Regenfalls, die sich auf der ganzen Erde gleichzeitig vollziehen. Dabei ist die Temperatur dasjenige Element, von dem alle übrigen abhangen.

Die Schwankungen der Temperatur konnte ich an Thermometerbeobachtungen bis 1731 zurück verfolgen, dagegen an den Daten über die Eisverhältnisse russischer Ströme bis 1700 und selbst noch weiter zurück. Die Schwankungen der Temperatur sind so gut wie allen Ländern der Erde gemeinsam. Nur 11 Procent derselben bilden Ausnahmen, jedoch ohne dass irgend eine Gesetzmässigkeit gefunden werden könnte, während jedesmal 89 Procent aller Gebiete gleichzeitig Kälteperioden und gleichzeitig Wärmeperioden erleben. Die Amplitude dieser Temperaturschwankungen beträgt im Mittel für die ganze Erde nahezu 1° C.

Die Temperaturschwankungen wirken auf die Luftdruckvertheilung ein, indem sie synchrone Schwankungen des Barometers hervorrufen. Die Intensität und der Character dieser Luftdruckschwankungen ändert sich von Gebiet zu Gebiet in durchaus gesetzmässiger Weise. In den Wärmeperioden erscheint der Uebertrittoceanischer Luft vom Meer aufs Festland erschwert, in den Kälteperioden dagegen erleichtert. Das muss nun seinerseits auf den Regenfall des Landes einwirken.

Auf dem Gros der Landmassen schwankt der Regenfall derart, dass die kühlen Perioden auch feucht und die warmen trocken sind. Etwas mehr als 20 Procent der durch meteorologische Beobachtungen vertretenen Gebiete verhalten sich theils ständig, theils wenigstens temporär abweichend, indem bei ihnen Regenreichthum und Wärme, andererseits Regenarmuth und Kälte zusammenfallen. Es ist sehr wichtig, dass diese Ausnahmegebiete sich vorwiegend um die Oceane gruppiren, die solcherart ihrer ganzen Ausdehnung nach in den Verdacht der Ausnahme kommen, wie der nordatlantische Ocean. In der That ist es verständlich, dass umsomehr Gelegenheit zur Regenbildung dem Ocean entzogen wird, je mehr feuchte, oceanische Luft vom Meer aufs Land übertritt. So scheint eine Art Compensationsverhältniss zwischen Continent und Ocean zu bestehen.

Die Schwankungen des Regenfalls sind sehr verschieden ausgeprägt; ihre Intensität nimmt im allgemeinen mit der Continentalität zu. Das Verhältniss der Regenmenge zur Zeit des Maximums zu derjenigen des Minimums wächst gegen das Innere der Landmassen hin; den grössten bekannten Werth erreicht es mit 2.31 in Westsibirien. Es rücken hier in der feuchten Periode die Isohveten um viele Hunderte von Kilometern gegen das Innere des Festlandes vor, um in der Trockenzeit sich ebenso weit wieder zurückzuziehen. Da gleichzeitig auf dem Ocean die Regenmenge abnimmt, so besagt das nichts anderes, als dass sich in den kühlen und für die Landflächen feuchten Perioden die Gegensätze zwischen Ocean und Continent erheblich ausgleichen. Die Abnahme des Regenfalls gegen das Innere des Landes ist in der warmen Trockenperiode rasch, in der feuchten Kälteperiode langsam. Das liess sich für Asien, Europa und Nordamerika im Grossen und selbst für beschränkte Gebiete im Kleinen darthun.

Im Mittel für die Länder der Erde, ausschliesslich der Ausnahmegebiete, beträgt die Schwankung des Regenfalls 24 Procent des vieljährigen Mittels, und einschliesslich der Ausnahmen immer noch 12 Procent. Die gesammte zur Zeit des Minimums auf alle Länder der Erde fallende Regenmenge ist um 12 Procent kleiner als diejenige zur Zeit des Maximums.

In den letzten beiden Jahrhunderten erscheinen als Centren von kalten und auf dem Lande feuchten Perioden die Jahre 1700, 1740, 1780, 1815, 1850 und 1880, als Centren von warmen und auf dem Lande trockenen Perioden die Jahre 1720, 1760, 1795, 1830 und 1860.

Diese Schwankungen des Klimas wirken deutlich auf den Stand der Flüsse und Flussseen, vor allem auch der abflusslosen Seen, wie der Gletscher, ein und verursachen Schwankungen derselben in einer etwa 35jährigen Periode.

Es ist sehr bezeichnend, dass die grossen, langdauernden Oscillationen der Gletscher und der abflusslosen Seen der Diluvialzeit ihrem Character nach genau diesen an den heutigen Gletschern und abflusslosen Seen zu beobachtenden kurzdauernden Schwankungen Gewiss hat daher der Schluss eine hohe entsprechen. Berechtigung, dass auch die diluvialen Klimaschwankungen ihrem Character nach den heute zu beobachtenden ent-Wie heute ein Vorstossen der Gletscher und sprachen. ein Anschwellen der Seen durch eine Kälteperiode veranlasst wird, in deren Gefolge eine Schwächung der Luftdruckdifferenzen und daher eine Vermehrung des Niederschlags auf dem grössern Theil der Landflächen der Erde auftritt, so dürfte auch eine ganz entsprechende, nur durch eine grössere Abweichung und eine längere Dauer ausgezeichnete Kälteperiode mit analogen begleitenden Aenderungen des Luftdrucks und des Regenfalls als Ursache der Eiszeit zu betrachten sein. war das Klima der Eiszeit überall kühler und auf dem grössern Theile der Landflächen der Erde auch feuchter

als das heutige und als das Klima der Interglacial-, wie der Präglacialzeit.

Dieses Resultat stimmt mit den Anschauungen von Gilbert, Penck, Dutton und Neumayr im Wesentlichen überein, da sie alle die Ursache der Eiszeit in einer negativen Temperaturabweichung suchen. Doch erweitert und ergänzt es dieselben, indem es local auch den Schwankungen des Regenfalls einen Einfluss zuspricht. Die Schwankungen der Temperatur sind die erste und allgemeine Ursache, zu der sich in vielen Gegenden entsprechende Schwankungen des Regenfalls gesellten. Diejenigen Gebiete, welche wir oben bei der Schilderung der 35-jährigen Schwankung des Regenfalls als Ausnahme-Gebiete kennen lernten, vor allem die Meere, dürften wahrscheinlich auch in der Eiszeit keine Vermehrung, sondern eher eine Minderung ihres Niederschlages erlebt haben. Ja, die in jener Zeit niedriger Temperatur voraussichtlich geringere Verdunstung macht es fast wahrscheinlich, dass überhaupt die gesammte, auf die Erde niederfallende Regenmenge geringer war als heute; aber die Regenmenge der Festländer war grösser. Suchen wir diese aus der Analogie mit den Klimaschwankungen der letzten Jahrhunderte gewonnenen Ergebnisse an dem vorliegenden Thatsachenmaterial zu prüfen.

Diejenige Erscheinung der Eiszeit, welche hierzu am besten geeignet scheint, ist die Depression der Schneegrenze. Dieselbe ist nach unserer Anschauung durch eine Minderung der Temperatur, die überall auftrat, veranlasst gewesen, gleichzeitig jedoch in verschiedenen Gebieten durch eine Steigerung des Regenfalls mit beeinflusst worden. Es muss sonach die Depression in verschiedenen Gebieten verschieden gross sein, mittelgross dort, wo eine Aenderung des Regen-

falls nicht platzgriff, am grössten dort, wo letzterer am intensivsten anwuchs, endlich am kleinsten dort, wo der Regenfall etwas abnahm. In der That zeigt es sich, dass die Depression der Schneegrenze keineswegs gleichmässig ist. Die wenigen vorhandenen Beobachtungen scheinen wirklich zu bestätigen, dass die Abweichung des Regenfalls während der Eiszeit vom heutigen von Ort zu Ort verschieden gewesen ist, derart, dass dort, wo heute die Schwankungen des Regenfalls sich am schärfsten ausprägen, auch in der Eiszeit die Vermehrung des Niederschlags relativ sehr gross war.

Ueber den Betrag der Abweichung des Regenfalls in der Eiszeit vom heutigen kann man schon deswegen nichts aussagen, weil derselbe von Ort zu Ort verschieden war. Anders aber steht es mit der Abweichung der Temperatur. Würde die Depression der Schneegrenze ausschliesslich ein Werk der Depression der Temperatur gewesen sein, so müsste an der diluvialen Schneegrenze jene Temperatur geherrscht haben, welche heute im gleichen Gebirge an der recenten Schneegrenze herrscht. Es liesse sich dann der Betrag der Temperatur-Depression einfach aus dem Betrag der Depression der Schneegrenze mit Berücksichtigung der bekannten Abnahme der Temperatur mit zunehmender Höhe von 0,5° pro 100 Meter berechnen. Da aber nach unserer Anschauung die Depression der Schneegrenze in vielen Fällen auch von einer Zunahme des Regenfalls beeinflusst wurde, so wird jene Methode offenbar nur dort gute Ergebnisse liefern, wo höchst wahrscheinlich eine Mehrung des Niederschlags nicht stattfand, d. h. dort, wo die Depression der Schneegrenze relativ klein aus-Wir finden in dieser Weise als Endresultat, dass das Klima der Eiszeit um etwa 3 bis 4º kälter war als das heutige. Man sieht, es gehört keineswegs eine gigantische Temperatur-Erniedrigung, wie man früher glaubte, dazu, um eine neue Eiszeit hervorzurufen. Die Temperatur-Differenz zwischen Eiszeit und heute ist sogar sehr gering, ist sie doch nur 3-4mal so gross als die Amplitude der oben für die letzten beiden Jahrhunderte nachgewiesenen säcularen Schwankungen der Temperatur. Dadurch, dass diese Temperatur-Depression auf die Luftdruck-Verhältnisse einwirkte, wurde die Feuchtigkeit auf dem Lande vermehrt, das Klima wurde hier oceanischer und die Schneegrenze noch tiefer herabgedrückt.

Ueber das Klima der Interglacialzeit können wir auf Grund der Klimaschwankungen in der historischen Zeit nur aussagen, dass dasselbe dem gegenwärtig herrschenden ziemlich nahe gestanden haben dürfte; denn Seen und Gletscher waren nicht wesentlich grösser—vielleicht sogar kleiner— als heute; das Klima war wärmer, als das Eiszeitklima und gleichzeitig erheblich continentaler. Mitteleuropa erlebte damals eine Steppenperiode.

Es wäre hier der Platz, die gewonnenen Ergebnisse an dem, was man über Fauna und Flora der Diluvialzeit weiss, zu prüfen. Doch die Zeit drängt; es genüge der Hinweis, dass Flora und Fauna unsere Schlüsse durchaus bestätigen.

Zwei Kälteperioden mit einer Temperatur etwa 3—4° tiefer als die heutige, die auf dem Lande als feuchte Perioden auftraten, getrennt durch eine Wärmeperiode, die der heutigen und der präglacialen klimatisch ungefähr entsprach, das sind, mit wenigen Worten geschildert, die Klimaschwankungen der Diluvialzeit.

Wenn wir in dieser Weise den Gang der Ereignisse aus dem Wirrsal einzelner Erscheinungen zu enträthseln suchten, so entzieht sich uns doch die Ursache der mächtigen Klimaschwankungen der Diluvialzeit noch vollkommen. Wir müssen uns damit begnügen, auf Grund unserer obigen Ausführungen festzustellen, welchen Bedingungen eine brauchbare Theorie zu genügen hat.

Zunächst kann die Ursache der diluvialen Klimaschwankungen keine tellurische gewesen sein; denn eine solche wäre mit der Thatsache der Allgemeinheit des Eiszeitphänomens für die ganze Erde unvereinbar. Dann muss sie eine periodisch wirkende gewesen sein; denn wir haben mindestens zwei, vielleicht sogar drei Eiszeiten zu unterscheiden. Endlich muss die Ursache derart beschaffen gewesen sein, dass sie auf der ganzen Erde, also gleichzeitig auf der Nordhemisphäre und auf der Südhemisphäre, in höheren Breiten wie am Aequator die Temperatur beeinflusste, indem sie dieselbe im Vergleich zur Gegenwart in jeder Eiszeit um wenige (3-4) Grade deprimirte; hierdurch werden alle Hypothesen ausgeschlossen, welche den Hauptnachdruck auf die Präcession der Tag- und Nachtgleichen und auf die verschiedene Länge des Sommers und des Winters legen und ein Alterniren der Eiszeit zwischen Nord- und Südhemisphäre annehmen. Damit aber sind wir auch am Ende dessen, was wir über die Ursache der diluvialen Klimaschwankungen aussagen können. Nur als eine Vermuthung, die eine gewisse Wahrscheinlichkeit für sich hat, möchten wir hinzufügen, dass sich bei der vorhandenen Uebereinstimmung zwischen den diluvialen Klimaschwankungen und denjenigen von kurzer Periode in der Gegenwart beide Phänomene vielleicht auf eine Ursache gleichen Characters zurückführen lassen könnten. Ob eine solche gemeinsame Ursache in Schwankungen der Sonnenstrahlung zu suchen ist oder nicht, können wir nicht Sicher scheint nur, dass eine Oscillation bestimmen.

der Sonnenstrahlung die geschilderten Phänomene der Diluvialzeit gut erklären könnte.

Wie die Räder eines Uhrwerks greifen die verschiedenen meteorologischen Elemente Temperatur, Luftdruck und Regenfall in den Klimaschwankungen heute wie auch in der Diluvialzeit ineinander ein. Wir sehen die Räder sich drehen und den Zeiger in bestimmtem Rhythmus sich bewegen; allein die treibende Kraft der Feder ist uns verborgen. Nur die Wirkung derselben vermögen wir zu erkennen und hieraus auf die gewaltige Grösse der Kraft zu schliessen. Sie hebt den Spiegel der Seen, der Flüsse, ja den der Meere; sie stösst die Gletscher vor und greift tief ein in das organische Leben. Allein sie selbst, die Ursache der Klimaschwankungen von heute, wie derjenigen der Diluvialzeit, kennen wir nicht. 1)

¹) Vgl. zur vorliegenden Frage auch Brückner: Klimaschwankungen seit 1700, nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Wien, Hölzel, 1890. Kapitel X, Seite 291—318.

Die Fortschritte in der Erforschung der Thierwelt der Seen.

Von Dr. Othmar Emil Imhof.

Seit der Gründung von zoologischen Stationen an verschiedeuen Meeresküsten ist die Forscherarbeit der Zoologie auf die Bearbeitung der ausserordentlich reichen und mannigfachen Thierwelt der Meere concentrirt worden, während die zahlreichen kleineren und grösseren Binnengewässer, die Seen, nur in geringem Maasse ausgedehntere systematische Durchforschung erfahren haben. Infolge der grundlegenden vieljährigen Arbeiten von Forel und Duplessis, namentlich im Genfersee, in den Jahren 70—82 wurde diesem Gebiete der Süsswasser-Thierwelt grössere Aufmerksamkeit zugewendet. Gegenwärtig ist die Kenntniss der Thierwelt der Seen durch eine Reihe zum Theil grösserer Arbeiten in mancher Richtung bedeutend gefördert worden.

Es soll hier ein kurzer Ueberblick über den gegenwärtigen Stand der Seendurchforschung gegeben werden.

Die Thierwelt eines Sees wird eingetheilt in drei besondere Faunen,

- 1. Die littorale Fauna. Bewohner der Ufer bis zu 20-25 Meter Tiefe.
- 2. Die Tiefsee-Fauna. Umfasst die Thiere, die in grösseren Tiefen bis zu 300 und 400 Metern auf dem Grunde leben.

3. Die pelagische Fauna. Die Mitglieder dieser Thierwelt bewohnen, immerwährend frei schwimmend, vom Moment ihrer Geburt bis zu ihrem Tode die grosse Wassermenge der Seen.

Von diesen drei Faunen ist die littorale die reichste, aber auch gegenwärtig noch ist sie sehr wenig im Zusammenhang, d. h. auf alle Thierformen aus den verschiedenen Abtheilungen des Thierreiches hin. bearbeitet worden.

In der Schweiz ist eigentlich nur der Genfersee nach dieser Richtung in ausgedehnterem Maassstabe untersucht, es liegt also hier in der Erforschung einer grösseren Zahl von Seen noch ein weites Feld der Bearbeitung vor.

Ein Blick auf die Karte von Nord-Deutschland lehrt, dass von Schleswig-Holstein bis über Danzig und Königsberg hinaus eine kaum zählbare Zahl kleinerer und auch grösserer Wasserbecken vorhanden ist, von denen aber wahrscheinlich wenige grössere dimensionen aufzuweisen haben werden. Dieses Seengebiet erfreute sich in jüngerer Zeit einer faunistischen Durchforschung, besonders der uferbewohnenden Thier-Zacharias besuchte auf grösseren Excursionen circa 42 Seen. Seine Berichte enthalten ein reiches Material über die littorale Fauna, speziell über die Thiergruppen der Strudelwürmer (Turbellarien), Spaltfüsser-Krebschen (Copepoda), die Wasserflöhe (Cladocera) und die Wasserspinnchen (Hydrachnida). Speziell in westpreussischen Seen hat in neuerer Zeit Seligo hydrobiologische Untersuchungen angestellt. In den Materialien aus 64 Seen fanden sich zahlreiche littorale Thierformen, Ein grosser Theil der aufgeführten Thierspecies gehört der 3., der pelagischen Fauna an. In einer grössern Zahl von Wasserbecken wurden speziell die niedern Krebsformen (Phyllopoda, Blattfüsser, Copepoda, Cladocera, Ostracoda, Muschelkrebschen, Amphipoda und Isopoda) der littoralen Fauna in Südrussland in der Umgebung von Kief untersucht. Die Zahl der von W. Ssowinsky in den Jahren 1886—1887 geprüften Wasserbecken beläuft sich auf nicht weniger als 75.

Was die Tiefsee-Fauna anbelangt, so bleibt auch hier noch viel Arbeit zu thun übrig. Die Thierwelt, die in den grösseren Tiefen der Seen lebt, kennen wir besonders aus dem Genfersee genauer. Auch aus andern Schweizerseen liegen Materialien vor, z. B. aus: Vierwaldstätter-, Zuger-, Zürich-, Boden-, Unter-, Wallen-, Neuenburger-, Langen- und Luganer-See, sowie aus einigen tiefern Alpen-Seen. Die Zusammenstellung dieser Ergebnisse zeigt aber, dass noch viele Lücken auszufüllen sind.

Eingehende Arbeiten aus andern Seengebieten besitzen wir aus früheren Zeiten aus schwedischen Seen und aus neuerer Zeit aus Seen in Finnland von Nordqvist. Die wichtigsten Ergebnisse aus diesen nordischen Seen bestehen in dem Auffinden von Thierformen auf dem Grunde der Seen, die auch — oder sehr nahe verwandte Arten — im Meerwasser der Nord- und Ostsee leben.

Ein besonderes Interesse erweckte die Frage nach den Bewohnern der zahlreichen kleineren Alpenseen, deren unsere Alpen einen ansehnlichen Reichthum besitzen. Viele dieser Alpenseen sind mit Namen bekannt, aber wie gross die Zahl der sehr hoch gelegenen Wasserbecken ist, dürfte einer kurzen Betrachtung werth sein.

Als Wegleiter für faunistische Studien war die Anfertigung einer hydrologischen Karte wünschenswerth. Es wurde daher vorerst für den Kanton Graubünden eine Karte, enthaltend die Flüsse, die kleineren und grösseren Seen, gezeichnet, um einen bequemen Ueber-

blick zu erlangen. Diese hydrologische Karte, nach unserem ausgezeichneten neuen Kartenwerke im Maassstab 1:50,000 für die Alpengebiete und 1:25,000 für die Voralpen, Hochebene und Jura, enthält die bedeutende Zahl von 590 kleineren, zum Theil auch etwas grösseren Wasserbecken.

Auffällig ist die Vertheilung der 590 Wasserbecken in Bezug auf ihre Höhenlage über Meer. Aus der Zusammenstellung ergiebt sich das eigenthümliche Verhältniss, dass von den 590 in der Höhe von 600 bis 1500 Meter bloss 23 Wasserbecken liegen. Dann folgen

von	1500	 1600	Meter	11
,,	1600	 1700	,,	9
,,	1700	 1800	"	10
"	1800	 1900	,,	27
,,	1900	 2000	"	29
,,	2000	 2100	,,	45
,,	2100	 2200	,,	4 2
٠,	2200	 2300	7,7	47
,,	2300	 2400	,,	76
"	24 00	 2500	,,	82
,,	2500	 2600	,,	80
,,	2600	 2700	,,	7 2
,,,	2700	 2800	,,	9
,,	2800	 2900	,,	1

Aus dieser Tabelle ist ersichtlich, dass in der Höhenzone von 2000—2700 Metern nicht weniger als 444 Wasserbecken, also nahezu ⁴/₅ der sämmtlichen Wasserbehälter, in den Höhenlagen von 600—2900 Metern liegen.

Von diesen Alpenseen und -Seelein besitzen allerdings nur wenige eine grössere Tiefe, entgegen dem noch vielfach vorhandenen Glauben, dass manche Alpenseen unergründliche Tiefe besässen. Bekannt sind die Ausmaasse folgender Alpenseen des Cantons Graubünden:

${f Meter}$	m. ü. M.
48	1561
17	1700
15	1740
77,4	1794
73	1796
25	1908
14,4	2270
$6,\!55$	2640
	48 17 15 77,4 73 25 14,4

Nur von wenigen hochgelegenen Alpenseen kann von einer Tiefsee-Fauna, wegen der unbedeutenden Tiefenverhältnisse, gesprochen werden; die Thierwelt ist in diesen Fällen als grundbewohnende Fauna zu bezeichnen.

Auch in anderen Theilen der Alpen trifft der Wanderer zahlreiche kleinere Seen, die der Natur einen besonderen Reiz verleihen. Manche dieser Seen zeigen ganz eigenartige Farben. Auf der Farbe vieler Seen beruht ja auch ihr Name, wie z. B. die mancherorts vorhandenen Schwarzseen, Grünseen, Blauseen und Weissseen. Einzelne Seen besitzen eine besonders characterische Färbung, indem ihr Wasser nicht klar, durchsichtig, sondern trüb opalisirend, z. B. blau, wie Malachit oder Lapis lazuli, ist, z. B. der Saoseosee im Val Viola.

Als Resultat der Untersuchung einer grössern Zahl von Alpenseen ergab sich, dass beinahe alle noch von kleinen Thieren bewohnt sind. Die Zusammensetzung der Alpensee-Fauna weist an vielen Orten noch eine unerwartete Mannigfaltigkeit auf. Sie besteht aus microscopisch-kleinen Formen, aus, von blossem Auge noch gerade sichtbaren, namentlich kleinen Krebschen von einfachem Körperbau, die grössern davon wenige, 2—3 Millimeter, messend. Ferner begegnet man sehr

häufig Wasserinsecten, wie z. B. Rückenschwimmer, Käfer, die sowohl als Larven, als auch als volkommene Insecten im Wasser wohnen, sowie Larven von Insecten, die in ausgebildetem Zustande das Wasser verlassen, um dann ein kurzes Luftleben zu führen. An grösseren-Thieren beherbergen noch sehr hoch gelegene kleine Seen: Wasserschnecken, Frösche, Tritonen, sog. Wassersalamander, und Fische. Wohl der höchst gelegene Aufenthalt von Fischen dürfte der Lej Sgrischus (2640 m. ü. M.) am Westabhang des Piz Corvatsch im Ober-Engadin sein. Er enthält zahlreiche Forellen. Zwei an den genannten Thierformen noch reiche kleinere Wasserbecken mögen als Beispiele dienen. Es sind zwei Seen am Nordabhang des Piz Corvatsch, in der Höhe von 2520 und 2610 m. ü. M. bei Mortels gelegen.

Nicht nur im Sommer, resp. Spätsommer, ist diese verhältnissmässig reiche Thierwelt vorhanden, sondern auch zu den andern Jahreszeiten und sogar mitten im Winter, wenn alles mit tiefem Schnee bedeckt und die Seen von einer dicken Eiskruste überzogen sind, dauert das Leben der Thierwelt fort. Diese Thatsachen wurden im Winter 1883/84 Ende December und Anfangs Januar in den Engadiner Seen: St. Moriz, Campfèr, Silvaplana, Sils und Cavloccio an Ort und Stelle unter der Eisdecke beobachtet.

Das Fortbestehen thierischer Wesen unter den eben berührten, sehr veränderten Existenzbedingungen lässt sich leichter verstehen, wenn man die folgenden Beobachtungen kennt. Es wurden seinerzeit im Genfersee aus eirea 300 Meter mit einem verschliessbaren Apparat Grundproben heraufgeholt und mit Wasser ebenfalls aus der gleichen Tiefe in hermetisch verschlossene Gläser von $1-1^{1/2}$ Liter Inhalt übertragen. Nach Monaten noch fanden sich darin lebende Organismen,

die auf dem Grunde des Sees leben. Auf einer zoologischen Reise nach den Seen des Salzkammergutes mit Grundproben und Wasser aus der Tiefe mehrerer Seen gefüllte Gläser enthielten nach längerer Zeit lebende Thiere, die erst später in Zürich untersucht wurden. Im Lucendrosee am St. Gotthard wurden im Sommer 1887 am 10. Juli Grundproben in ein Glas mit hermetischem Verschlusse übertragen, gegenwärtig im August 1890, also nach mehr als 3 Jahren, finden sich noch lebende Organismen darin. Am 28. Juli 1883 dem entnommene Schlammproben zeigten unter Gardasee denselben Aufbewahrungsverhältnissen im März 1885 noch lebende Muschelkrebse und Borstenwürmer. 29. December 1883 im zugefrorenen Silsersee gesammelte Schlammproben, sowie solche aus dem Silvaplaner-, Campfer-, St. Morizsee und Cavloccio wurden am 2. Januar per Postschlitten von Silvaplana über den Julierpass nach Chur befördert. Reisedauer: Morgens 7 Uhr bis Abends 4½ Uhr bei mehreren Grad Kälte. aller Vorsichtsmassregeln hatte sich bis Chur ein Balkenwerk von Eis in den Gläsern gebildet. Am 11. Februar konnten aus diesen Proben in der Naturforschenden Gesellschaft in Zürich lebende Thiere demonstrirt werden.

Diese Beispiele zeigen, dass die Lebenszähigkeit der niedern Süsswasserorganismen unter sehr verschiedenen Existenzbedingungen eine ganz ansehnliche ist, wie sie bisher wohl nicht genügend in Anschlag gebracht wurde, um die Anwesenheit thierischer Organismen in hochalpinen Seen zu erklären. Es möge hier ein Beispiel von dem Vorkommen ein- und derselben Thierform in Seen, die ganz verschiedene physikalische Verhältnisse darbieten, aufgeführt werden. Ein durch seinen Körperbau, durch den Besitz von 6, Fiederborsten tragenden, Ruderanhängen characterisches Räderthierchen, Pedalion

mira Hudson, kommt in den oberitalienischen Seen, Annone und Varese, im Lowerzersee, im sog. Stadtweiher bei Baden und im Lago Campo am Piz Duan im Bergell in einer Höhe von 2370 m. ü. M. vor.

Ausser grund- und uferbewohnenden Thieren finden sich auch kleinere Thiere, die im freien Wasser immerwährend herumschwimmen, die sogenannten pelagischen Thiere.

In der grossen Wassermasse, entfernt von den Ufern, dicht unter der Oberfläche, aber auch in verschieden tiefen Wasserschichten trifft man freischwimmende Thiere, die vom Moment ihrer Geburt bis zu ihrem Tode frei im Wasser schwebend, wie der Vogel in der Luft, aber ohne sich absichtlich auf den Grund oder an das Ufer zu begeben, leben.

Diese dritte Fauna der Seen, die pelagische Thierwelt, ist gegenwärtig am genauesten bekannt. In den letzten 12 Jahren haben Untersuchungen mehreren Seengebieten stattgefunden. In Armenien in 2 Seen von Brandt, in Ober-Italien in 32 Seen von Pavesi, in einigen Seen in Finnland, in circa 110 Seen in Norddeutschland von Zacharias und Seligo, in einer grossen Zahl von Seen bei Kief in Südrussland, in der-Tatra in Galizien von Wierzejski, in der Auvergne von Richard, in Savoyen und in den Vogesen in Frankreich, in Lothringen in 3 Seen, in Ober-Bayern in 18 Seen, im Salzkammergut, Tirol und Steiermark in 16 Seen. in Kärnthen in 19 Seen, in der Krain in 3 Seen und endlich in den zahlreichen Seen der Schweiz, sowohl in den grössern Seen der Hochebene, als auch in höher gelegenen Seen des Jura, der Voralpen und der Alpen, bis zu 2780 Meter über Meer. Es liegt also über die pelagische Fauna in den Seen von Europa, speziell des Alpengebietes, ein sehr reiches Beobachtungsmaterial vor.

Das allgemeine Resultat, soweit es bisher zu überblicken ist, ergibt, dass eine Reihe von Thierformen eine sehr weite Verbreitung in geographischer horizontaler Hinsicht besitzen, es ergibt sich ferner, dass einige Arten in verticaler Ausbreitung nur bis zu gewissen Höhen vorkommen und dass einzelne Arten nur in wenigen Seen oder in einem mehr oder weniger scharf begrenzten geographischen Gebiete heimisch sind.

Was die Zahl der Thierarten betrifft, die bisher im Gebiet der pelagischen Fauna nachgewiesen wurden, so sind die Verzeichnisse in den letzten 8 Jahren bedeutend grösser geworden. Während im Jahre 1882 erst etwa 16 Species als Mitglieder der pelagischen Thierwelt aufgezählt werden konnten, umfasst das gegenwärtige Gesammtverzeichniss:

Urthiere: Protozoa:

circa 27 Species.

,,

Würmer: Räderthierchen: Rotatoria: circa 16

Arthropoda: Niedere Krebsformen:

Copepoda: circa 27

Cladocera: circa 46

Im Ganzen also etwa 116 verschiedene freilebende Thierformen.

Wie bei andern Thierarten, die im Meerwasser oder auf dem Lande oder in der Luft leben, viele zuweilen in ganzen Schwärmen auftreten, ebenso lässt sich die Zahl der Individuen einer einzelnen pelagischen Süsswasserspecies oftmals nach grossen Zahlen berechnen. — Die specielle Bearbeitung der pelagischen Fauna der Süsswasserbecken ist von vorschiedenen Gesichtspunkten aus vorzunehmen. Vorerst ist ein Gesammtverzeichniss aller Arten aufzustellen, dann ist das Verhältniss der Vertretung der einzelnen Species in der Individuenmenge zu erforschen, dann ist die Ausbreitung der einzelnen Arten sowohl in horizontaler, als in verticaler

geographischer Hinsicht darzulegen, ferner ist die Vertheilung der pelagischen Thiere in einzelnen Seen und zwar in verticaler, d. h. in Wasserschichten von verschiedener Tiefe, und in horizontaler Beziehung, d. h. an verschiedenen Stellen der Seen, unter Rücksichtnahme der verschiedenen Jahreszeiten zu bearbeiten. Sind diese Arbeiten ausgeführt, so reiht sich daran die practische Bedeutung namentlich für die Fischerei und Fischzucht, sowie auch andererseits Fragen speciell von wissenschaftlicher Bedeutung, z. B. über die Herkunft der pelagischen Fauna, über die Herkunft der Bevölkerung an Thieren in den Seen überhaupt.

Von den soeben genannten Gesichtspunkten in der Bearbeitung der pelagischen Thierwelt soll hier der zweite, das Verhältniss der Vertretung der einzelnen Species in der Individuenmenge und damit im Zusammenhange die verticale Vertheilung der pelagischen Thiere in einem einzelnen See, besprochen werden.

Bestimmung der Individuenzahl der verschiedenen Species in einem bestimmten Wasserquantum. z. B, die Zahl der Individuen in der oberflächlichen Wasserschicht von 1 Meter Tiefe bestimmt werden. Ein einfaches dünnmaschiges Netz wird langsam in das Wasser eingesenkt, es füllt sich durch die feinen Maschen des Seidenbeutels mit filtrirtem Wasser, dann wird es hinuntergelassen bis die Oeffnung 1 Meter unter der Ober-Nach einer kurzen Pause wird das fläche angelangt ist. Netz vertical an die Oberfläche gezogen. Es ist somit eine Wassersäule von der Länge eines Meters und der Basis gleich der Oeffnung des Netzes filtrirt. Alle im Netze enthaltenen Organismen werden vorsichtig gesammelt Zu diesem Zwecke wird das durch und nun gezählt. Zusatz von alkoholischer Sublimatlösung oder Osmiumsäure etc. abgetödtete Material durch Stehenlassen in

einem Glascylinder von 1 cm. Durchmesser auf dem Boden desselben gesammelt. Hierauf wird dieser Bodensatz auf der nöthigen Anzahl grosser Objectträger, die mit Liniensystemen versehen sind, ausgebreitet und eingetrocknet. Die Entfernung der Linien im Liniensystem ist derart gewählt, dass der Raum zwischen zwei Linien im Sehfelde des Microscopes bei Anwendung genügend starker Vergrösserung übersehen werden kann. Das auf den Liniensystemen eingetrocknete Material lässt sich nun genau zählen. Beispiel: am 8. März im Zürichsee bei Küssnacht:

1 Meter unter der Oberfläche:

Dinobryon cylidricum 10 Colonien à durchschnittlich 10 Individuen.

Ceratium reticulatum 5	Individuen
------------------------	------------

Querschnitt der Wassersäule = 23 gcm.

Triarthra longiseta	1	,,
Anuræa longispina	3	,,
Nauplius	3 8	,,
Cyclops	2	,,
Diaptomus gracilis	3	"

152 Individuen

Auf den Cubikmeter kommen in diesem Falle 66,000 Individuen.

In der gleichen Weise lassen sich Wassersäulen von grösserer Länge, von 5, 10, 20 etc. Metern, auf ihren Gehalt an Organismen bestimmen.

Ein anderes Ergebniss der Untersuchung einer Wassersäule von 5 Metern an der Oberfläche lautet: Dinobryon cylindricum, 250 Colonien, ca. 2500 Individuen

Ceratium reticulatum	 2	77
Codonella spec.	2	,,
Anuræa longispina	17	,,
Synchæta pectinata	1	,,
Daphnia hyalina	1	,,

Uebertrag 2523 Individuen.

	Uebertrag 2523	Individue n
Cyclops spec.	50	,,
Diaptomus gracilis	250	,,
	0000	T., J:_: J

2826 Individuen

Die filtrirte Wassersäule berechnete sich auf 0,025 cbm., es kamen somit auf einen Cubikmeter 113,040 Individuen.

Wenn es sich nun aber darum handelt, eine Wassersäule in einer kleinern oder grössern Tiefe unter dem Wasserspiegel, z. B. eine Wassersäule von 10 Metern, in der Tiefe von 80—90 Metern auf den Gehalt an Organismen zu prüfen, so bedarf es zu dieser Untersuchung eines verschliessbaren Netzes. Ein zu diesem Zwecke construirtes Netz ergab bei einer Untersuchung im April 1888 im Zürichsee folgendes Resultat:

80-90 Meter 90 Individuen 59 Colonien von Dinobryon

Demnach enthält ein Cubikmeter Wasser aus der Tiefe von

80-90 Meter 288 Individuen u. 189 Colonien Dinobryon

```
70-80 , 115 , , 112 , , , 60-70 , 182 , , 393 , , , 30-40 , 214 , , 179 , ,
```

Zwei Zusammenstellungen zeigen, dass zu verschiedenen Zeiten die Zusammensetzung eine verschiedene ist:

8. Februar 1888. 8. März 1887. 13040 Individuen 5074 Individuen 10000 Colonien Dinobryon. 3612 Colonien Dinobryon

Beide Untersuchungen wurden annähernd an derselben Stelle, aber mit einem Monat Differenz im Zeitpunkt, vorgenommen.

Aus diesen wenigen Beispielen geht schon hervor, dass die Zahl der Individuen in verschiedenen Zeiten eine sehr bedeutend differirende sein kann, ferner ergiebt sich in Bezug auf die Vertheilung in verschieden tiefen Wasserschichten, dass wahrscheinlich keine Wasserschicht vollkommen frei von pelagischen Thieren sein wird und dass, sowohl nahe der Oberfläche als auch in grössern Tiefen, bedeutende Mengen kleiner Thiere anwesend sind. Es ist zu diesen Daten noch hervorzuheben, dass die Zeit der Untersuchungen nicht zu den günstigsten gehörte, dass zu andern Zeiten sich die Individuenzahl als eine ansehnlich grössere zu erkennen Diese ersten Ergebnisse, die einen Blick in ein noch wenig erforschtes Gebiet werfen lassen, geben mit vollem Recht den Anstoss, ein grösseres Beobachtungsmaterial zu sammeln, um später nicht nur allgemeine Sätze über die quantitative und qualitative Zusammenstellung in verschiedenen Seen aufzustellen, um vielmehr das Zusammenwirken einer Reihe Factoren in präciser Weise klarlegen zu können.

Dass das Gebiet der Erforschung der Süsswasser-Fauna, der Thierwelt der Seen, ein auf eine Reihe von Jahren hinaus fruchtbares Feld der zoologischen Thätigkeit repräsentirt, beweist auch die eben zu errichtende neue zoologisch-botanische, resp. biologische, erste Süsswasserstation in Norddeutschland am Plöner-See in Schleswig-Holstein und das seit circa 2 Jahren in Function getretene transportable zoologische Laboratorium an den Seen und Mooren in Böhmen.

Für unsere Schweizer Süsswasser-Fauna wäre es in mindestens demselben Maasse wünschenswerth, wenn an einem unserer Seen eine sesshafte oder eventuell eine zerlegbare, transportable Station eingerichtet würde. Besonders günstig wäre die Einrichtung eines Laboratoriums in Murten am Murtnersee, wo in nächster Nähe und bei bequemer Verbindung der grössere Neuenburgerund der Bielersee ihre Schätze darbieten und wo überdies noch ein weit ausgedehntes Torfmoor reiche Materialien zur Förderung der Kenntniss der Süsswasser-Fauna unserer Schweiz liefern könnte.

Prof. Dr. A. Penck aus Wien über die Glarner Doppelfalte.

Wenn ich der Einladung des sehr geehrten Herrn Präsidenten folge und an dieser Stelle einige Worteüber die Glarner Doppelfalte spreche, so weiss ich dabei wohl, dass ich den Schweizer-Mitgliedern dieser Gesellschaft nichts Neues bringen werde, und dass ich mich über einen Gegenstand auslasse, den ich in der Natur keineswegs erschöpfend kennen gelernt habe. Was ich mittheilen kann, sind nur die Beobachtungen und Eindrücke dreier Wandertage, während welcher ich nebst 40 Anderen unter Heims Führung die Hauptbeweisstellen für seine Ansichten über das Glarner Gebirge kennen lernte und während welcher ich die Strecke Schwanden-Elm-Linththal durchwanderte. Was ich auf dieser Strecke gesehen, lässt sich in folgenden Punkten zusammenfassen:

1. An der Lochseite, unweit Schwanden, sieht man Verrucano, der unten grün und flaserig, oben mehr roth und konglomeratisch ist, in fast schwebender Lagerung über steil Süd fallendem schwarzen Schiefer (Eocän). An der Grenze beider erstreckt sich ein 0,1 bis 1 m. mächtiges Band eines vielfach gefältelten, gekräuselten und gewellten Kalkes, des Lochseitenkalkes, welcher

gelegentlich in kleinen Sätzen in sein Liegendes eingreift. Die Oberfläche des Letzteren schmiegt sich der Unterfläche des Lochseitenkalkes unter verworrenen Krümmungen an. Eine sehr deutliche, der unteren Grenze des Verrucano parallele Fuge verläuft theils an der Grenze von Verrucano und Lochseitenkalk, theils mitten in letzterem.

- 2. Die tief eingeschnittene Tschingelschlucht sammt Verzweigungen entblösst in dem Komplexe der schwarzen Schiefer (Eocän) konkordant eingeschaltete, steil südöstlich fallende Bänke von Nummulitenkalk.
- 3. Am Hausstocke streichen stark gefaltete schwarze Schiefer mit eingeschalteten Kalkbänken (Eocän) unter der discordanten Ueberlagerung von nahezu horizontal liegendem Lochseitenkalk und Verrucano derart durch, dass beiderseits des Hausstock-Mätlistockgrates, nämlich vom Elmer-Thale und Durnachbach-Thale dieselben Falten sichtbar werden.
- 4. Dieses nur aus der Entfernung gesehene Profil am Hausstocke wiederholt sich genau am Kalkstocke. Der Gipfel besteht aus rothschiefrigen, vielfach deutlich in der Fallrichtung gestrecktem und senkrecht dazu gerissenem Verrucano. Darunter erscheint ein gewellter und gekräuselter Kalk, der vollständig jenem der Lochseite gleicht, und als dessen Liegendes tritt schwarzer, steil Süd fallender Schiefer entgegen. Demselben ist unmittelbar unter dem Lochseitenkalke am Ostabfalle des Kalkstockes eine Bank von Nummulitenkalk eingeschaltet, wodurch das eocäne Alter des Komplexes der schwarzen Schiefer auch an dieser Stelle unzweifelhaft wird. Wie an der Lochseite, nur in viel grösserem Massstabe, greifen hier Lochseitenkalk und eocäne Schiefer in einander ein, so dass der Lochseitenkalk hier bald auf 20 m. Mächtigkeit anschwillt, bald auf Null reducirt

- wird. Seine obere Fläche bildet die Höhe des Sattelszwischen Kalkstock und Hahnenstock. Sie ist völlig eben, fällt sanft gegen NNW. und ist stellenweise mit dünnen Lagen von gelbem Dolomit (Röthidolomit) überdeckt. Diese ebene Oberfläche des Lochseitenkalkesist, soweit die Aussicht reicht, im Süden unter dem Hausstocke und Nachbarn, im Norden im Kärpfgebiete und im Osten bis zu den grauen Hörnern vollkommen deutlich unter dem Verrucano verfolgbar.
- 5. Südlich vom Hausstocke erblickt man vom Kalkstocke aus die Ansicht folgender Schichtfolge an den prallen Wänden des Vorab. Oben grünlichen Verrucano in zackigem Felsen aufragend, darunter eine braune Schicht (Dogger), in deren Liegendem sehr mächtiger grauer Kalk (Hochgebirgskalk) erscheint. Unter letzterem treten schwarze, steil Süd fallende Schiefer (Eocän) auf, denen vielfach dicke Kalkbänke (Nummulitenkalke) eingebettet sind. Der unter 2 erwähnte-Schieferkomplex der Tschingelschlucht gehört in das-Bereich dieser schwarzen Schiefer. Nach Osten gegen die Tschingelhörner nimmt die Mächtigkeit des Hochgebirgskalkes entschieden ab, unter den Tschingelhörnern sind denselben mächtige und ausgedehnte Keile desliegenden schwarzen Schiefers eingetrieben. der in Rede stehenden Wand hervorspringende Zwölfihorn zeigt im Profil eine Aufkrümmung des Hochgebirgskalkes sammt seiner Unterlage; die convexe Seite Seite dieser Aufkrümmung kehrt sich gegen Norden.
- 6. Vom Hahnenstock, 0,7 km. nördlich vom Gipfel des Kalkstockes bis zum 2 km. weiter gegen N. W. gelegenen Bützistock erstreckt sich ein Grat von Verrucano, dem mehrfach Dolomitpartieen eingebettet sind. Am Westflusse des Bützistockes liegt unter dem Verrucano zunächst gelbanwitternder Dolomit (Röthidolomit),

darunter rother Schiefer (Quartenschiefer), Quarzit und schwarzer Schiefer (Lias). Echinodermenbreccie und Eisenoolith mit Belemniten (Dogger), gelbgefleckter Kalk mit Belemniten (Schiltkalk), welcher ausgezeichnet linear gestreckt ist und zwar in der Fallrichtung der Grenzfläche zwischen Verrucano und Eocän. Unter dem Schiltkalke taucht grobbankiger, hellgrauer, gleichfalls gestreckter Kalk mit Belemniten (Hochgebirgskalk) auf, der sich in stattlicher Mächtigkeit (100-200 m.) fortzieht, den Saasberg bildend, während der ganze hangende Complex bis zum Verrucano nur ca. 25 m Mächtigkeit Alle diese Glieder sind untereinander concordant gelagert und dieselben konnten um das Westeck des Bützistockes herum, von dem Nordwestgehänge bis zum Südwestgehänge desselben, also gewiss unter dem Verrucano durchstreichend, verfolgt werden. Weiterhin unter den Südwänden des Bützistockes erscheint über der Heustaffelalpe eine dreimalige Wiederholung von Quartenschiefer, Lias, Dogger und Malm in der genannten Reihenfolge von oben nach unten, unmittelbar darunter liegt im liegenden schwarzen Schiefer (Eocän) eine Kalkbank mit Nummuliten. Fortlaufende Entblössungen bis unter den Kalkstock hin zeigen wie die Schichtfolge reichhaltige zwischen Verrucano schwarzem Schiefer am Bützistocke sich zum Lochseitenkalke des Kalkstockes ausdünnt.

Soweit meine Beobachtungen. Ich fasse dieselben in folgendem zusammen:

Es liegt im Kärpfgebiete zwischen Sernf- und Linththal zu unterst ein Complex stark gefalteter, durchschnittlich südlich fallender Schiefer, deren alttertiäres Alter durch Einlagerungen zahlreicher Nummulitenkalkbänke festgestellt ist, und denen die bekannten Glarner Fischschiefer angehören. Discordant über diesen Schiefern

und zwar stellenweise dicht über den Nummulitenkalkbänken liegt im Kärpfgebiete eine nördlich fallende Platte von Verrucano, welcher zwischen Sernfthal und Walensee die für die Ostschweiz normale Schichtfolge (Röthidolomit, Quartenschiefer, Lias, Dogger, Malm und weiter gegen Norden das ganze Kreidesystem und Eoän) aufgelagert ist. Die Grenze der Schiefer gegen die hangende Platte ist überall scharf entwickelt und tritt in der Scenerie meilenweit deutlich entgegen. Längs ihr findet sich in sehr schwankender Mächtigkeit der Lochseitenkalk, welcher mit seinem Liegenden eigenthümlich verknetet ist. Am Butzistöckli schwillt dies Band zu einem sich dreifach wiederholenden Complexe von gelbem Dolomit, rotem Schiefer, schwarzem Schiefer mit Quarzit, von Echinodermenbreccie und Eisenoolith mit Belemniten, von grauen, Belemniten führenden Petrographische Beschaffenheit und Fossil-Kalken an. führung erweisen diesen Complex als die umgekehrte Normalschichtfolge von Röthidolomit, Quartenschiefer, Lias, Dogger und Malm, welche hier auf ein Zehntel ihrer gewöhnlichen Mächtigkeit reducirt ist und deren Gesteine ausnahmslos deutliche Streckungserscheinungen aufweisen. Im Gebiete südlich von Elm ist den alttertiären Schichten abermals Verrucano aufgelagert, welcher hier eine südlich fallende Platte bildet, die wiederum unter die normale Schichtfolge bis zum Jura einfällt. An der Grenze der Schiefer gegen die Platte finden sich mächtige Juragebilde in verkehrter Lagerung.

Diese Ergebnisse stimmen vollauf mit den Beobachtungen, welche Heim in seinen Untersuchungen über den Mechanismus der Gebirgsbildung mitgetheilt hat. Es unterliegt keinem Zweifel, dass im durchwanderten Gebirge Verrucano wirklich auf Eocän aufgeschoben ist, und für die Auffassung Vaceks, dass unter dem Verru-

cano ältere Schiefer lagern, denen das Eocän nur oberflächlich angeklebt ist, habe ich nirgends einen petrographischen, paläontologischen oder stratigraphischen Anhaltspunkt gesehen. Unzweifelhaft ist ferner, dass sich zwischen Eocän und Verrucano geradezu verquetschte Partien des Hangenden der Verrucanoplatte in umgekehrter Lagerung finden. Beide Fundamentalthatsachen kann ich mir nur durch die von Heim entwickelte und begründete Theorie der Doppelfalte erklären. Hatte die Thatsache, dass mir in den gesammten Ostalpen nichts Aehnliches begegnet ist, mich einigermassen gegenüber den Heim'schen Darlegungen befangen gemacht, so kann ich heute, nach Besuch der Glarner Alpen, nur mein volles Einverständniss mit Heims Beobachtungen und Folgerungen aussprechen.

Der gegenwärtige Standpunkt der Torfforschung. Von Dr. J. Früh.

NB. Der Vortrag erscheint in extenso im "Bulletin der schweizer. botanischen Gesellschaft."