Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 68 (1885)

Anhang: Compte rendu des travaux présentés à la soixante-huitième session

Autor: [s.n.]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ARCHIVES DES SCIENCES PHYSIQUES ET NATURELLES

SEPTEMBRE 1885

COMPTE RENDU DES TRAVAUX

PRÉSENTÉS A LA

SOIXANTE-HUITIÈME SESSION

DE LA

SOCIÉTÉ HELVÉTIQUE

DES

SCIENCES NATURELLES

RÉUNIE AU

LOCLE

Les 11, 12 et 13 août

1885

GENÈVE

BUREAU DES ARCHIVES, RUE DE LA PÉLISSERIE, 18

LAUSANNE

PARIS

GEORGES BRIDEL

G. MASSON

Place de la Louve, 1

Boulevard St-Germain, 120

Dépôt pour l'ALLEMAGNE, H. GEORG, à BALE

1885

Genève. — Imprimerie Charles Schuchardt.

SOIXANTE-HUITIÈME SESSION

DE LA

SOCIÉTÉ HELVÉTIQUE DES SCIENCES NATURELLES

RÉUNIE AU

LOCLE

Les 11, 12 et 13 août 1885.

La Société helvétique des sciences naturelles s'est réunie au Locle, pour sa 68^{me} session annuelle, du 11 au 13 août 1885.

Quatre-vingt-dix membres environ ont pris part à cette réunion, tenue sous la présidence de M. le prof. Jaccard, du Locle. Indépendamment des communications scientifigues dont il va être rendu compte dans les pages suivantes, les assistants ont été vivement intéressés par leurs visites aux nombreux établissements industriels du Locle. Au milieu d'une vallée de montagnes au climat rude et inhospitalier pendant une partie de l'année, on aime à trouver une activité industrielle aussi développée, surtout lorsqu'en même temps le mouvement intellectuel marche de pair. L'enseignement professionnel sous ses différentes formes, les cours du soir pour adultes, etc., ont donné au Locle des résultats particulièrement favorables. Aussi les membres de la Société helvétique forment-ils des vœux sincères pour que la crise qui, dans le Jura neuchâtelois comme ailleurs, pèse sur l'industrie horlogère, ne soit pas de longue durée. Ils sympathisent également avec les efforts faits pour élever au Locle un monument à DanielJean Richard, le véritable fondateur de l'horlogerie dans ces régions.

La session du Locle a été complétée par deux excursions intéressantes, l'une au lac des Brenets et au Saut du Doubs, l'autre aux gorges de la Reuse, et par une réception aussi cordiale que bien ordonnée dans la belle propriété de M. Jurgensen, au Châtelard, près des Brenets. Les membres présents de la Société helvétique se sont séparés, remportant les meilleurs souvenirs de leur séjour dans le Jura neuchâtelois, et en se donnant rendez-vous à Genève pour la session de 1886.

Dans les pages qui suivent nous donnons le résumé des communications faites dans les assemblées générales et les séances des sections en les classant suivant les branches de la science auxquelles elles se rapportent.

Physique et Chimie.

Président: M. le prof. Robert Weber, de Neuchâtel. Secrétaire: M. le prof. Charles Soret, de Genève.

Charles Dufour, Influence de l'attraction de la Lune pour la production des Gulf-streams. — F.-A. Forel, Carte hydrographique du lac des IV Cantons. — Schumacher-Kopp, Observations sur les eaux des puits, etc. — G. Sire, Nouvel hygromètre à condensation. — Henri Dufour, Conditions dans lesquelles un arc-en-ciel peut être réfléchi par une surface d'eau. — F.-A. Forel, Formule des seiches. — Le même. Une inclinaison notable des couches isothermes dans le lac Léman. — Hagenbach-Bischoff, Temps nécessaire à la propagation de l'électricité dans les fils télégraphiques. — Robert Weber, Conductibilité calorifique des corps solides mauvais conducteurs. — F. Urech, Détermination de l'affinité des glucoses au point de vue de la formation des Bioses.

Dans la 1^{re} assemblée générale M. le prof. Charles Dufour, de Morges, fait une communication sur l'influence

de l'attraction de la Lune pour la production des Gulfstreams.

On a beaucoup discuté dans les derniers mois l'influence que peut avoir l'attraction de la Lune sur les vents alisés.

Je crois depuis longtemps que notre satellite est aussi la cause première d'un autre grand mouvement qui existe à la surface du globe, c'est-à-dire des Gulf-streams.

En effet, chaque jour, la Lune en s'avançant vers l'ouest entraîne avec elle une certaine quantité d'eau; celle qui est ainsi déplacée sur l'Atlantique est arrêtée par l'Amérique; celle qui est déplacée sur le Pacifique est arrêtée par l'Asie et par les nombreuses îles qui sont au sud-est de ce continent.

Depuis ce moment, la configuration des côtes joue un grand rôle pour renvoyer dans un sens ou dans un autre les eaux qui s'accumulent contre elles. Ainsi, pour la partie de l'Atlantique qui est au nord de l'équateur, les eaux entraînées par la Lune s'accumulent dans le Golfe du Mexique, d'où elles sortent par l'ouverture la plus septentrionale, c'est-à-dire par le canal existant entre la Floride et l'île de Cuba, puis reviennent sur les côtes d'Europe, combler le vide produit par les eaux que, chaque jour, la Lune entraîne du côté de l'Amérique.

Sur les côtes d'Asie, la question est plus complexe, parce qu'il n'y a pas un bassin comme le Golfe du Mexique, et que l'on y trouve au contraire un grand nombre d'îles dont les côtes, qui ont des directions diverses, influent aussi bien différemment sur la direction de l'eau. Cependant, une partie de cette eau est renvoyée d'abord au nord, puis à l'est, et forme le Gulf-stream du Pacifique, tandis qu'une autre partie passant entre les îles, con-

tinue sa route vers l'ouest. Un de ces courants, très-sensible dans le Détroit de la Sonde, se prolonge dans l'Océan indien. On a même prétendu que depuis deux ans sa direction avait changé, à cause des profondes modifications que ce détroit a subies ensuite de l'éruption du Krakatoa.

On sait que le Gulf-stream de l'Atlantique se déplace suivant les saisons, il va plus au nord en septembre qu'en mars, ce qui revient à dire qu'en septembre il a plus de force pour resouler vers le nord le courant d'eau froide qui descend par la Baie de Baffin. Ceci est une conséquence de la théorie que je viens d'exposer. En esset, au printemps et en été le Soleil est au nord de l'équateur, et son action, analogue à celle de la Lune, est plus énergique qu'en hiver pour entraîner les eaux de l'hémisphère boréal, de là un courant plus considérable. Mais, à cause des grandes distances qu'elle doit parcourir, c'est seulement deux ou trois mois plus tard que cette plus grande masse d'eau arrive dans le voisinage de Terre-Neuve, et se maniseste par un déplacement qui se reproduit chaque année.

D'un autre côté, le Gulf-stream ne peut pas être affecté de variations analogues à la marée. Sans doute, l'action de la Lune pour entraîner les eaux du côté de l'Amérique, est différente suivant que cet astre est au périgée ou à l'apogée, mais comme toutes ces eaux se réunissent dans le Golfe du Mexique, les variations qui se produisent d'un jour à l'autre se neutralisent dans cet immense bassin, et ne paraissent pas à la sortie, sauf l'effet beaucoup plus prolongé du Soleil d'été et du Soleil d'hiver.

Le Gulf-stream de l'Atlantique est le plus grand fleuve du monde, il est même trente fois plus considérable que tous les fleuves du monde ensemble. En effet, ceux-ci débitent un million de mètres cubes d'eau par seconde, tandis que le Gulf-stream en débite plus de trente millions. C'est assurément une chose bien remarquable, de voir que le plus grand de tous les fleuves ne coule pas sur un vaste continent comme le font l'Amazone ou le Missisipi, mais au milieu de l'Océan entre des parois liquides, et que comme le dit Maury: « Dans les plus grandes sécheresses jamais il ne tarit, dans les plus grandes pluies jamais il ne déborde. » Mais sa cause est aussi bien différente de celle des autres fleuves.

Il est possible que d'autres facteurs, par exemple les différences de température, aient aussi de l'influence sur le mouvement de l'eau. Mais quand on considère la direction des Gulf-streams, il est naturel de voir là une conséquence du mouvement de la Lune, et quand on considère la quantité d'eau qu'ils déplacent, et la force nécessaire pour produire une aussi puissante action, on peut demander s'il est possible de la trouver ailleurs que dans l'action d'un corps céleste.

Dans l'assemblée générale du 11 août M. F.-A. Forel, de Morges, expose un calque et des profils de la Carte hydrographique du lac des IV Cantons, levée en 1884 par M. l'ingénieur J. Hörnlimann, du bureau topographique fédéral, sous la direction de M. le colonel J.-J. Lochmann, chef de ce bureau. Cette carte au 25000me, qui appartient à l'Atlas Siegfried, montre un relief fort compliqué du bassin du lac; celui-ci est divisé en neuf bassins secondaires par des barres immergées, dont les unes sont dues à l'alluvion des torrents, les autres à des faits orographiques, les autres probablement à des moraines. (La description détaillée de cette carte sera prochainement publiée dans les Archives.)

Dans la séance de la section de physique, M. le Dr Schumacher-Kopp rend compte des observations qu'il a eu l'occasion de faire dernièrement comme chimiste cantonal à Lucerne. Ces observations ont porté principalement sur les eaux des puits dans leurs relations avec la fièvre typhoïde; sur les falsifications volontaires ou accidentelles des vinaigres et des vins; sur les altérations du lait des vaches malades; sur l'existence dans le commerce, malgré les lois sur la matière, de papiers teints avec de l'arsenic; sur la richesse comparative en tannin de l'écorce des arbres vivant à différentes hauteurs. M. Schumacher montre aussi divers modèles de pinces de laboratoire, et présente une encre à écrire sur le verre.

M. G. Sire, de Besançon, présente et fait fonctionner un nouvel hygromètre à condensation qu'il a imaginé. C'est une modification de l'hygromètre condenseur de Regnault; par conséquent l'abaissement de température qui détermine le point de rosée s'y produit aussi par l'évaporation de l'éther sulfurique traversé par un courant d'air.

La surface brillante sur laquelle se fait le dépôt de vapeur d'eau est cylindrique, mais pour rendre ce dépôt plus apparent, deux viroles brillantes sont juxtaposées, l'une au-dessus, l'autre au-dessous de la dite surface, et elles en sont isolées par un corps mauvais conducteur de la chaleur. Il en résulte que cette partie de l'instrument présente à l'extérieur une surface cylindrique partagée en trois zones de même hauteur, par deux intervalles de un demi-millimètre environ. Les deux zones extrêmes restent brillantes dans les expériences, de sorte qu'il est très facile de juger, par contraste, des moindres changements qui surviennent sur la zone moyenne. D'autre part, comme le réservoir à éther est préservé du réchauffement par l'air ambiant dans les parties autres que celle où se fait le dépôt de rosée, on atteint plus vite la température de ce dépôt, et on la maintient plus facilement stationnaire.

Le petit volume de ce nouvel hygromètre permet de l'introduire facilement dans une cloche de verre, pour déterminer l'état hygrométrique de l'intérieur de cette cloche. Par exemple, si plusieurs hygromètres à cheveu sont disposés dans cet intérieur, dont on fera varier le degré d'humidité par des mélanges arbitraires d'eau et d'acide sulfurique, on pourra déterminer les indications de ces hygromètres, pour des fractions de saturation aussi rapprochées qu'on le voudra. Ce procédé expérimental constitue une méthode de graduation et de vérification très exacte, et notablement plus expéditive que les méthodes proposées jusqu'à ce jour.

M. Sire présente également un instrument qu'il désigne sous le nom de station météorologique portative, destinée à faciliter aux alpinistes l'étude de l'atmosphère dans les lieux élevés. Cet instrument permet de déterminer rapidement la température, la pression et le degré d'humidité de l'air; c'est dire qu'il s'agit du groupement sous un petit volume, d'un thermomètre, d'un baromètre et d'un hygromètre, auxquels est ajoutée une boussole.

M. Henri Dufour étudie quelles sont les conditions dans lesquelles un arc-en-ciel peut être vu réfléchi par une surface d'eau. Ce phénomène assez rarement observé l'a été dernièrement à Lyon par M. le D^r Maurice Cérésole. Dans son ouvrage bien connu « La Lumière, » M. le prof. J. Tyndall consacre une page à cette question et pa-

raît admettre qu'on ne peut voir une image d'arc-en-ciel dans l'eau. M. Dufour montre qu'il est vrai que l'arc directement visible ne peut être vu lui-même par réflexion sur une nappe d'eau un peu éloignée, mais que au-dessous des gouttelettes d'eau qui donnent l'arc visible, il y en a beaucoup d'autres qui peuvent aussi produire des arcsen-ciel invisibles pour l'observateur parce que les rayons efficaces qu'ils émettent rencontrent le sol au-devant de lui. Si au lieu du sol il y a une nappe d'eau entre le nuage et l'observateur, ces rayons seront réfléchis vers l'œil et donneront l'image d'un arc qui paraît être le même que celui qui est vu directement. En discutant les conditions dans lesquelles se produit le phénomène on constate que ces conditions se réalisent probablement plus fréquemment qu'on ne le croit. — M. Dufour insiste sur le fait que, dans l'étude de l'arc-en-ciel, il importe de ne pas oublier qu'il se produit dans un rideau de pluie ayant une certaine hauteur et une certaine profondeur.

M. F.-A. Forel de Morges, indique une vérification très intéressante de la formule des Seiches $t=\frac{l}{\sqrt{gh}}$ qu'il avait déduite en 1876 des équations théoriques de R. Merian de Bâle ¹.

Un lac très peu profond, le lac George, dans les Nouvelles Galles du Sud, a été étudié récemment par M. H.-C. Russell, qui a constaté les valeurs suivantes :

l longueur du lac : 18 milles anglais = 28962 m.

h profondeur indiquée par M. Russell: 15 à 20 pieds anglais.

¹ Archives des Sciences phys. et nat. 1885, t. XIV, p. 203.

t durée de la demi-oscillation d'une seiche longitudinale : 3930 secondes de temps.

La formule des seiches appliquée à ces données attribue à ce lac une profondeur moyenne de 5^m,14 soit 18,1 pieds anglais.

M. F.-A. Forel annonce qu'il a constaté par des sondages thermométriques une inclinaison notable des couches isothermes dans le lac Léman. Elle est assez forte pour donner, à la profondeur de 30 à 40 m., une différence de 2° de température entre Chillen et Yvoire, aux deux extrémités du Grand Lac, l'eau étant plus chaude à Chillon qu'à Yvoire. — Si des observations ultérieures établissent la constance du sens de cette inclinaison, M. Forel l'expliquera probablement par l'excès de densité des eaux de la partie orientale du lac, causé par la suspension dans ces eaux du limon glaciaire du Rhône.

M. le prof. Hagenbach-Bischoff de Bâle fait la communication suivante :

Dans la dernière réunion de notre Société, à Lucerne, j'ai parlé des expériences que j'ai entreprises pour déterminer le temps nécessaire à la propagation de l'électricité dans les fils télégraphiques 1. Depuis lors j'ai répété ces essais de diverses manières, en variant les longueurs de parcours, et crois avoir élucidé principalement les deux points suivants:

1. Dans ma précédente communication j'exprimais la crainte que certaines perturbations ne fussent apportées par l'isolement imparfait des lignes télégraphiques. J'ai

¹ Archives, 1884, t. XII, p. 476.

reconnu par des essais spéciaux faits en intercalant des galvanomètres dans le circuit, que cette crainte n'était pas fondée, et qu'à cet égard la méthode présente toutes les garanties désirables.

2. De la comparaison des expériences de Bâle à Lucerne, avec celles de Bâle à Olten, j'avais cru pouvoir conclure l'année dernière que la durée de la propagation était proportionnelle à la longueur de la ligne. J'ai étudié de plus près cette question et ai obtenu les résultats suivants pour les différentes distances.

	$l={ m distances}$ en kilomètres	$t={ m dur\acute{e}es}$ en secondes	$\log_{\cdot} \frac{l^2}{t}$
Bâle-Lucerne-Bâle	193,2	0,0027	7,14
Bâle-Olten-Bâle	83,4	0,00055	7,10
Bâle-Sissach-Bâle	45,0	0,00016	7,11
Bâle-Liestal-Bâle	31,2	0,00008	7,40
Bâle-Pratteln-Bâle	18,0	0,00004	6,92

Il résulte de ces chiffres, que les durées des propagations sont proportionnelles, non pas aux distances, comme je l'avais admis, mais bien aux carrés des distances. D'où l'on peut conclure qu'il ne s'agit pas d'une véritable propagation, dont on puisse déterminer la vitesse, mais seulement d'un temps de charge. On sait que ce temps de charge joue un grand rôle dans les lignes sous-marines, sur lesquelles on l'a maintes fois étudié; mes essais montrent clairement que le temps nécessaire à la transmission des signaux doit être rapportée à la même cause sur les lignes aériennes, ainsi que Guillemin l'a montré en 1860 par des expériences fondées sur une méthode entièrement différente.

¹ Annales de chimie et de physique, 1860, t. LX, p. 385.

M. le D^r Robert Weber de Neuchâtel, parle de la conductibilité calorifique des corps solides mauvais conducteurs. M. Weber a publié en 1878 sa méthode, et une série d'expériences faites sous l'excellente direction de M. H.-F. Weber, dans les laboratoires de l'École polytechnique fédérale. De nouvelles études sur ce sujet l'ont amené à reprendre la question et à modifier la partie expérimentale de sa méthode.

En se basant sur l'intégrale donnée par Fourier dans sa « Théorie du mouvement de la chaleur dans les corps solides, » pour le cas d'une sphère, à savoir :

$$u = \frac{2h}{k} \operatorname{RC} \sum_{i} \frac{\sin (\beta_{i}r)}{\beta_{i}r \left[\beta_{i} \operatorname{R} \operatorname{cosec.} (\beta_{i} \operatorname{R}) - \cos (\beta_{i} \operatorname{R})\right]} e^{-\frac{k}{c \operatorname{D}} \beta_{i}^{2} t}$$

M. Weber arrive à

$$k = \frac{c \, \mathrm{D}}{\beta_{\mathrm{i}}^{2} \, (t_{2} - t_{1})} \, 2,302585.\log \, \mathrm{com} \, \frac{u_{1}}{u_{2}}$$

formule dans laquelle toutes les quantités du second membre s'obtiennent expérimentalement.

L'application de cette méthode au quartz, au marbre, à la craie, à l'anhydrite, au plâtre naturel et artificiel, au sel gemme, au salmiac, au charbon de cornue, au basalte, etc., etc., montre que le coefficient de conductibilité k varie suivant la température, et qu'il augmente pour certains corps, tandis qu'il diminue pour d'autres, malgré l'accroissement de la chaleur spécifique; — que k dépend de la nature de l'atome composant la molécule et le corps; — que k est d'autant plus petit que la molécule est plus complexe.

M. F. URECH fait une communication sur la Détermination de l'affinité des glucoses au point de vue de la formation des Bioses, au moyen de la rapidité avec laquelle elles subissent l'inversion.

M. Urech expose les raisons qui font regarder les « bioses » par exemple, de la canne à sucre (Saccharobiose), du sucre de lait (Lactobiose), de la maltose (Maltobiose), comme des éthers, c'est-à dire comme deux radicaux de glucoses liés entre eux par un atome d'oxygène, et admet que les différences que ces bioses montrent avec les véritables éthers proviennent de la différence qui existe entre les alcools véritables et les glucoses, les bioses ne pouvant pas jusqu'à présent être obtenues par synthèse de glucoses, et les alcalis en dissolution agissant facilement sur les bioses et pas ou beaucoup moins facilement sur les véritables éthers.

L'action des dissolutions alcalines sur les différentes bioses varie beaucoup, ainsi la maltobiose et la lactobiose comme aussi les glucoses (lévulose, dextrose et lactose) sont facilement attaquées par leur dissolution faible d'un alcali et à la température ordinaire, tandis que la saccharobiose n'est attaquée que très lentement à chaud par une dissolution concentrée, et cependant la lévulose ellemême, qui est le radical de la saccharobiose, est de toutes les glucoses celle qui est le plus facilement attaquée par les alcalis; c'est pour cela que M. Urech croit que dans la saccharobiose il existe outre une liaison des deux radicaux par un atome d'oxygène (éther) des liaisons de carbone à carbone ou plutôt d'autres atomes d'oxygène, provenant des groupes qui dans les radicaux glucoses, étaient originellement facilement attaqués par les alcalis. La saccharobiose renferme comme radicaux la lévulose et la dextrose, et diffère aussi des autres bioses dans sa résistance aux acides, seulement c'est en sens inverse, elle subit instantanément l'inversion, dans des conditions de concentration et de température où les deux autres bioses ne sont que lentement inverties.

En admettant pour le moment que les deux radicaux ne sont joints entre eux que par un atome d'oxygène

$$0 \stackrel{\checkmark}{\stackrel{}_{\sim}} C_{\epsilon} H_{\iota \iota} O_{\epsilon}$$

Dextrose + lévulose — H_2O = saccharobiose, Dextrose + dextrose — H_2O = maltobiose, Dextrose + lactose — H_2O = lactobiose,

on peut comparer la force de leurs affinités internes au moyen de la constante de rapidité avec laquelle elles subissent des réactions simples et les résultats obtenus sont pour la rapidité de l'inversion au moyen d'un acide faible saccharobiose > maltobiose > lactobiose, d'où il est peut-être permis de conclure que la rapidité de formation des bioses serait inverse, la lactobiose se formant le plus facilement et que par conséquent l'affinité des trois glucoses pour la dextrose serait :

lactose > dextrose > lévulose.

L'action des alcalis sur les glucoses a été aussi étudiée; la lévulose diffère beaucoup des deux autres qui se comportent entre elles d'une manière assez semblable au commencement de l'action, quoique vers la fin la dextrose soit plus rapidement attaquée que la lactose.

On a pour la rapidité de la réaction :

lévulose > dextrose > lactose.

On peut attendre de l'étude des réactions des glucoses et des bioses au point de vue de leur plus ou moins de facilité à être attaquées, des éclaircissements sur leurs constitutions, puisque la force d'affinité d'un corps dépend de sa constitution. Cette petite étude sur les bioses est un chapitre d'un mémoire que M. Urech dépose sur le bureau et qui est intitulé: Itinerarium durch die theoretische Entwiklungsgeschichte der Lehre von der chemischen Reactionsgeschwindigkeit.

Géologie.

Président: M. Marcel Bertrand, de Paris. Secrétaire: M. Henri Golliez, à Sainte-Croix.

Jaccard, Géologie du Jura. — Guill. Ritter, Hydrologie des gorges de la Reuse et du bassin souterrain de Noiraigue. — Paul Choffat, Quelques points importants de la géologie du Portugal. — F. Koby, Existence des coraux rugueux dans les couches jurassiques supérieures. — A. Baltzer, Löss du canton de Berne. — Renevier, Facies abyssaux. — Rollier, Structure du Chasseral. — Schardt, Origine des cargneules. — Gilliéron, Excursions géologiques. — Rollier, Fossiles siliceux. — De Tribolet, Carte de Guyot sur la distribution des espèces des roches dans le basssin erratique du Rhône.

Dans son discours d'ouverture à la première assemblée générale, M. le prof. Jaccard, président de la session, a fait un exposé très complet de la géologie du Jura et des nombreuses recherches dont elle a été l'objet.

Dans la dernière assemblée générale, M. l'ingénieur Guill. RITTER, de Neuchâtel, a fait une communication sur l'hydrologie des Gorges de la Reuse et du bassin souterrain de Noiraigue.

Les recherches de cet ingénieur dans ce domaine avaient pour but de résoudre le problème de l'alimentation en eau potable des villes de Neuchâtel et de la Chaux-de-Fonds. Ce problème mal résolu à deux reprises pour Neuchâtel, et qui paraissait insoluble pour la seconde de ces localités, en raison de son altitude de $1000^{\rm m}$ au-dessus de la mer et du manque absolu d'eau de sources dans ses environs, ce problème est aujourd'hui résolu par les études de M. Ritter qui a découvert et constaté dans les Gorges de la Reuse l'existence permanente d'eau de sources en volume suffisant et de qualité excellente; il ne reste donc plus qu'à exécuter les projets de cet ingénieur pour donner satisfaction aux populations intéressées.

La contrée qui fournit ces abondantes eaux de sources offre un intérêt très grand au point de vue hydrologique. M. Ritter divise son exposé en trois parties savoir : 1°1'hydrologie du bassin de Noiraigue; 2° celle des sources rive gauche et rive droite de Champ-du-Moulin; 3° enfin celle des sources inférieures des Gorges dites de Combe-Garrot.

Bassin de Noiraigue. Les bancs réguliers qui, par leur disposition synclinale en cuvettes cylindriques placées les unes dans les autres, forment le Val-de-Travers, sont brusquement rompus, à la cluse des OEuillons-Rosières, depuis la molasse jusqu'à la dalle nacrée qui ferme la vallée au Furcil. Tous ces bancs intermédiaires rompus forment évidemment au-dessous de la surface du sol des escarpements souterrains comme ils en forment de visibles à droite et à gauche au-dessus. Ces escarpements souterrains, véritables bouches béantes et points bas des cuvettes ci-dessus, aboutissent ainsi à la cavité souterraine de Noiraigue. Celle-ci reçoit donc, grâce aux couches mar-

neuses imperméables des divers étages toutes les eaux absorbées :

- 1º par les roches jurassiques perméables du vallon;
- 2º par celles du terrain crétacé;
- 3º par celles du tertiaire;
- 4° enfin par les terrains quaternaires, graviers de remplissage, etc., etc., et comme tout ce système de circulation souterraine trouve ainsi un échappement dans la cluse de Rosières, il est de la dernière évidence que les matériaux de remplissage de cette cavité, en nature d'éboulis, de pierres, sables, brèches, glaise, limon, terrains glaciaires, etc., sont toujours gorgés d'eau par les arrivages continuels d'eau souterraine.

C'est donc là que M. Ritter voulait puiser sa principale eau, mais l'abondance et le nombre des sources apparentes constatées ailleurs par lui, ainsi que leur altitude favorable d'un côté; de l'autre certaines objections que les industriels font à cette prise d'eau de Noiraigue l'ont engagé à prévoir dans son projet la dérivation des sources d'abord et de réserver les eaux du bassin de Noiraigue pour l'avenir.

M. Ritter démontre aussi, au moyen de profils géologiques et par divers calculs, que le bassin souterrain de Noiraigue pourrait fournir l'eau nécessaire à Neuchâtel pendant 45 mois avant que les eaux de la Reuse, c'est-àdire de surface, ne puissent se mélanger avec celles des galeries de succion, et ceci en supposant même nuls les arrivages d'eau souterraine des cuvettes. Si contre toute attente l'eau de la Reuse arrivait cependant lentement, c'est-à-dire, comme il vient d'être dit, après plus de 4 années aux galeries de succion et à 17 mètres de profondeur (plus de 50 pieds), on aurait même alors évi-

demment une eau filtrée excellente, d'où les microbes, bactérides, bacillus et autres organismes disparaîtraient après un si long temps par leur oxydation et leur transformation dans un milieu absolument impropre à leur culture ou conservation.

Pendant la sécheresse de l'année dernière lorsque la rivière jaugeait 4000 litres par seconde seulement, il a été prouvé que le bassin souterrain de Noiraigue fournissait autant d'eau à la Reuse que tous les cours d'eau réunis du Val-de-Travers. Il y a donc un courant d'eau ascendant permanent des eaux de ce bassin dans lequel on pourra puiser au besoin jusqu'à deux mille litres d'eau par seconde sans l'arrêter.

Eaux de sources. Les flancs nord et sud des Gorges de la Reuse présentent sur la longueur du palier du Champdu-Moulin de nombreuses sources qui doivent leur origine et leur abondance à deux causes géologiques intéressantes.

Les Gorges de la Reuse sont une vallée faisant suite au Val-de-Ruz d'un côté et au Val-de-Travers de l'autre, et les mêmes bancs qui constituent ces vallées se retrouvent au centre des Gorges. Il en résulte que de véritables chéneaux juxtaposés existent dans cette zone; puis, à cheval sur ces couches, se trouvent de puissants amas de terrains glaciaires et éboulis, dont les eaux d'infiltration sont retenues forcément par ces chéneaux et conduites en certains points où elles peuvent se déverser sans se perdre dans les profondeurs du système.

D'autre part, ces sources viennent toutes sourdre audessus de la Reuse, fait très surprenant, mais dont M. Ritter donne une explication fort curieuse.

Le fond de l'ancien lit de la Reuse est tapissé d'une couche de 2 à 3 mètres d'épaisseur de superbe glaise aux bancs lamelleux, parfaitement horizontaux, qui ne sont autre chose, selon cet ingénieur, que le dépôt formé par un lac glaciaire.

Le glacier acculé dans les Gorges de la Reuse formait un lac, grâce à l'obstruction de la vallée, produite par les moraines frontales empêchant sans doute souvent l'écoulement des eaux supérieures par dessous le glacier.

Les eaux troubles des ravins et torrents en amont y déposaient leurs limons ainsi mêlés ou recouverts par les blocs erratiques et terrains de transport des moraines du glacier.

Le glacier ayant disparu, la Reuse a rongé ces glaises sur la largeur de son lit actuel, mais les érosions permettent de constater latéralement presque partout l'existence de cette argile ou glaise en strates parallèles parfaitement en place.

Dès lors, le fond de la vallée étant à droite et à gauche tapissé de ce banc imperméable, il en résulte que les arrivages d'eau latéraux, aboutissant à la surface des bancs sous les éboulis qui les recouvrent, ne peuvent descendre au delà et sont forcés de se traduire en sources apparentes sur ce banc de marne lui-même.

M. Ritter avait observé d'abord les quelques sources connues de chacun, mais ses recherches ont abouti à la constatation de nombreuses sources trouvées sur les escarpements de cette marne. Enfin, il a démontré que les eaux connues sous le nom de « Sources de Combe-Garrot, » dont on a tant parlé à Neuchâtel et dont il s'est agi de pomper les eaux pour les remonter à Neuchâtel, proviennent en majeure partie d'infiltrations de la Reuse.

Sur deux kilomètres la Reuse roule ses flots sur les escarpements des bancs perméables du jurassique supé-

rieur en communication complète avec la même nature de bancs d'où vient sourdre la source principale. De plus, comme ces deux kilomètres d'absorption sont à 80 mètres en moyenne au-dessus de l'orifice de cette source, rien de plus naturel qu'il s'y échappe une partie des eaux absorbées. La seule explication que l'on avait donnée de cette source était que les bancs perméables du jurassique supérieur amenaient les eaux recueillies et absorbées le long de la vallée, depuis les OEuillons et même le Val-de-Travers. Malheureusement pour cette théorie, les nombreuses sources de Champ-du-Moulin dont il vient d'être fait mention plus haut fournissent à elles seules tellement d'eau, que le calcul démontre que toute l'absorption des eaux du ciel par le sol suffit à peine à fournir leur volume propre. D'autre part, cette perméabilité du banc conducteur que l'on invoque et qui permettrait ainsi des arrivages d'eau de 8 à 10 kilomètres de distance, prouve que le même banc amènerait à plus forte raison des eaux de la Reuse, puisque celle-ci coule sur ses affleurements sur une longueur de 2000 mètres à 80 mètres de hauteur, c'est-à-dire à une faible distance de la source elle-même. La conclusion contraire serait assurément étrange et constituerait un véritable miracle géologique.

Toute cette question des sources de Champ-du-Moulin soulevée par suite des études de M. Ritter a provoqué à Neuchâtel des controverses très vives de la part de ceux qui préconisaient l'emploi des sources de Combe-Garrot.

Ces derniers prétendaient que les sources qu'ils appelaient sources Ritter seraient à sec pendant les sécheresses tandis que celles de Combe-Garrot étaient peu ou point variables. — Or la sécheresse vraiment extraordinaire de l'année dernière a réduit à néant toutes les objections faites au système Ritter et lui a définitivement donné gain de cause.

Voici les chiffres donnés par les jaugeages des deux catégories de sources comparées à ceux de l'eau tombée :

Diminution du volume des sources des-

tinées selon le projet Ritter à Neuchâtel. 22,6

Diminution du volume de celles desti-

nées à la Chaux-de-Fonds..... 10,2 »

On comprend aisément, dit M. Ritter, que de pareils résultats aient mis à néant toute velléité de discussion ultérieure.

La composition de toutes ces eaux de source est on ne peut meilleure pour l'alimentation.

Dans la séance de la section de géologie M. Paul Choffat ouvre la série des communications par une conférence sur quelques points importants de la géologie du Portugal; il expose une carte géologique de ce pays, une grande planche de vues et de profils, ainsi qu'une dizaine de planches en phototypie, représentant des fossiles crétaciques et faisant partie d'un ouvrage en cours de publication.

M. Choffat parle en premier lieu du Granit de la Serra de Cintra, petite montagne entourée de malm, de crétacique et de tertiaire. Ce granit envoie dans le malm non seulement des apophyses, mais en outre des filons ramifiés, dont deux vues sont représentées dans le tableau.

Les strates crétaciques qui surmontent le malm et qui

se terminent au carentonin se présentant avec une parfaite régularité, il n'est guère possible de supposer que l'éruption ait eu lieu pendant leur dépôt; elle doit avoir eu lieu entre le carentonin et les couches miocènes qui le surmontent.

Passage du jurassique au crétacique. La deuxième communication de M. Choffat se rattache à la première, en ce qu'elle prouve qu'il n'y a pas eu d'interruption entre le jurassique et le crétacique, et que l'on ne peut, par conséquent, pas supposer que l'éruption du granit ait eu lieu entre ces deux périodes.

Au-dessus du ptérocérin, ayant beaucoup de rapport avec celui du Hanovre, se trouvent 200 à 300 mètres de calcaires dont la faune provient en partie du ptérocérien, tandis que le reste leur est propre. Ce sont principalement des *Aptyxis*, des *Cyrènes* et de grands foraminifères discoïdaux, que M. Munier-Chalmas désigne du nom de *Trematocyclina*.

Sur le pourtour de la Serra de Cintra, ces calcaires du malm passent au crétacique sans aucun changement; la présence de *Trigonia caudata*, vers la partie supérieure, indique seule que l'on est dans le crétacique. Les strates comprises entre les couches de Freixial et le valanginien sont désignées par M. Choffat du nom de *Infravalanginien*; elles contiennent un Trematocyclina, qui ne se distingue de celui du jurassique que par une taille plus petite, et plusieurs fossiles incontestablement crétaciques, dont un des plus fréquents est un *Cyprina*, très voisin du *C. Bernensis*.

Le valanginien contient Natica Leviathan et plusieurs autres fossiles du valanginien du Jura; il est surmonté par le hauterivien qui a aussi une faune analogue à celle du Jura.

A environ 20 kilom. à l'est, dans la contrée de Bellas, on retrouve l'infravalanginien identique à celui de Cintra, le hauterivien est aussi analogue dans les deux contrées, mais le valanginien est par contre remplacé par des grès puissants, ne contenant que des végétaux terrestres. Étant compris entre les mêmes strates que le valanginien, ces grès lui sont évidemment parallèles. Ils contiennent des plantes dont une partie se retrouvent dans le weal-dien du Hanovre; ils sont donc une preuve de plus en faveur du parallélisme du wealdien et du valanginien.

Aires tiphoniques. M. Choffat a appliqué ce terme à un accident géologique assez fréquent en Portugal; ce sont des dépressions à bords très irréguliers, dont le sol est formé par des marnes rouges contenant des dolomies à fossiles rhétiens, formant des monticules à strates plongeant dans toutes les directions, et en outre des tiphons d'ophite et de teschenite, et fréquemment des sources thermales. Les bords de ces aires sont formés par des terrains beaucoup plus récents, généralement du malm, quelquefois du crétacique ou même du tertiaire. Les terrains intermédiaires entre le rhétien et ceux qui forment le pourtour de la dépression ne sont pas représentés, quoiqu'ils se soient déposés dans la contrée, comme on peut le constater par quelques lambeaux qui ont parfois accompagné les dolomies.

La théorie des voûtes rompues ne peut pas leur être appliquée, d'abord parce qu'il n'y a généralement pas de voûtes, les couches encaissantes étant le plus souvent à peu près horizontales.

Dans quelques cas où les couches encaissantes sont suffisamment inclinées pour permettre de songer à une voûte avec ou sans renversements, cette théorie ne peut quand même pas être admise, à cause de la série qui manque entre le rhétien et la roche encaissante. Si cette série ne manquait que d'un côté, on pourrait admettre un étirement; mais comment expliquer un étirement se produisant de chaque côté, de la vallée? Il paraît beaucoup plus plausible d'avoir recours à une modification de l'explication des Horst des géologues autrichiens. On sait que ces accidents sont expliqués par un affaissement de deux parties encaissant une partie médiane qui n'aurait pas pris part à l'affaissement. L'application de cette théorie aux aires tiphoniques est rendue difficile par le fait qu'il faudrait admettre l'érosion de toute cette partie restée en place; cette difficulté disparaît dans l'hypothèse suivante. Dans les aires tiphoniques du Portugal, nous avons un puissant massif calcaire reposant sur des marnes; on peut admettre une crevasse traversant le massif calcaire, mais s'arrêtant sur les marnes par suite de leur plus grande élasticité. Admettons encore que les deux côtés glissent sur les marnes en s'écartant; il suffira alors d'un affaissement des deux massifs calcaires pour que l'aire rhétienne soit au niveau des couches supérieures.

Ce sera en quelque sorte analogue à ce qui se passe parfois dans les galeries ou dans les tranchées à ciel ouvert.

Ajoutons, en terminant 1, que des accidents analogues

¹ On trouvera plus de détails dans les publications suivantes de M. Choffat :

Age du granit de Cintra. Lisbonne, 1884.

Recueil de Monographies stratigraphiques sur le système crétacique du Portugal. Lisbonne, 1885.

Note sur les vallées tiphoniques et les éruptions d'ophite et de teschénite en Portugal. Bull. Soc. géol. de France, 1882,

Nouvelles données sur les vallées tiphoniques et sur les éruptions d'ophite et de teschénite en Portugal. Lisbonne, 1884.

se trouvent dans le reste de la péninsule ibérique, et même sur le versant français des Pyrénées, et que M. Bertrand a trouvé un fait très semblable au point de vue géotechtonique dans les environs de Toulon, ainsi que d'autres en différant, pour certains points, dans le département du Jura.

M. F. Koby fait part à la Société de ses recherches sur l'existence des coraux rugueux dans les couches jurassiques supérieures.

Les Madréporaires vivants et fossiles sont répartis par MM. Milne Edwards et Haime en cinq grands groupes: les tubuleux, les tabulés, les ruqueux, les perforés et les apores. M. Zittel dans son traité de paléontologie n'en distingue que deux : les Hexacoralliens et les Tetracoralliens. Ce dernier groupe correspond à celui des Madréporaires rugueux. Relativement à leur distribution géologique on a admis, jusqu'à présent, que les Tetracoralliens ne se rencontrent que dans les terrains paléozoïques, tandis que les Hexacoralliens représentent la faune coralligène des formations plus récentes. L'un ou l'autre polypier rugueux a déjà été signalé soit dans le crétacé, soit dans le tertiaire, et même dans nos mers actuelles. Mais les paléontologues n'admettent qu'avec beaucoup de doutes ces quelques espèces rugueuses soit que leur état de conservation ne permette pas d'en étudier assez exactement les caractères internes, soit parce qu'il manquerait toujours une série d'espèces reliant les récentes aux paléozoïques.

Dans les ouvrages de Goldfuss, de Michelin, de Quenstedt, d'Étallon, on trouve plusieurs figures et descriptions de polypiers jurassiques qui se rapportent probablement à des espèces rugueuses. Ce sont entre autres : Explanaria alveolaris, Lithodendron plicatum et mitratum, Lithostrontion basaltiforme.

M. Koby a eu le bonheur de trouver dans les assises jurassiques supérieures du Jura bernois une certaine quantité de polypiers d'une conservation parfaite, et, après étude de ce matériel, il peut se prononcer d'une manière absolue sur leur place systématique.

Les caractères qui séparent les Hexacoralliens des Tetracoralliens siègent principalement dans le mode de développement successif des cloisons. Voici comment s'est opérée cette formation des cloisons dans les échantillons de M. Koby.

D'abord un jeune calice représente un tube peu élevé et parfaitement lisse, mais bientôt il se forme sur une partie quelconque du bord interne une cloison épaisse et élevée, s'avançant dans l'intérieur de la chambre jusque bien près du bord opposé. Cette cloison n'a pas pour seul effet de diviser la chambre en une moitié droite et une gauche, mais aussi en une partie antérieure et une postérieure; car, à partir de ce moment, les cloisons naissent par deux symétriquement dans chaque moitié gauche et droite, et de telle sorte que celles qui se trouvent dans la partie postérieure, opposée à la grande cloison, restent rudimentaires, quelquefois à l'état de simples stries, tandis que les cloisons de la partie antérieure deviennent grandes, s'avancent vers la cloison principale en s'arquant légèrement dans son voisinage et en finissant par se souder avec elle vers son bord interne. Il en résulte que le calice n'est plus divisé en chambres égales, rayonnant autour d'un axe central réel ou imaginaire, comme c'est le cas chez les Hexacoralliens, mais que l'espace interne est occupé pour les trois quarts par une sorte

d'éventail, s'appuyant sur une très grande cloison médiane, tandis que le reste représente une cavité semilunaire creuse ou divisée incomplètement par des cloisons rudimentaires. Ces lois sont identiques à celles établies par MM. Dybowski et Kunth sur les coraux rugueux paléozoïques. Mais il y a encore une concordance parfaite sur tous les autres points : ainsi, le même aspect de la muraille externe qui est souvent étranglée, parfois double, le même mode de multiplication par bourgeonnement inter et extracalicinal.

Ces coraux rugueux se rencontrent dans l'épicorallien de la Caquerelle et des environs de Bâle, dans l'astartien de Bressancourt et dans les couches coralligènes du ptérocérien de Valfin.

Jusqu'à présent M. Koby a trouvé une douzaine d'espèces bien caractérisées; elles seront décrites et figurées dans les Mémoires de la Société paléontologique suisse.

M. A. Baltzer expose quelques observations sur le Löss du canton de Berne.

Jusqu'à aujourd'hui le löss n'a été trouvé en Suisse que sur un nombre de points relativement restreint, par exemple: Aarau, Bâle, Wartau et Schollberg dans le Rheinthal (Saint-Gall); on croyait même que dans le voisinage immédiat des Alpes il n'était que faiblement représenté ou manquait complètement.

Cette considération doit être modifiée depuis que six stations de löss ont été récemment trouvées dans le canton de Berne.

Voici les noms de ces six localités avec leurs altitudes absolues.

Kosthofen circa 500^m

Münchenbuchsee	circa	560^{m}
Kehrsatz (deux stations)	»	586 ^m à l'inférieure.
Wyl	»	710^{m}
Höchstetten))	730^{m}

D'après M. de Fellenberg le löss de Kosthofen ¹ est finement stratifié, jaune clair, contient de belles concrétions appelées poupées du löss (Lössmännchen), mais pas de mollusques. Il repose sur la mollasse d'eau douce inférieure et se trouve probablement couvert par le terrain glaciaire non stratifié. Puissance 3^m.

Le löss de Wyl² est une argile un peu calcaire, sableuse, en partie gris clair, en partie blanchâtre, avec les poupées typiques mais petites. Puissance 3 ½ M. La faune déterminée par M. le professeur Mousson consiste en 10 espèces de Helix auxquelles s'ajoutent les genres Succinea, Patula, Zua, ce qui porte à 16 le nombre des espèces, toutes vivant encore aujourd'hui en Suisse mais différant des formes de la plaine. Elles annoncent un climat semblable à celui que nous avons chez nous entre 1500 et 2100 m. (Par exemple : la Patula ruderata Studer est une forme alpine.) Ce löss est recouvert d'une mince couche d'erratique; il est utilisé pour la fabrication de briques de moindre qualité.

Le löss de *Hæchstetten* se présente comme celui de Wyl.

Le löss de Kehrsatz (4 ¹/₂-6 de puissance) de même nature pétrographique que le précédent, a davantage de bancs tuffeux, ainsi qu'une grande fréquence de poupées. Les mollusques au contraire n'appartiennent plus aux

¹ Mittheilungen der naturf. Gesell. in Bern. 1885, p. 34.

² Baltzer, ibid., p. 26.

variétés des grandes altitudes, mais se rapprochent plutôt de celles de la plaine. A côté des espèces de Helix on trouve aussi trois espèces de Clausilia et Bulimus montanus.

D'après Mühlberg, le löss d'Aarau repose sur les deux terrasses supérieures du fleuve et plus haut; il n'est pas stratifié du tout, présente l'aspect de lehm sableux, brun jaunâtre, avec environ 6^m de puissance, et contient, par place, des coquilles. Mühlberg lui assigne une origine éolienne.

Le löss de Wartau, situé à environ 450-500^m d'altitude, contient, suivant Mousson, 21 espèces de mollusques, parmi lesquelles quelques formes alpines; son dépôt, de nature fluviatile, peut remonter à la fin de l'époque glaciaire. Il repose sur l'erratique.

Sans entrer dans plus de détails sur ces gisements, M. Baltzer veut consigner ici les résultats de son étude du löss dans le canton de Berne.

Il n'est pas exact de prétendre à l'absence du löss dans le voisinage immédiat des Alpes. Dans le canton de Berne plus spécialement il a été découvert sur six points et se retrouverait facilement en d'autres lieux si l'on cherchait.

Notre löss bernois est un lehm assez calcaire, peu solide, blanchâtre ou jaunâtre, avec des concrétions et une stratification généralement peu accusée (excepté Kosthofen).

Le löss suisse appartient à différents âges.

Cela ressort tout d'abord de sa position : A Wyl et Kosthofen il gît sous l'erratique, dans le Rheinthal sur l'erratique et près d'Aarau sur les graviers des terrasses du fleuve.

Cela ressort encore de la faune: Le löss de Wyl et

de Höchstetten, à un niveau de plus de 700^m, contient des espèces mollusques vivant encore aujourd'hui, dont plusieurs présentent un type alpin et qui correspondent à une altitude de 1500 à 2100^m. Le löss de Kehrsatz, identique comme matériel, contient des espèces de la plaine; celui de Wartau possède, semble-t-il, moins de formes alpines que celui de Wyl.

Il suit de là que celui de Wyl, Höchstetten, est glaciaire, celui de Kehrsatz postglaciaire, enfin celui de Wartau occupe peut-être une position moyenne entre ces deux.

Il va de soi, d'après cela, que le mot löss ne s'applique pas dans un sens *stratigraphique* mais seulement dans un sens *pétrographique*.

Quant à son origine, toute explication par une action éolienne doit être repoussée pour le löss bernois. En effet on ne voit pas comment, avec des terrains extra-ordinairement coupés, le manque de plateaux et le faible affouillement du löss, le vent aurait pu jouer un rôle quelque peu considérable.

M. Baltzer finit en analysant les rapports intimes qu'il y a entre le löss et l'époque glaciaire, car sa formation, comme il l'a déjà fait remarquer, se rapporte, pour une part, à cette période remarquable; les matériaux de formation seraient provenus des moraines et des décombres erratiques. Les stations étudiées du löss sont entourées de terrain erratique.

L'orateur discute encore la possibilité de la formation du terrain qui nous occupe, par un dépôt lentement effectué dans les anses tranquilles des anciens cours d'eau et bassins lacustres glaciaires dont le nombre est assez considérable dans la région des collines. Une formation de ce genre peut être assignée à certains cas (Kosthofen). Pour plusieurs des cas cependant, l'existence d'une faune essentiellement terrestre et d'autres faits encore s'y opposent.

- M. Baltzer complètera ses observations et continuera ses communications, surtout sur le mode de formation, dans les Mittheilungen der naturforschenden Gesellschaft in Bern.
- M. Renevier parle des facies abyssaux, c'est-à-dire de mer profonde, de nos Pré-alpes pendant l'ère secondaire. Il considère comme tels:
- 1° Le calcaire gris qui dans plusieurs de nos chaines représente tout le malm ou jurassique supérieur, sans distinction possible d'étages, et qui ne contient que de très rares fossiles, de types pélagiques, qui peuvent fort bien être tombés de la surface dans les hauts-fonds (Belemnites, Aptychus, etc.).
- 2° Les couches rouges crétaciques qui rappellent les limons rouges des hauts-fonds, et dont les débris organiques sont encore plus rares.

Au sud de Wimmis on n'y a jamais trouvé jusqu'ici qu'un seul fossile, une dent de squale de grande taille, Carcharodon longidens, découverte par M. Pillet dans la vallée d'Abondance.

3º Entre ces deux terrains, qui forment en général les synclinales de nos Pré-alpes, dans le Chablais, le Bas-Valais, Vaud et Fribourg, on trouve souvent du néocomien, à l'état de calcaire compact gris, à taches foncées parsemé d'un grand nombre de rognons de silex. Ces rognons et l'extrême rareté des fossiles peuvent le faire considérer aussi comme un facies abyssal, mais peut-être un peu moins profond. Ce néocomien se rencontre habi-

tuellement dans les premières chaines, soit les synclinales les plus extérieures des Pré-alpes, celles de Memise, de la Dent d'Oche, etc... Mais un peu plus avant, dans les synclinales suivantes, ce néocomien n'existe plus, et les couches rouges reposent directement sur le malm.

Y a-t-il réellement lacune de sédimentation pendant la période crétacique, ou bien les couches rouges, de plus en plus épaisses dans les chaînes plus intérieures, représenteraient-elles peut-être l'ensemble des terrains crétaciques.

Une observation faite dernièrement de concert avec M. Rittener, dans le haut de la vallée du lac Taney (Bas-Valais), ferait incliner M. Renevier vers cette dernière supposition!

Près des Chalets de Crétet, dit-il, nous avons constaté le contact immédiat du malm avec les couches rouges crétaciques. dans des circonstances de netteté remarquables. Le passage d'un terrain à l'autre est là tout à fait insensible, sans aucune limite précise. Le calcaire gris du malm devient de plus en plus marneux et prend petit à petit une teinte rougeâtre. On voit, sur une faible épaisseur, plusieurs alternances successives de bancs rougeâtres et grisâtres, avant d'arriver aux bancs bien rouges. La stratification paraît avoir été parfaitement continue. Si c'est le cas il faut nécessairement que dans cette région les couches rouges représentent déjà les sédiments abyssaux de l'époque néocomienne et par conséquent tout le crétacique.

Cette hypothèse n'a rien en soi d'extraordinaire.

M. Schardt a déjà fait remarquer que, contrairement à l'interprétation habituelle des faits, les couches rouges doivent représenter le crétacique moyen, aussi bien que le

supérieur, puisqu'on ne trouve jamais de gault au-dessous d'elles. Dans ces chaînes intérieures des Cornettes, etc., il est logique de leur donner une valeur encore plus extensive, et de les considérer comme une formation abyssale continue pendant toute la période crétacique.

M. Rollier présente 10 coupes des chaînes méridionales du Jura bernois en annonçant une étude détaillée sur cette contrée, étude qui débute par la *structure du Chasseral* et l'examen de ses assises oolithiques.

La coupe du Chasseral a été fournie à Thurmann par Hisely de Neuveville et elle est publiée dans les mémoires de Greppin accompagnant la carte géologique F. VII. Cette coupe est très inexacte et faite de mémoire; d'après ce document, le seul qui mérite ce nom, on se représente le Chasseral comme une simple chaîne de second ordre, selon Thurmann, avec une voussure ou dôme oolithique dans le milieu d'une combe oxfordienne. Les recherches de M. Rollier sur cette montagne lui ont fait voir qu'elle se compose essentiellement de trois plis juxtaposés et qu'en outre le dôme oolithique dans la région la plus élevée est un double pli bathonien et callovien avec un reste de spongitien dans la synclinale intermédiaire. Cette structure se vérifie facilement en montant le sentier escarpé qui conduit des Auges Fussmann à la Métairie du milieu de la Neuveville, où l'on rencontre quatre fois la dalle nacrée plongeant différemment, tantôt sud tantôt nord, et dont les angles ont été mesurés pour la construction de la coupe. Les couches sus et sous-jacentes ont été reconnues avec soin et présentent dans le jurassique moyen la série suivante :

Callovien. Fer sous-oxfordien ou Couches à ornatus, 1^m. Dalle nacrée. 20-30^m.

Calcaire roux sableux avec Acanthothyris spinosa, 15-20^m.

Forest marble ou Pierre blanche, 20m.

Bathonien.

Marnes à Homomyes avec Pholadomya Murchisoni (Sow.).

Animonites Parkinsoni (Sow.) Belemnites giganteus (Schl.)

et un Cardium à déterminer, 25^m.

Grande oolithe.

La grande oolithe est visible en plusieurs points à la Métairie du milieu, où le dôme oolithique est simple et où se trouve le point le plus bas des affleurements. En un point relativement rapproché, dans la voussure oolithique de Montpéreux (Convers) se trouve exactement la même série, complétée encore, en continuant par les marnes à Ostrea acuminata, le calcaire à Polypiers, les couches de la Roche pourrie, équivalent de l'oolithe ferrugineuse, comme MM. Desor et Gressly l'ont fait connaître. Ce qui a passé inaperçu à ces observateurs, c'est l'existence, en cette région, de la Forest marble ou Pierre blanche entre le calcaire roux sableux et les marnes à Homomyes, ce qui est un fait intéressant à signaler.

On a également ignoré jusqu'ici l'existence du calcaire d'eau douce supérieur ou *Oeningien* dans le Val de St-Imier, à la colline de Rainson près de Courtelary où se trouve une superposition de ce calcaire sur les sables et les grès de la mollasse marine ou helvétien.

Les affleurements ne sont pas considérables, mais cependant les blocs d'un calcaire gris, siliceux, fétide qu'on retire du sol livrent toute la série de fossiles d'eau douce propres à ce niveau et servent à le déterminer.

M. Schardt donne connaissance des observations qu'il a faites sur l'origine des cargneules.

On désigne sous le nom de cargneules ou corgneules

(Rauchwacke), des roches dolomitiques à structure vacuolaire ou celluleuse, dont l'aspect rappelle beaucoup celui du tuf. Les vacuoles de cette roche ayant habituellement la forme de chambres polyédriques, on lui donne aussi le nom de dolomie cloisonnée. Selon toute apparence ces creux sont dus à la disparition de fragments de roches entièrement dissous par l'eau et dont il ne reste qu'un peu de poussière. On constate, en effet, que les cargneules sont surtout vacuolaires à la surface, et qu'à mesure qu'on les entame, soit par une tranchée, soit par une exploitation, la structure vacuolaire fait place à une structure bréchiforme très manifeste. Ce fait est très connu du reste. La cargneule vacuolaire est donc une modification de la cargneule bréchiforme. Dans celle-ci, les fragments qui semblent former la brèche sont souvent très friables, presque pulvérulents, et sont séparés par une masse beaucoup plus dure qui tient lieu de ciment. Ce ciment a souvent une structure finement cristalline comme les dépôts stalactitiques.

Des analyses entreprises par divers savants, ont du reste démontré que les fragments pulvérulents sont d'une composition très voisine de la dolomie (Ca Mg C²O⁶); tandis que la masse qui les réunit ne renferme que fort peu de carbonate de magnésie.

Si l'on examine attentivement des fragments de cette brèche, on remarque dans certains échantillons que la structure n'est pas sans régularité; on constate que les parois qui séparent les fragments sont sensiblement parallèles et s'entrecroisent, suivant trois directions, de manière à former des chambres parallélipipèdes, forme qu'ont aussi les fragments dolimitiques qui les remplissent. Cette régularité n'est cependant qu'exceptionnelle, et le plus souvent la structure des cargneules est celle d'une brèche dont les fragments polyédriques sont irrégulièrement disposés.

Toutefois cette orientation des fragments de dolomie dans la cargneule indique clairement le mode de formation de cette roche, mode de formation qu'on a souvent interprété des manières les plus diverses et les plus invraisemblables.

Les cargneules sont accompagnées, partout où elles existent, de roches dolomitiques, soit de dolomies, soit de calcaires dolomitiques.

M. Schardt a constaté, en examinant soigneusement ces roches, que, dans la plupart des cas, elles étaient divisées, suivant trois directions différentes, par des fissures microscopiques que M. Daubrée désigne sous le nom de leptoclases. Que ces fissures soient, à l'œil nu, visibles ou non, les calcaires dolimitiques se brisent presque invariablement en parallélipipèdes. Il n'y a donc plus de doute que cette fissuration ne soit la conséquence des dislocations qu'ont subies les roches.

Les cargneules sont rarement stratifiées, comme c'est le cas des calcaires dolomitiques; elles paraissent en outre irrégulièrement disposées sur les affleurements de ces derniers.

En rapprochant maintenant les deux observations, celle de la structure régulière de certaines cargneules et celle de la fissuration des dolomies qui les accompagnent, on sera conduit presque involontairement à la conclusion suivante :

Si un banc de calcaire dolomitique, fendillé par des leptoclases, subit une légère dislocation qui a pour conséquence un écartement ou même une désorientation des fragments, ceux-ci n'auront qu'à être recimentés par des infiltrations calcaires (qui seront dans le présent cas toujours plus ou moins dolomitiques), et il en résultera une roche identique à la cargneule. »

Le fait semble s'être passé ainsi dans la plupart des gisements de cargneules des Alpes vaudoises ¹.

Les échantillons de roches les plus typiques qui paraissent confirmer cette théorie aux yeux de M. Schardt, proviennent du col de l'Alliaz; du Cubly, sur Montreux, et du val de la Tinière, près Villeneuve, où la cargneule et les calcaires dolomitiques sont inférieurs au rhétien.

Il existe cependant des gisements de cargneules où cette roche semble s'être formée aux dépens de calcaires dolomitiques liasiques et jurassiques. En effet, le mode de formation indiqué ne suppose qu'une seule roche dolomitique fendillée et l'action d'eaux calcaires; or on sait que les roches dolomitiques se trouvent à tous les niveaux.

Sans vouloir plus longuement développer les conclusions et déductions pouvant s'attacher à ce qui vient d'être dit, M. Schardt se résume comme suit :

- 1° Les cargneules dérivant des dolomies ou roches dolomitiques sont à vrai dire des roches récentes formées postérieurement au redressement des couches qui leur ont donné naissance. Elles peuvent se rencontrer à tous les niveaux géologiques.
- 2° Il ne serait pas bon de les séparer de la roche qui les a engendrées, par le fait qu'elles se trouvent toujours dans le voisinage de celle-ci.
- ¹ M. Schardt tient à faire remarquer que c'est M. Sylvius Chavannes qui, le premier, a donné à certaines cargneules une origine analogue, en attribuant la fragmentation de la roche dolomitique au fendillement par dessiccation (Bull. Soc. vaud. sc. nat., 1874, v. XII, 110).

- 3º Le mode de cimentation des fragments explique l'état friable de ceux-ci. Ils ont dû perdre par l'action des eaux d'infiltration une partie de leur carbonate de chaux; de là leur composition voisine de celle de la dolomie.
- 4° La théorie exposée fait voir aussi pourquoi ces cargneules se trouvent de préférence le long des lignes de fracture.
- 5° Loin d'être une base certaine dans l'étude des terrains, les cargneules sont plutôt un réel embarras, car elles sont identiques à tous les niveaux, mais se trouvent plus fréquemment en dessous du rhétien à cause de l'épaisseur considérable des calcaires dolomitiques à la base de ce terrain.
- 6° M. Schardt excepte pour le moment et considère comme un type particulier de cargneules, les cargneules polygéniques du flysch (éocène), qui ne sont autre chose qu'une brèche stratifiée, riche en fragments dolomitiques et devenue vacuolaire par des eaux d'infiltration (Voir Bull. Soc. vaud. sc. nat., vol. XX, p. 44 etc.).

Beaucoup de cargneules sont dues à des fragments de dolomie éboulés et recimentés; elles renferment alors des roches variées, dont on peut constater la présence dans le voisinage. Ces roches, réellement récentes, se rapprochent beaucoup du type éocène quant à l'aspect, mais passent insensiblement à la cargneule purement dolomitique.

- M. GILLIERON fait un compte rendu verbal des excursions géologiques dans le Val-de-Travers, le val de Morteau et le vallon du Locle.
- M. ROLLIER met sous les yeux de la Société quelques échantillons de fossiles siliceux traités par l'acide chlorhydrique.

M. DE TRIBOLET montre une des deux copies qui ont été faites de la carte de A. Guyot sur la distribution des espèces de roches dans le bassin erratique du Rhône.

Zoologie, Anatomie et Physiologie.

Président: M. le prof. Hermann Fol.

Secrétaire: M. Pierre de Meuron.

Victor Fatio, Corégones de la Suisse. — Le même, Travaux de la Commission ornithologique. — Émile Yung, Influence des milieux physico-chimiques sur le développement des animaux. — Louis Soret, Rôle du sens du toucher dans la perception du beau, particulièrement chez les aveugles. — Le même, La grâce dans les mouvements. — Imhof, Faune profonde et pélagique de divers lacs de la Suisse. — Le même, Faune de nos eaux. — Hermann Fol, Conditions d'existence, sous le rapport de la lumière, des animaux aquatiques vivant dans les grandes profondeurs. — Emery, Sur la lumière des Lucioles. — Auguste Forel, Origine du nerf acoustique. — Herzen, A propos des observations de Laborde sur la tête d'un supplicié.

Dans la première séance générale, M. le D^r Victor Fa-Tio, de Genève, entretient l'assemblée des résultats de l'étude qu'il poursuit, depuis quinze ans, sur les Corégones (Féras, Felchen, etc.) de la Suisse.

Toutes les nombreuses variétés qu'il a constatées dans 16 lacs du pays doivent dériver de deux types marins primordiaux, probablement emprisonnés dans nos divers bassins, au nord des Alpes, lorsque, après la grande inondation de l'époque glaciaire, les communications avec la mer devinrent trop étroites et accidentées pour plusieurs poissons peu aptes à lutter contre les courants.

Il a enfin réussi à grouper nos 24 formes encheve-

trées dans deux espèces bien distinctes, qu'il nomme Coreg. dispersus et C. Balleus, entre lesquelles se trouvent deux composées, les C. Suidteri, de Sempach, et C. hiemalis (Jurine), du Léman, qui pourraient bien n'être que des dérivés anciens de l'une des précédentes combinées avec un représentant de l'autre peu à peu disparu.

Ce qui a surtout conduit M. Fatio dans le débrouillement de ce chaos, jusqu'ici inextricable, c'est la constatation; a) de la faculté, propre à certaines sous-espèces, de se présenter, en divers lacs, sous deux formes jumelles de tailles parfois très différentes; b) de la création de nombreux bâtards, partout où se rencontre communauté de date et de lieu de frai.

En terminant, l'orateur signale tout particulièrement, parmi ses nombreuses observations, celles qui ont trait aux lacs jurassiques les plus rapprochés de Bienne, Neuchâtel et Morat. Selon lui, les Palées de bord et de fond, qui frayent dans des conditions et à des époques très différentes dans le lac de Neuchâtel, doivent rentrer également, au même titre de simples variétés, dans le Cor. Balleus; tandis que la Bondelle ne serait qu'une des petites formes du C. dispersus, ayant pris, par le fait des conditions, dans les lacs de Bienne et de Neuchâtel, un développement beaucoup plus grand que la forme majeure, par contre conservée, sous l'un de ses nombreux aspects, dans le lac de Morat, où la véritable Bondelle fait défaut. — La dite forme majeure, bien que relativement très rare, peut être même destinée à disparaître à Bienne et à Neuchâtel, a été cependant reconnue par M. Fatio, confondue par les pêcheurs, dans ces deux lacs, avec les jeunes Palées, sous les noms communs de Balch-Pfærrit, petite Palée ou Gibbion. — De nombreux bâtards se rencontrent enfin dans ces deux derniers lacs, provenant du mélange, dans des conditions de frai analogues, des Palées de fond (C. Balleus, Palea) avec les représentants, majeurs surtout, du C. dispersus.

Il est intéressant de voir combien les influences de milieu ont pu, dans un espace aussi limité, modifier profondément les premiers types emprisonnés naguère dans nos eaux.

Après cela, M. Fatio dit quelques mots des premiers travaux de la *Commission ornithologique*, nommée par le Département fédéral du commerce et de l'agriculture, pour donner satisfaction aux vœux émis par le Congrès international de Vienne, en 1884.

Trois sortes de tabelles d'observations ont été composées dans ce but par MM. V. Fatio et Th. Studer, pour récolter, dans diverses conditions, des données sur les passages, la distribution géographique, la multiplication et l'alimentation des différents oiseaux qui visitent ou habitent le pays.

La première de ces tabelles est un Catalogue questionnaire des oiseaux observés en Suisse, en latin, allemand, français et italien, destiné à collecter surtout des observations de distribution géographique de nos espèces, en différentes saisons, localités et altitudes.

La seconde a pour but de diriger des observations exactes, à la fois ornithologiques et météorologiques, à faire, en vue de l'étude des migrations et des agents naturels qui régissent l'instinct, dans un grand nombre de stations déjà déterminées, non seulement sur les cols les plus élevés de nos Alpes, mais encore dans différentes conditions et à différents niveaux, au N. S. E. et O. du pays.

La troisième pose aux ornithologistes suisses un cer-

tain nombre de questions relatives à la multiplication et à l'alimentation des oiseaux, pour établir plus sûrement les bases rationnelles d'une bonne loi internationale de protection.

M. Fatio exprime l'espoir que bientôt, par la comparaison des observations faites simultanément en tous pays, l'on arrivera, enfin, à la solution aussi utile qu'intéressante de bien des problèmes scientifiques et pratiques jusqu'ici des plus obscurs.

M. Emile Yung, de Genève, a présenté un résumé de ses recherches expérimentales relatives à l'influence des milieux physico-chimiques sur le développement des animaux, dont il a déjà à plusieurs reprises entretenu la Société. On se souvient que M. Yung s'est donné pour tâche d'étudier le rôle joué par chacun des éléments, température, intensité lumineuse, couleur, pression, densité, alimentation, etc., qui dans leur ensemble constituent le milieu, dans les variations que subissent les êtres vivants. Après avoir rappelé les conclusions auxquelles il est arrivé précédemment, il communique à la Société de nouveaux résultats.

Il paraît suffisamment établi par les recherches classiques de Paul Bert, Félix Plateau et autres, que le chlorure de sodium est parmi les sels que renferme l'eau de la mer, celui qui est le plus nuisible aux animaux d'eau douce. M. Yung a eu l'occasion de confirmer ce fait une fois de plus. Il a toujours vu les Batraciens, par exemple, mourir plus rapidement dans une solution de chlorure de sodium, de même densité que l'eau de mer, que dans un même volume de cette dernière.

Mais M. Yung a jugé plus utile d'étudier l'action des

sels de la mer dans leur ensemble et dans les proportions où ils se rencontrent normalement. Il a dans ce but simplement évaporé à siccité une quantité suffisante d'eau de la Méditerranée et il a employé le résidu pour la fabrication des milieux expérimentaux. Quoique ayant expérimenté sur trois types fort différents, l'Hydra viridis, le Daphnia pulex et les larves de Rana esculenta, M. Yung ne communique, pour le moment, que les résultats obtenus sur ces dernières.

Un têtard de grenouille plongé dans l'eau de mer y meurt ratatiné et comme desséché au bout de 3 à 20 minutes, selon son âge, et les œufs déjà embryonnés n'y éclosent pas. Dans une solution de sels marins à 1 p. 100, un têtard succombe au bout de quelques heures, toutefois il peut s'adapter à ce milieu, si on l'y prépare par un séjour dans une série de solutions moins concentrées à 2, 4, 6 et 8 p. 1000.

M. Yung a suivi le développement complet de têtards frères, placés en nombre égal dans des solutions graduées comme il vient d'être dit; et il a constaté que les larves se sont développées d'autant plus lentement que la solution était plus concentrée. La première grenouille parfaite est apparue en moyenne 17 jours plus tôt dans l'eau douce que dans l'eau renfermant 9 pour 1000 de sels marins. Les différents stades évolutifs (disparition des branchies externes, apparition des membres) se sont manifestés avec des retards correspondants.

D'ailleurs, les têtards ne se développent pas dans une solution saline supérieure à 1 p. 100, à moins qu'ils ne soient placés sur un appareil agitateur dont M. Yung montre une photographie et qui communique constamment à l'eau un mouvement de vague.

- M. Yung relate aussi les expériences entreprises dans le but d'apprécier l'influence du nombre des individus contenus dans un même vase et de la forme de ce vase sur le développement des larves. Les résultats de quatre séries d'expériences sont les suivants :
- 1º La durée du développement des larves de grenouille est d'autant plus longue que leur nombre est plus grand dans une même quantité d'eau, la nourriture étant d'ailleurs en surabondance.
- 2º Les larves de grenouille se développent d'autant plus rapidement que, toutes choses égales d'ailleurs, le diamètre et par conséquent la surface d'aération des vases dans lesquels on les place est plus considérable.
- 3° A égalité de surface d'aération, le développement des larves est d'autant plus rapide que le volume de l'eau est plus grand.

Enfin M. Yung a constaté que si on examine la sexualité de 100 larves de Rana esculenta, prises au hasard dans un marais au mois de juin ou de juillet, époque à laquelle les têtards achèvent leurs métamorphoses, on trouve à peu près autant de mâles que de femelles, mais si on élève les larves en les nourrissant d'une manière spéciale, si on les alimente en particulier avec de la viande exclusivement, les jeunes grenouilles auxquelles ces larves donnent naissance, sont en immense majorité des femelles. Il y a là une preuve que le sexe n'est pas décidé au moment de la fécondation et que l'on peut par une nutrition spéciale des jeunes les sexuer tous, ou à peu près, dans un même sens. Il est vrai que M. Yung n'a pas réussi jusqu'ici à trouver les conditions d'une production exclusive d'individus mâles.

Dans la seconde assemblée générale, M. le prof. Louis Soret fait deux communications sur des questions qui touchent à la fois à l'esthétique et aux sciences naturelles.

La première de ces communications a pour objet, le rôle du sens du toucher dans la perception du beau, particulièrement chez les aveugles.

Les jouissances esthétiques se développent généralement en nous par l'intermédiaire de nos sens ; quelques auteurs pensent que parmi nos cinq sens, il n'y en a que deux, la vue et l'ouïe, qui soient propres à remplir cette fonction, M. Soret démontre que cette faculté appartient aussi au sens de toucher quoique d'une manière plus restreinte. Après quelques considérations tendant à prouver que le toucher a déjà une part dans les impressions esthétiques des hommes à l'état normal, et mieux encore chez les sourds muets, M. Soret expose avec plus de développement ce qui se passe chez les personnes privées de la vue; il rapporte les observations qu'il a faites sur des aveugles de naissance et rend compte des renseignements qui lui ont été obligeamment fournis à l'Asile des aveugles de Lausanne par M. le Dr M. Dufour et par M. et Mile Hirzel.

Les aveugles sont généralement accessibles à la beauté de forme des objets qu'ils manient et dont les uns leur plaisent, les autres leur déplaisent. En analysant sur quoi sont basées ces impressions esthétiques, on trouve qu'elles reposent à peu près sur les mêmes éléments que chez les personnes à l'état normal. — Comme caractères purement physiques, c'est la symétrie, la répétition de dessins et d'ornements semblables, la continuité des surfaces et des lignes qui frappent agréablement soit les voyants par

l'intermédiaire de la vue, soit les aveugles par l'intermédiaire du toucher. M. Soret en cite de nombreux exemples et fait remarquer que le défaut de ces caractères entraîne de même une sensation de laideur. — Comme caractères de l'ordre intellectuel, on retrouve une similitude analogue; par exemple, dans un objet d'art, l'emploi d'attributs, d'ornements rappelant la destination de l'objet, constitue un des moyens les plus en usage pour produire, à la vue, une impression esthétique; or les aveugles éprouvent, au toucher, un sentiment tout pareil. — Quant à l'appréciation de la beauté humaine, elle est plus rare chez les aveugles par la raison toute simple qu'ils ne peuvent habituellement tâter de leurs mains les personnes en présence desquelles ils se trouvent; ils manquent donc d'éducation et d'exercice à cet égard. Cependant on a un exemple très concluant de la possibilité de cette appréciation chez un aveugle sourd-muet de l'Asile de Lausanne. Cet être, si dépourvu de moyens de relation avec le monde extérieur, est doué d'une vive intelligence et d'un sentiment artistique très développé. On lui accorde à l'Asile de Lausanne la privauté de palper les personnes avec lesquelles il est en relation. Il a pu ainsi acquérir par l'expérience une notion très nette de la beauté humaine. L'auteur de la communication en cite quelques exemples frappants.

M. Soret conclut que, sous quelques réserves, les impressions esthétiques engendrées par la sculpture et les arts décoratifs sont accessibles aux aveugles, et que cette faculté pourrait être développée chez eux par une éducation convenable, de manière à leur ouvrir un champ nouveau de jouissances relevées. La seconde communication de M. Soret est consacrée à l'examen de ce qui constitue la grace dans les mouvements, spécialement dans les mouvements de l'homme.

Une première condition que doit remplir un mouvement pour être gracieux, c'est qu'il soit approprié à son but. Un athlète qui lance une lourde pierre ou tout corps pesant, effectue un mouvement violent qui néanmoins peut être gracieux parce qu'il est nécessaire. Le même mouvement employé pour jeter une fleur ou tout autre corps léger serait absolument disgracieux, parce qu'il serait exagéré. C'est là comme une application du principe général de la moindre action dont il semble que nous ayons une notion intuitive.

Une seconde condition de la grâce dans les mouvements c'est que la trajectoire des divers points du corps et particulièrement de ceux sur lesquels se dirige le plus fortement l'attention, forme une ligne présentant des caractères esthétiques tels que la continuité ¹, la symétrie, la périodicité. C'est ce que M. Soret a cherché à constater par l'expérience.

Les mouvements gracieux les plus propres à cette étude sont ceux que l'on effectue dans la danse. — Supposons un danseur exécutant divers pas en s'avançant sur une ligne droite: on peut obtenir le tracé graphique de la trajectoire d'un point quelconque de son corps en y fixant une petite lampe électrique à incandescence et en prenant une épreuve photographique pendant le mouvement ².

¹ La continuité doit s'étendre aux variations de vitesse du point considéré.

² Voyez pour les details du procédé la note de M. Soret, intitulée: Sur la détermination de la trajectoire d'un point du corps humain. Comptes rendus de l'Acad. des sc. de Paris, séance du 20 juillet 1885 et Archives, juillet 1885, t. XIV, p. 94.

Le point du corps sur lequel se dirige le plus habituellement l'attention, est la tête qui, d'ailleurs, par sa position dans le plan de symétrie du corps et par sa mobilité en tous sens, présente de bonnes conditions pour cette étude.

On sait déjà d'après les observations de quelques physiologistes, que dans la marche ordinaire qui peut être rangée parmi les mouvements gracieux, la trajectoire de la tête ne s'écarte pas beaucoup d'une ligne droite, mais présente cependant des sinuosités régulières et sensibles. Dans la course, les oscillations verticales s'accentuent et la courbe se rapproche d'une sinusoïde ordinaire. Les expériences de M. Soret ont confirmé ces faits comme le montrent les épreuves photographiques présentées à la Société.

Dans divers pas de danse ¹ on arrive à des résultats analogues, c'est-à-dire à des trajectoires régulières et continues.

Par exemple dans le pas de valse la courbe est une sorte de sinusoïde présentant alternativement une grande sinussité et une sinussité plus petite. Dans le pas de polka une grande sinussité est suivie de deux sinussités plus petites, etc.

Ainsi en ce qui concerne les mouvements de la tête, la trajectoire présente bien les caractères prévus et énoncés plus haut.

Les mouvements du pied viennent en second rang après ceux de la tête; mais ils se prêtent un peu moins bien aux expériences. En effet, on ne peut placer la lampe au point même où se fait l'appui du pied sur le sol, point

Les pas ont été exécutés par M. Ferraris, professeur de danse, qui a prêté son obligeant concours pour ces expériences.

qui serait le plus intéressant à étudier; de plus cet appui s'effectue tantôt sur le talon, tantôt sur la base du gros orteil. Toutefois en fixant la lampe sur le pied on obtient des résultats assez satisfaisants et conformes au principe indiqué précédemment.

Par exemple dans le pas de zéphir la trajectoire du pied se compose de grands arcs successifs, correspondant au mouvement que fait le danseur en portant la jambe en avant; puis ces arcs sont réunis l'un à l'autre par un petit feston correspondant aux mouvements du pied lorsqu'il se pose à terre et se soulève de nouveau après un petit saut : l'ensemble de la ligne plaît à l'œil.

Inversement si l'on étudie un mouvement produisant une impression de raideur, la trajectoire du pied accuse ce caractère. Ainsi dans le pas d'école du soldat, la courbe commence par raser le sol presque en ligne droite, puis elle se relève rapidement en dessinant une sinuosité très accentuée, aiguë et inclinée. L'ensemble du tracé n'a rien qui plaise à l'œil.

Dans la seconde assemblée générale, M. le D^r Imhof, de Zurich, a fait une communication sur la faune profonde et pélagique de divers lacs de la Suisse. A plusieurs reprises déjà les assemblées de la Société helvétique des sciences naturelles ont fourni l'occasion de traiter ce sujet. Il le fut pour la première fois en l'an 1873, à Schaffhouse, par M. le prof. F.-A. Forel. En 1869, ce naturaliste avait déjà publié un mémoire sur ce sujet, dans le Bulletin de la Société vaudoise des sciences naturelles, sous le titre de : « Introduction à l'étude de la faune profonde du lac Léman. » C'est M. F.-A. Forel qui a eu le mérite d'ouvrir à la science ce champ de recherches. Il s'adjoignit

comme collaborateurs pour l'étude de ses matériaux une série de zoologistes et publia les résultats obtenus successivement dans les Bulletins de la Société vaudoise; les six séries, comprenant 50 paragraphes, dont la dernière a paru encore en 1882, sont témoins de son activité. L'on sait que le sujet proposé pour le concours du prix Schläfli, à savoir la faune profonde des lacs de la Suisse, a été traité l'année dernière avec succès par deux auteurs, à savoir MM. les prof. F.-A. Forel et Duplessis, dont les travaux ont été couronnés. Les mémoires couronnés ont été insérés dans le dernier numéro des Mémoires de notre Société.

M. Imhof se propose maintenant d'étendre dans un sens plus général nos connaissances sur ces faunes pélagiques et profondes. Il rappelle d'abord en peu de mots les recherches qu'il a faites dans cette direction. En automne 1882, ses travaux commencèrent par la faune pélagique de quelques lacs de Suisse et s'étendirent, l'année suivante, à leur faune profonde. A la fin de juillet 1883, M. Imhof visita quatre lacs du versant méridional des Alpes, à savoir ceux de Lugano, de Côme, de Garde et le lac Majeur. A la fin d'août de la même année, les lacs élevés de l'Engadine supérieure furent l'objet d'une autre excursion. Puis, en octobre, furent collectés des matériaux dans une série de lacs de la Suisse occidentale et de la Savoie. Comme il était d'un intérêt spécial de savoir si, dans les nappes d'eau situées très haut et couvertes d'une croûte de glace pendant plusieurs mois de l'année, la vie animale, celle surtout des infiniment petits, continue toute l'année, M. Imhof se rendit, pendant les vacances de Noël 1883-1884, pour la seconde fois, dans la haute Engadine. En mars 1884, il fit une excursion dans la Suisse occidentale, l'Oberland bernois et la Suisse centrale; en août et septembre, son champ de recherches s'étendit encore davantage, à dix lacs de la haute Bavière et à dix-huit lacs d'Autriche. Sur la table se trouve un exemplaire du tirage à part des Comptes rendus de l'Académie de Vienne, qui contient les résultats relatifs aux lacs autrichiens.

Le nombre total des lacs examinés jusqu'à ce jour par l'orateur atteint le chiffre de 70; ils se répartissent entre les pays suivants : France (Savoie et Jura), Haute-Italie, Suisse (35 lacs), Haute-Bavière, Tyrol, Salzbourg, Haute-Autriche et Syrie. Les matériaux forment une collection de plus de 900 préparations microscopiques qui permet la comparaison immédiate avec les nouveaux matériaux qui peuvent s'ajouter.

M. Imhof expose les résultats nouveaux qu'il a obtenus surtout dans deux directions, et y joint la démonstration de ses nouveaux appareils.

1. Sur la distribution horizontale et verticale de la faune pélagique dans un seul et même bassin.

Les idées qui ont cours actuellement sur la distribution verticale de la faune pélagique dans les bassins d'eau douce se résument dans la formule donnée par M. Forel, en 1882, dans un article du *Biologisches Centralblatt*: Les animaux pélagiques exécutent chaque jour une migration, ainsi que M. Weismann et M. Imhof l'ont trouvé en 1874, indépendamment l'un de l'autre; la nuit, ils montent à la surface, le jour, ils descendent dans la profondeur. »

Or, un grand nombre de faits, recueillis par M. Imhof, montrent que cette phrase est trop absolue, car il a rencontré au milieu du jour, par le plus beau soleil, au printemps et en été, en certains endroits au milieu des

lacs, tous les membres de la faune pélagique, à savoir les Protozoaires, Rotateurs, Copépodes et Cladocères — même les Bythotrephes et les Leptodora — immédiatement audessous de la surface. A cela il faut ajouter que les recherches faites à la partie supérieure, au milieu et à la partie inférieure d'un lac dénotent des différences dans la composition de la faune pélagique.

M. Imhof passe ensuite aux diverses méthodes que MM. Fric, Forel, Pavesi et Asper ont employées pour reconnaître les lois de la distribution verticale. Tous ces appareils ont l'inconvénient qu'on doit les faire descendre et remonter ouverts, de la couche qu'il s'agit d'explorer, ou tout au moins qu'ils restent ouverts pendant la descente. Le nouvel appareil que l'orateur montre à l'assemblée est un filet pélagique qu'on descend fermé à la profondeur voulue, qu'on ouvre lorsqu'il est arrivé à destination, pour le refermer avant de le remonter. La fermeture est opérée par une valve métallique bien jointe, en sorte qu'on a l'assurance que le contenu du filet provient bien du niveau qu'on a voulu explorer. Les résultats obtenus par ces moyens seront publiés plus tard quand ils seront plus étendus.

Ce genre de recherches a, outre son intérêt scientifique, un double intérêt d'ordre pratique, à savoir pour la pêche et la pisciculture, et, d'autre part, surtout au point de vue de l'emploi des eaux lacustres pour l'alimentation des villes.

II. Sur la faune pélagique et profonde des lacs alpins élevés.

M. Imhof a surtout en vue les résultats des recherches qu'il a faites au milieu de l'hiver 1883-84, dans les lacs de la haute Engadine. Dans cette saison ils sont gelés, et il

fallut faire des trous dans la glace pour pouvoir descendre les appareils. L'auteur présente et décrit son nouvel appareil à puiser de la vase qu'il a déjà mentionné dans un mémoire présenté à l'académie de Vienne.

Cette étude, qui n'a pas été faite auparavant, de lacs élevés et couverts de glace a montré qu'une riche faune pélagique et profonde persiste pendant tout l'hiver sous cette couverture. Bien plus, la croûte de glace est une protection pour les animaux des lacs peu profonds, pendant la saison froide. Les recherches faites dans cette direction s'étendent aux lacs suivants : Seelisberg (753 m. au-dessus de la mer), Klönthal (828), Brenet (1009), Saint-Moritz (1767), Silvaplana (1794), Sils (1796) et Carloccio (1908).

L'étude que M. Imhof a pris à tâche de mener à bonne fin, d'un nombre aussi grand que possible de lacs dispersés sur une grande étendue de pays, pourra seule nous faire connaître la distribution géographique, aussi bien horizontale que verticale des membres de cette double faune, et nous fournira une base qui nous permettra de traiter en connaissance de cause les questions relatives aux changements de forme de la croûte terrestre. La démonstration de cette thèse doit être, faute de temps, renvoyée à une autre occasion.

M. le D^r Imhof termine son discours par les mêmes mots qui servirent d'épilogue à la séance d'essai où il traita, en 1883, à l'Université de Zurich, le sujet de la vie animale microscopique dans les lacs de la Suisse : Dans ce champ de recherches microscopiques, un travail approfondi, calme et persévérant peut seul donner des résultats scientifiques de valeur.

Dans la séance de la Section, M. le D^r Imhof de Zurich, a présenté les résultats suivants de ses recherches sur les faunes de nos eaux.

1. Sur les Héliozoaires. Nous ne savons que peu de chose sur l'existence de ces animaux en Suisse. Perty ¹ mentionne les espèces suivantes : Actinophrys sol (Ehrbg.), Act. viridis (Ehrbg.), une forme nouvelle : Act. brevicirrhis, et enfin Act. difformis (Ehrbg.). Les seules données qui aient suivi jusqu'à ces tous derniers temps paraissent être celles de Buck ² qui cite : Heterophrys myriopoda, Sphærastrum conglobatum, Acanthocystis turfacea et Clathrulina elegans provenant des excavations des tourbières au voisinage du Katzensee, près de Zurich. L'année dernière, Henri Blanc a trouvé Actinophrys sol dans la faune profonde du lac de Genève. A ces espèces, M. Imhof ajoute les suivantes qui font aussi partie de la faune suisse :

Actinosphærium Eichhornii, Acanthocystis spinifera et aculeata, Raphidiophrys pallida.

La faune profonde de nos bassins d'eau douce est riche en Héliozoaires, surtout en formes pourvues d'un squelette. Une espèce d'Acanthocystis a été rencontrée dans le domaine de la faune pélagique. La faune des puits de pompes, qui a été fort peu étudiée en Suisse et pour laquelle l'auteur a commencé en 1883 à collecter des matériaux, renferme aussi des Héliozoaires. Dans les puits de Zurich et de ses environs ont été rencontrés : Actinophrys sol, Actinosphærium Eichhornii et Acanthocystis spinifera. (La plupart de ces espèces sont montrées en préparations sous le microscope.)

¹ Kleinste Lebensformen der Schweiz, 1852.

² Zeitschr. f. wis Zool. Bd. XXX, p. 3.

2. Sur la faune pélagique et profonde du Seealpsee dans le massif du Säntis (1143 m. au-dessus de la mer).

Le matériel récolté le 24 juillet 1885, par un élève de M. Imhof avec ses procédés et ses appareils et qui a été en partie conservé, contenait les formes suivantes :

Faune pélagique. Rotifères: Anuræa longispina (Kellicott), Anuræa aculeata (Ehrbg.), Conochilus volvox (Ehrbg.), Asplanchna helvetica (Imh.), — Entomostracés: Cyclops sp., Bosmina sp. — Faune profonde. Comme ce petit lac n'atteint qu'une profondeur de 13 mètres au maximum, le terme ne peut guère y trouver son application. Un nombre extraordinairement grand d'animaux vivent au fond, comprenant: une Hydre, des Turbellariées, des Anguillulides, des Tubificides, des Ostracodes, des Hydrachnides, des larves de Diptères, et des Pisidies.

3. Sur la faune pélagique du lac des Tallières, de l'étang de Bémont et du lac des Brenets.

Mettant à profit l'assemblée de la Société helvétique de cette année, M. Imhof est arrivé dès le 6 août au Locle. Il a trouvé :

Lac des Tallières (examen fait le 7 août). — Protozoaires : Dinobryon sociale (Ehrbg), Ceratium hirundinella (Müller), Peridinium sp. — Rotifères : Anuræa cochlearis (Gosse). — Cladocères : Bosmina brevicornis (Hellich). Ceriodaphnia sp. — Copépodes : Cyclops sp.

Étang de Bémont (7 août). La coiffe pélagique ne contenait qu'une seule Daphnie, mais le nombre d'individus en était incalculable.

Lac des Brenets (9 août). Protozoaires: Peridinium tabulatum (Clap. et Lachm.), Ceratium hirundinella (Müller). — Rotifères: Triarthra longiseta (Ehrbg.), Polyarthra platyptera (Ehrbg.), Anuræa cochlearis (Gosse), As-

planchna helvetica (Imhof). — Cladocères : Daphnella brachyura (Liévin), Daphnia sp., Ceriodaphnia sp., Bosmina cornuta (Jurine), Bosmina sp., — Copépodes : Cyclops sp.

- 4. Quelques recherches faites dans les citernes de la Brévine et de la Chaux-du-Milieu ont donné des résultats très particuliers qui seront communiqués ailleurs.
- 5. Sur les animaux pélagiques de la mer Baltique et en particulier du golfe de Finlande. Sous date du 30 mars 1885 parut dans les comptes rendus de l'Académie de France une notice de G. Pouchet et J. de Guerne sur la faune pélagique de la Baltique et du golfe de Finlande. Il y est dit (p. 3): « Enfin la présence de nombreux infusoires et rotifères du genre Anuræa vient encore augmenter l'analogie de cette faune avec celle des lacs suisses, récemment explorés, à ce point de vue, par Imhof. » Sur la demande de M. Imhof, M. Jules de Guerne lui envoya obligeamment dix préparations. Les Rotifères qui s'y trouvaient étaient les suivants : Polyarthra plalyptera (Ehrbg.), Anuræa cochlearis (Gosse), Anuræa aculeata var. regalis (Imhof).

En fait de Protozoaires, M. Imhof trouva une Dinophysis et une Cothurnia fixées en grand nombre sur des végétaux pélagiques, mais cela seulement dans le matériel pêché entre l'île de Gotland et la Courlande (Ces préparations sont montrées au microscope à la Section).

M. Hermann Fol, de Genève, parle ensuite à la section sur les conditions d'existence, sous le rapport de la lumière, des animaux aquatiques vivant dans les grandes profondeurs.

M. Fol donne d'abord un résumé des résultats des

expériences faites par M. E. Sarasin, et lui, afin d'arriver à connaître la limite de pénétration de la lumière, soit dans le lac de Genève, soit dans la mer (Voy. Archives, t. XII, p. 599 et t. XIII, p. 444, dans les C. R. des séances de la Soc. de physique, séances du 2 octobre 1884 et du 2 avril 1885). Cette limite s'est trouvée vers 200 m. pour le lac, en hiver, et vers 400 m., dans la mer Méditerranée. M. H. Fol explique le mécanisme de l'appareil qui a servi à ces expériences et qui repose sur l'action antagoniste d'un poids et d'un ressort. La plaque est contenue dans une position horizontale dans une cassette qui reste close tant qu'agit la traction du poids du plomb de sonde. Mais dès que ce poids touche le fond, le ressort entrant en action ouvre l'appareil, et la plaque se trouve exposée jusqu'au moment où l'on rentre la corde et où le plomb s'y trouve de nouveau suspendu.

Les plaques employées sont des plaques sèches au gélatino-bromure rapide de Monckhoven. Ces plaques, exposées derrière un négatif, donnent au clair de lune une image positive, bien venue, au bout de 3 minutes d'exposition. Au bout de 40 minutes d'exposition à l'air, par une nuit claire et sans lune, le révélateur fait apparaître un noircissement très marqué des parties exposées. Ces faits méritent d'être mentionnés eu égard aux expériences exécutées par M. Asper dans les lacs de Zurich et de Wallenstadt. Ce naturaliste, en effet, s'est servi de plaques tellement insensibles, qu'elles pouvaient rester exposées, par une nuit éclairée par la lune, dans une cuvette contenant un peu d'eau, pendant plusieurs heures consécutives, sans présenter aucune trace d'impression. Que la faute en fût aux plaques ou à la manière

dont elles ont été développées, toujours est-il qu'elles étaient impropres à ce genre d'expériences. Du reste, malgré cette insensibilité phénoménale de ses plaques, M. Asper a trouvé de la lumière jusqu'au fond même du lac de Wallenstadt (145 m.). Il n'était donc pas arrivé à la limite qui se trouve, en effet, plus bas encore.

M. Fol fait passer les plaques exposées par M. Sarasin et lui, soit dans le lac de Genève, soit en mer, et qui, par leur gradation régulière, sont très démonstratives. Il insiste surtout sur les conséquences qui découlent de ces faits, nouveaux pour la science, pour l'idée que nous nous faisons du genre de vie des animaux marins vivant au delà de 400 m. de profondeur. Il est prouvé qu'ils se trouveraient dans une obscurité absolue, s'il n'existait dans ces profondeurs des sources locales de lumière. Leur existence est démontrée par les yeux dont beaucoup de ces êtres sont munis, et, chose singulière, tandis que les poissons, vivant à 200 ou 300 m., ont de grands yeux comme ceux de nos oiseaux nocturnes, ceux des poissons des abîmes n'ont que des dimensions très ordinaires.

On ne peut guère chercher ces sources de lumière ailleurs que chez les animaux eux-mêmes. A l'inverse des animaux de nos lacs, ceux de la mer sont, pour la plupart, capables d'émettre de vives lueurs. Certains poissons des abîmes, tels que le *Malacosteus niger* et les *Stomias* ont à cet effet des organes spéciaux dont ils doivent se servir. soit pour s'éclairer, soit pour attirer la proie. Ce dernier usage peut seul expliquer la présence d'organes phosphorescents chez des animaux dépourvus d'yeux.

Ces questions de phosphorescence donnent lieu à une discussion nourrie, à laquelle prennent part MM. V. Fatio, F.-A. Forel, Imhof, C. Émery et Fol.

A ce sujet, M. F.-A. Forel, de Morges, annonce la découverte récente d'une Muscinée, brillamment chlorophyllée, qui végète à 55 m. de profondeur dans le lac de Genève, dans une localité limitée sur la barre d'Yvoire. M. le prof. Schnetzler, de Lausanne, qui a étudié cette mousse, n'a pas encore trouvé les organes de fructification; sa détermination en est par conséquent encore indécise; l'espèce dont elle se rapproche le plus par son port et sa forme est le Thamnium alopecurum (Schimper). Cette découverte étend beaucoup les limites de la flore chlorophyllée lacustre, qui était bornée, par les recherches antérieures, à 25 m. (Forel) et qui doit être ainsi abaissée à 55 m. de profondeur.

M. Emery, professeur à Bologne, communique les résultats de ses recherches sur la lumière des Lucioles (Luciola italica L.). Les organes lumineux des Lucioles constituent comme ceux des Lampyres des plaques situées immédiatement sous la peau. Ces plaques occupent la face ventrale des deux derniers segments de l'abdomen chez le mâle et seulement une partie de l'avant-pénultième segment chez la femelle qui est beaucoup moins lumineuse. — Ces organes sont constitués chacun de deux couches dont la plus superficielle est assez transparente, tandis que la couche profonde est opaque et d'un blanc de craie à cause d'innombrables concréments uriques dont elle est formée. Ce qui distingue partout l'organe lumineux de la Luciole de celui des Vers luisants ordinaires, c'est la disposition très régulière des éléments qui constituent la couche superficielle. Les grosses trachées qui sont enfouies dans la masse de la couche profonde envoient d'innombrables petits troncs perpendiculaires à la surface de l'organe, qui s'avancent jusque tout près de l'hypoderme, en se ramifiant en forme d'élégants arbrisseaux dont chaque branche terminale se bifurque en deux trachées capillaires extrêmement fines et à paroi lisse. Chacun de ces arbrisseaux est noyé jusqu'à la bifurcation de ses branches terminales dans une masse cylindrique pourvue de noyaux, qui est la continuation de la matière des grosses trachées. Les capillaires font saillie sur la surface des cylindres et s'avancent entre les éléments qui séparent les cylindres l'un de l'autre : ces éléments sont de grosses cellules granuleuses qui correspondent aux cellules parenchymateuses (Parenchymzellen, M. Schultze) des Lampyres.

Si l'on regarde de face une plaque lumineuse rendue transparente par la potasse caustique ou bien une section tangentielle d'une plaque durcie et colorée, on a une image microscopique des plus élégantes. Les cylindres comprenant les arbrisseaux trachéens sont vus par le bout et paraissent régulièrement distribués dans la préparation, entourés et séparés l'un de l'autre par les mailles d'un réseau formé par les cellules parenchymateuses. Si l'insecte qui a servi à faire la préparation a été tué par les vapeurs de l'acide osmique, on voit encore les trachées capillaires colorées en brun s'avancer entre les cellules parenchymateuses.

La régularité extrême de cette disposition a permis de reconnaître à l'aide du microscope, sur l'animal vivant, le siège précis de la combustion lumineuse.— Les Lucioles émettent habituellement leur lumière par éclairs successifs séparés par des intervalles obscurs. Lorsqu'on saisit l'animal, il cesse de briller ou bien il brille d'une lueur fixe et beaucoup plus faible. Cependant une Luciole collée sur le

dos peut reprendre après quelque temps ses éclairs et peut être alors observée au microscope avec un faible grossissement; mais les mouvements continuels de l'insecte ne permettent pas d'ajuster exactement au foyer et les variations rapides de l'intensité lumineuse éblouissent la vue et empêchent une analyse exacte. Au moment de l'éclair, le champ du microscope s'embrase tout à coup et paraît uniformément éclairé; puis la lumière s'affaiblit rapidement et l'on voit apparaître des ronds obscurs séparés par un réseau éclairé. Ce réseau s'obscurcit peu à peu et tout rentre dans l'ombre. Avant la disparition du réseau lumineux, on remarque que le contour des ronds obscurs est plus brillant que le reste du réseau.

L'interprétation de ces phénomènes ne laisse aucun doute. Les ronds obscurs correspondent aux cylindres qui enveloppent les trachées tandis que le réseau lumineux est formé par les cellules parenchymateuses, siège de la combustion phosphorescente. On peut pousser plus loin l'analyse en examinant au microscope le ventre détaché d'exemplaires empoisonnés par les vapeurs d'acide osmique. Les organes lumineux montrent alors des nuages éclairés qui changent de forme et se déplacent lentement. Sur les bords de ces nuages on voit au microscope les cellules parenchymateuses s'allumer l'une après l'autre et se confondre pour former le réseau brillant, ou bien s'éteindre de même isolément. Il y a plus, on aperçoit dans ces préparations les noyaux des cellules parenchymateuses comme de petites taches obscures au milieu du plasma cellulaire lumineux.

Ces observations prouvent que dans l'organe lumineux des Lampyrides la lumière provient surtout, sinon exclusivement, des cellules parenchymateuses et non des cellu-

les terminales des trachées (Tracheenendzellen, M. Schultze): celles-ci sont représentées chez la Luciole par les cylindres qui enveloppent les arbrisseaux de trachées et qui apparaissent comme des ronds obscurs dans l'organe lumineux en activité. L'aspect uniformément lumineux de l'organe au moment de l'éclair peut s'expliquer en partie par la réflexion de la lumière sur la couche crayeuse profonde, en partie aussi par une participation des éléments de cette couche à la fonction lumineuse. L'étude histologique montre d'ailleurs que les cellules à urates sont les homologues des cellules parenchymateuses. Mais l'œil est tellement ébloui au moment de l'éclair et ce moment est de si courte durée que l'analyse en est excessivement difficile.

M. Emery fait passer sous les yeux de la section une préparation microscopique de l'organe lumineux de la Luciole et des dessins montrant l'aspect des organes lumineux en activité vus au microscope.

M. le prof. Auguste Forel fait une communication sur l'origine du nerf acoustique.

Meynert, ainsi que d'autres avant et après lui ont accordé, sans preuves suffisantes, de nombreux noyaux d'origine au nerf acoustique. C'est facile à comprendre pour qui connaît l'inextricable fouillis des fibres nerveuses et des cellules dans la moelle allongée et sous le cervelet. M. Forel renvoie au travail que va publier sur ce sujet dans l'Archiv für Psychiatrie, un de ses élèves, M. B. Onufrovicz.

M. Forel a réussi il y a quelques années à enlever la plus grande partie du nerf acoustique à des lapins nouveaux-nés en détruisant le rocher. La plupart de ces lapins se mettent après l'opération à tourner sans interruption sur l'axe longitudinal de leur corps jusqu'à ce qu'ils meurent.

Deux lapins survécurent, dont l'un ne tourna presque pas, mais tint toute sa vie la tête dans une position horizontale, l'oreille du côté opéré dirigée en bas, l'autre en haut. Chez ce lapin qu'on laissa devenir adulte et dont on examina le cerveau réduit en série de coupes, on trouva la racine postérieure de l'acoustique presque entièrement atrophiée, la racine antérieure à moitié seulement. Le noyau antérieur de l'acoustique (vorderer acusticus Kern) se trouve presque entièrement atrophié; à peine restait-il quelques résidus des cellules. De plus on trouva une atrophie partielle surtout des couches profondes de la partie dite « tubercule acoustique » ou « nuque du cervelet » de Stilling (couches de substance grise et de substance mêlée qui recouvrent la portion supérieure des pédoncules cérébelleux postérieurs). Mais là il n'y avait qu'une diminution générale de la substance, pas d'atrophie de certains éléments. Les autres soi-disant noyaux de l'acoustique (noyau dit externe, noyau dit interne, fibres croisées, etc.), étaient demeurés parfaitement intacts. Monakow avait déjà trouvé par une expérience inverse, en coupant la moitié de la moelle d'un jeune lapin vers l'entrecroisement des pyramides que cette lésion détermine une atrophie complète des cellules du soi-disant noyau externe de l'acoustique, mais ne cause aucune dégénérescence des fibres du nerf acoustique lui-même. Il en avait déjà conclu que Deiters avait eu raison de refuser à ce noyau des connexions avec l'acoustique et lui avait en conséquence donné le nom de « noyau de Deiters, » nom déjà employé par Laura.

D'après les résultats de Gudden, l'arrachement des nerfs sensibles chez l'animal nouveau-né ne détermine jamais qu'une atrophie partielle de leurs noyaux proprement dits, sans disparution d'une catégorie particulière de cellules, tandis que l'arrachement des nerfs moteurs et des nerfs sensibles (en delà des ganglions spinaux) détermine une atrophie complète ou peu s'en faut des cellules motrices et des cellules des ganglions. Ces faits concordent admirablement avec les résultats des travaux de Golgi et de Bellonci sur la structure des cellules ganglionnaires et de leurs connexions avec les fibres.

M. A. Forel conclut que le noyau dit antérieur (vorderer Kern) de l'acoustique ne peut être que l'homologue modifié d'un ganglion spinal pour la racine postérieure de l'acoustique, comme l'ont déjà pensé Stilling et d'autres. Le véritable noyau de l'acoustique est le tubercule acoustique du même côté qui est pour le nerf auditif ce que le tubercule quadrijumeau antérieur est pour le nerf optique.

Quant à la racine antérieure du nerf acoustique, on voit, grâce à son atrophie partielle, qu'elle va vers le centre de la base du cervelet où elle se perd autour des crura cerebelli ad corpora quadrigemina en formation, peut-être dans un amas de cellules qui se trouve en dessus, comme le prétend Bechteren. Elle n'a évidemment aucune connexion, ni avec le noyau antérieur, ni avec le tubercule acoustique. M. Forel la considère comme étant très probablement la partie non auditive du nerf du vestibule, celle qui va aux ampoules des canaux sémicirculaires, et croit que c'est sa lésion qui produit les fameux mouvements continuels de la tête en sens divers (suivant le canal qui a été lésé), que Flourens a le premier observés non seule-

ment après les lésions des canaux sémicirculaires, mais après celles du cervelet. Comme Schiff, Gudden et d'autres, M. Forel a pu enlever la plus grande partie du cervelet sans provoquer ces mouvements, en ayant soin de ne pas léser la base de la partie centrale de cet organe où s'épanche la racine antérieure de l'acoustique. M. Forel a même gardé longtemps en vie un rat privé de la moitié du cervelet, moins cette base. Ce rat n'a jamais montré le moindre trouble dans la coordination de ses mouvements.

Lorsqu'on enlève l'acoustique entier, c'est le mouvement de rotation autour de l'axe longitudinal du corps qui l'emporte. C'est d'après M. Forel, grâce à ce que la lésion de la racine antérieure de l'acoustique n'était que partielle que les deux lapins dont il montre les préparations microscopiques avec atrophies unilatérales ont pu rester en vie.

M. Forel n'aborde pas la question des connexions centrales de l'acoustique, soit des connexions probables de ce nerf et de ses noyaux avec le corps genouillé interne et le lobe temporal des hémisphères cérébraux. Pour cela il faut d'autres expériences analogues à celles qui ont été faites par Gudden, Ganser et Monakow sur les centres corticaux et thalamencéphaliques de l'optique.

M. le prof. Herzen, de Lausanne, envoie un mémoire dont il est donné lecture : A propos des observations de Laborde sur la tête d'un supplicié.

Après avoir montré que le choc et la privation subite de la circulation sanguine doivent entraîner chez le supplicié une abolition immédiate de la conscience, M. Herzen montre combien seraient grandes les difficultés qu'on rencontrerait à produire artificiellement une circulation dans les conditions voulues et pense que même si l'on pouvait réaliser cette inutile expérience, les réflexes d'ordre inférieur pourraient seuls être réveillés, mais non la conscience. Chez les animaux, l'expérience réussirait plus facilement, mais aurait aussi moins d'intérêt. M. Herzen rapporte à ce sujet les résultats d'une série d'expériences qu'il a faites dans le laboratoire de M. Schiff à Florence. Après avoir entièrement privé de sang le cerveau de lapins par la ligature provisoire des artères carotides et vertébrales, l'on permit à la circulation de se rétablir, l'animal étant dans l'intervalle entretenu par la respiration et un réchauffement artificiels. Dans ces conditions, la conscience se rétablit entièrement et l'animal put se remettre à courir et à manger.

M. Herzen est convaincu que si l'expérience faite dans ces conditions-là était possible sur l'homme, elle donnerait exactement le même résultat.

Botanique.

Président: M. Marc Michell, de Genève. Secrétaire: M. Jean Dufour, de Lausanne.

- J. Dufour, Recherches sur l'amidon soluble et son rôle physiologique chez les végétaux. Schröter, Formes intéressantes de pins. Tripet, Modifications apportées à la flore du Jura neuchâtelois par l'abaissement des lacs. Schröter, Prairies de la Suisse. Pittier, Influence des vents réguliers des vallées sur la végétation et déformation constante des troncs d'arbres. Schröter, Gynodiœcisme chez Anemone hepatica. Haller, Plantes desséchées provenant du Groenland.
- M. J. Dufour, assistant au Polytechnicum, communique les résultats de ses recherches sur l'amidon soluble et

son rôle physiologique chez les végétaux. Quelques plantes: Saponaria officinalis L., Gypsophila perfoliata L., Arum italicum Mill., etc., contiennent, dans leur tissu épidermique, une substance incolore, non différenciée en granules, et possédant la curieuse propriété de former avec l'iode une combinaison bleue qui cristallise en aiguilles. De même que la substance primitive, cet iodure est soluble dans l'eau et dans l'alcool. D'après diverses réactions microchimiques, il est assez probable qu'il s'agit bien d'un hydrate de carbone du groupe de l'amidon, cependant il est réservé à une analyse moléculaire de nous renseigner exactement sur la nature chimique de la substance.

Les faits recueillis paraissent d'autre part démontrer que l'amidon soluble est une matière sécrétée par la plante, et non un produit assimilatoire employé ultérieurement par le végétal, pour son accroissement.

- M. le D^r Schröter, professeur au Polytechnicum, décrit et met en circulation plusieurs formes intéressantes de Pins. Ce sont:
- a) Pinus sylvestris subsp. genuina var. gibba forma pedunculata Schr. à cônes longuement pédonculés;
- b) P. sylvestris subsp. genuina var. plana forma erecta Schr. à cônes dressés;
- c) P. montana subsp. uncinata var. glauca Schr. dont les aiguilles sont glauques des deux côtés, mais présentent la forme appointie de celles du P. sylvestris;
- d) P. montana subsp. Pumilio var. pyramidalis, forme pyramidale de la couronne.

Il existe donc entre *Pinus sylvestris* et *P. montana* des formes de transition; d'autres sont signalées également par M. Christ en Engadine, de sorte qu'il est difficile de séparer nettement les deux espèces.

M. Tripet, professeur à Neuchâtel, entretient la section de botanique des modifications apportées à la flore du Jura neuchâtelois par l'abaissement des lacs. Quelques espèces ont complètement disparu: telles sont Hottonia palustris L., Sagittaria sagittæfolia L., Hydrocharis morsus ranæ L., Acorus Calamus L.; d'autres sont en voie de disparaître, comme Alisma ranunculoides L., Leucoium æstivum L., Scirpus Rothii Hopp., Carex riparia Curt. et Poa serotina Ehrh.

Depuis la publication, en 1869, du Supplément à la flore du Jura, par Ch.-H. Godet, les espèces suivantes ont été découvertes dans les limites géographiques du canton de Neuchâtel: Polygala depressa Wend., Scorzonera humilis L., Hieracium lanatum Vill., Hieracium aurantiacum L., Orobanche flava Mart., Prunella alba Pall., Pinguicula alpina L., Soldanella alpina L., Hippophäe rhamnoides L.

M. Tripet présente des exemplaires de Cardamine trifolia L., qu'il a récoltés dans une forêt de sapins entre le Locle et la vallée du Doubs. Cette espèce appartient aux Alpes du Tyrol, de la Styrie, etc., et n'a pas été rencontrée antérieurement en Suisse.

M. le prof. Schröter donne les premiers résultats de recherches entreprises en commun avec M. le D^r Stebler, directeur de la station de contrôle des semences, à Zurich, sur les prairies de la Suisse.

Ces recherches, commencées il y a un an et demi, ont un double but. Il s'agit d'abord d'arriver à une classification naturelle et scientifique des prairies, de déterminer les types végétaux qui les composent, de rechercher enfin l'influence de l'altitude, de l'exposition, de l'humidité, des engrais, etc., sur la nature et la qualité des prés. D'autre part, ces études seront dirigées de façon à livrer autant que possible des données pratiques pour l'exploitation rationnelle des fourrages.

Voici en quelques mots quelle est la méthode employée par MM. Schröter et Stebler. Ils notent d'abord l'aspect général de la prairie, puis en délimitent et en coupent un pied carré. Tout ce qui croît sur cet espace de terrain est soigneusement recueilli et analysé. On met ensemble les plantes de la même espèce, puis on détermine le nombre et le poids des échantillons, en distribuant encore en des lots séparés les pousses stériles, fertiles, et les plantes en germination. Les auteurs ont jusqu'à maintenant analysé 51 pieds carrés de prairies, et se disposent à poursuivre ce long et patient travail.

Il est nécessaire, naturellement, de récolter un grand nombre de matériaux avant d'arriver à une vue d'ensemble sur la question, cependant les auteurs ont obtenu déjà plusieurs résultats intéressants, en particulier sur la composition des prairies alpines.

M. Schröter termine en demandant aux botanistes présents de bien vouloir le seconder dans ses recherches en lui envoyant des matériaux.

M. PITTIER, professeur à Château d'Oex, parle de l'influence des vents réguliers des vallées sur la végétation, puis
d'une déformation constante des troncs d'arbres. Dans les
vallées profondes des Alpes, l'inégal échauffement des
couches de l'atmosphère donne lieu à des brises régulières,
remontant ces vallées pendant le jour, marchant en sens
inverse durant la nuit. Le courant diurne est de beaucoup
le plus sensible, et atteint son maximum d'intensité dans
les plus chaudes journées de l'été, ébranlant alors une

couche d'air de 250 à 300 mètres de hauteur. Il s'agit de savoir si la flore de la zone soumise à l'influence de ces brises en ressent les effets, comme c'est le cas pour celle des localités souvent visitées par le fœhn.

Plusieurs faits, recueillis au Pays d'Enhaut vaudois, permettent de conclure que ces vents contribuent activement à la dissémination des semences de proche en proche, et même à de longues distances, de telle sorte que certaines espèces opèrent une migration lente du bas des vallées vers leur origine. Ainsi Erysimum Cheiranthoïdes L. se répand dans la direction du vent.

En outre, ces brises impriment à la végétation arborescente un cachet particulier en inclinant tous les troncs dans le sens de leur translation, et en forçant la ramification à se développer davantage du même côté.

M. Pittier avait cru pouvoir conclure de ses nombreuses observations que cette déformation de la couronne s'étend au tronc, qui est toujours déprimé du nord au sud dans les environs de Château-d'Oex. Le plus grand développement de la ramification sur le côté Est aurait ici, comme conséquence, un plus grand développement des tissus conducteurs correspondants. Mais il résulterait d'observations faites en France et aux États-Unis, que la dépression des troncs d'arbres dans le sens du méridien est un fait général, qui doit être rattaché à des causes agissant sur toute la surface de la terre. Ce phénomène est intéressant, et M. Pittier appelle sur lui l'attention des membres de la section.

M. le prof. Schröter fait une troisième communication sur un cas de gynodiæcisme chez Anemone hepatica. Il présente des exemplaires de cette espèce, cueillis à Gersau,

dont les fleurs étaient devenues unisexuées par la réduction des étamines et le développement exagéré des pistils.

M. le D^r Haller, de Zurich, montre à la section des plantes desséchées provenant du Groenland, et présentant pour la plupart une grande analogie, ou même une complète similitude avec les représentants de notre flore alpine. Citons en particulier: Gentiana nivalis L., Thymus Serpyllum L. var. borealis, Eriophorum Scheuchzeri Hopp.

TABLE DES MATIÈRES

	Page	3
RODUCTION	. 8	3

Physique et Chimie.

Charles Dufour, Influence de l'attraction de la Lune pour la production des Gulf-streams. — F.-A. Forel, Carte hydrographique du lac des IV Cantons. — Schumacher-Kopp, Observations sur les eaux des puits, etc. — G. Sire, Nouvel hygromètre à condensation. — Henri Dufour, Conditions dans lesquelles un arc-en-ciel peut être réfléchi par une surface d'eau. — F.-A. Forel, Formule des seiches. — Le même, Une inclinaison notable des couches isothermes dans le lac Léman. — Hagenbach-Bischoff, Temps nécessaire à la propagation de l'électricité dans les fils télégraphiques. — Robert Weber, Conductibilité calorifique des corps solides mauvais conducteurs. — F. Urech, Détermination de l'affinité des glucoses au point de vue de la formation des Bioses.

Géologie.

Zoologie, Anatomie et Physiologie.

Botanique.