Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 68 (1885)

Protokoll: Première Assemblée générale

Autor: [s.n.]

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Première Assemblée générale

Mardi 11 août 1885, à 8 ⁴/₂ heures, dans le Temple allemand.

Présidence de M. le Dr A. Jaccard, président.

- 1. Le président annuel, M. le professeur D^r A. Jaccard, ouvre la séance par la lecture du discours publié en tête des présents Actes.
- 2. Il est donné connaissance de l'ordre du jour de la séance.
- 3. Le président fait lecture d'une lettre de la section de Genève demandant que la session de la Société en 1886 ait lieu à Genève sous la présidence de M. le professeur J.-Louis Soret. Le Comité central et la Commission préparatoire appuient cette proposition, qui est adoptée par acclamation.
- M. le professeur L. Soret remercie la Société au nom de la section de Genève et en son nom personnel.
- 4. Le président fait lecture d'une liste de vingt candidats qui se présentent pour devenir membres ordinai-

res, ainsi qu'une liste de six membres honoraires proposés par le Comité central et la Commission préparatoire.

La votation a lieu au scrutin, et le dépouillement est effectué pendant la séance. Toutes les présentations sont acceptées à l'unanimité. (Voir aux annexes).

- **5.** M. le professeur *L. Soret* fait lecture du rapport du Comité central pour 1884-85.
- 6. M. le questeur D^r Custer présente les comptes de la Société pour l'année 1884-85, ainsi que ceux de la fondation Schläfli. Les comptes, reconnus exacts par Messieurs les commissaires vérificateurs, sont approuvés et décharge avec remerciements est donnée à M. Custer.
- 7. M. le professeur Alph. Favre communique à l'Assemblée le rapport de la Commission géologique. Il annonce que M. le professeur Studer ayant demandé, pour raisons de santé, à être déchargé de la présidence de la Commission géologique, celle-ci, d'accord avec le Comité central, a choisi pour son président effectif M. le professeur Alph. Favre, en conservant à M. Studer le titre de président honoraire.

La Société approuve les conclusions du rapport et s'associe aux regrets qu'il exprime de la retraite partielle de M. Studer à la suite de longues années de services rendus. (Voir aux annexes).

- 8. Lecture est faite du rapport de la Commission géodésique, qui est approuvé sans discussion. (Voir aux annexes.)
- 9 Lecture est faite du rapport de la Commission de la fondation Schläfli. Approuvé sans discussion. (Voir aux annexes).
- 10. Lecture est faite du rapport de la Commission des tremblements de terre. L'allocation de fr. 250, demandée

par la Commission pour l'année 1885-86, est accordée. (Voir aux annexes).

- 11. Lecture est faite du rapport du Bibliothécaire. (Voir aux annexes.) Le crédit de fr. 700 demandé par M. Koch, pour chacune des années 1885 et 1886, est voté par l'Assemblée.
- **12.** M. le professeur *F.-A. Forel* lit le rapport de la Commission des Mémoires. (Voir aux annexes).

Ce rapport est approuvé avec remerciements.

- **13.** La proposition du Comité central, appuyée par la Commission préparatoire, pour l'introduction d'un article 30 bis dans les statuts de la Société, est adoptée à l'unanimité. (Voir pour le texte p. 28.)
- 14. Le Comité central est chargé d'examiner la convenance de faire inscrire la Société au Registre du commerce et l'étudier, s'il y a lieu, les modifications à apporter aux S ituts pour les mettre d'accord avec le nouveau Code des bligations.
- **15.** M. le D^r V. Fatio, de Genève, revient sur la question des Corégones (Féras ou Felchen) diverses de la Suisse, dont il a déjà entretenu la Société à Lucerne l'an passé, et annonce qu'il est enfin, après quinze années d'études, arrivé à débrouiller les formes nombreuses et enchevêtrées qui habitent les divers lacs du pays.

Selon lui, ces poissons sont d'origine marine et leur réclusion dans le pays doit remonter au moment où, après la grande inondation de la fin de l'époque glaciaire, les communications avec la mer devinrent trop étroites et accidentées pour permettre encore la circulation aux espèces du genre les moins aptes à lutter contre les courants.

Les vingt-quatre formes plus ou moins distinctes, sous lesquelles se présentent les Corégones suisses, semblent

devoir être rattachées à deux types marins primordiaux et avoir simultanément divergé, sous l'influence des conditions locales, dans les différents lacs où elles se trouvèrent forcément confinées.

L'auteur reconnaît deux espèces qu'il nomme C. dispersus et C. Balleus, entre lesquelles viennent se placer deux composées, C. Suidteri (Fatio) = Ballen du lac de Sempach, et C. hiemalis (Jurine) = Gravenche du Léman. Les deux premières, subdivisées en cognatæ, subspecies, varietates et formæ intermediæ, sont très répandues, sous divers aspects, soit en Suisse, soit en différents pays au nord et à l'est; les deux dernières pourraient bien n'être que des dérivés anciens de l'une des espèces plus répandues, combinée avec un représentant de l'autre, peu à peu disparu dans les conditions.

L'observation qui a enfin permis au Dr Fatio de classer et grouper toutes ces formes diverses, qui s'étaient jusqu'ici refusées à toute classification rationnelle, c'est la constatation de deux faits importants, sources constantes de confusion. Il a remarqué: 1º que plusieurs de nos Corégones se présentent d'ordinaire sous deux formes parallèles, tantôt de tailles très différentes, tantôt de dimensions semblables, qui souvent multiplient ensemble dans les mêmes circonstances, mais qui sont susceptibles aussi, par séparation accidentelle dans des conditions différentes, de donner naissance à de nouvelles variétés; 2º que de nombreux bâtards se forment entre nos deux espèces, quand, comme à Zurich et à Neuchâtel par exemple, les conditions locales entraînent communauté d'époque et de lieu de frai.

Les douze formes rentrant dans le *C. dispersus* frayent du 20 juin au 20 janvier, toutes au fond, dans nos eaux, sauf les dites *Ballen* des lacs de Baldegg et Hallwyl. Les époques les plus hâtives pour les Corégones frayant au

fond se rencontrent dans les lacs, surtout alpins, de Brienz, Thoune, Zoug et Lucerne; les plus tardives, dans les lacs de plaine ou jurassiques de Zurich, Morat, Bienne et Neuchâtel.

Les dix formes appartenant au *C. Balleus* frayent, selon les lacs, au bord ou au fond, sur les pierres ou sur les herbes, entre la fin d'octobre et le commencement de mars, la plupart en novembre ou décembre. L'époque et le lieu de frai peuvent varier, chez une même sous-espèce, jusque sur les deux rives d'un même lac.

M. Fatio signale, en passant, parmi ses nombreuses observations, celles qui ont plus spécialement trait aux lacs jurassiques les plus voisins de Bienne, Neuchâtel et Morat. — Selon lui, les *Palées de bord* et de *fond*, qui frayent dans des conditions et à des époques très différentes dans le lac de Neuchâtel, doivent rentrer également, au même titre de simples variétés, dans le C. Balleus; tandis que la Bondelle ne serait qu'une des petites formes du C. dispersus s'étant, par le fait des conditions. dans les lacs de Bienne et de Neuchâtel, multipliée en beaucoup plus grand nombre que la forme majeure conservée, par contre, sous l'un de ses nombreux aspects. dans le lac de Morat, où la véritable Bondelle fait défaut. La dite forme majeure, bien que relativement res rare. peut-être même destinée à disparaître à Bienne e' à Neuchâtel, a été cependant reconnue par M. Fatio, confondue dans ces deux lacs par les pêcheurs avec les jeunes Palées, sous les noms communs de Balch-Pfærrit, Petite-Palée et Gibbion. De nombreux bâtards se rencontrent enfin dans ces deux derniers lacs, provenant du mélange, dans des conditions de frai analogues, des Palées de fond (C. Balleus, Palea) avec les représentants, majeurs surtout, du C. dispersus.

La nature et la température des eaux, ainsi que la con-

figuration et le revêtement du fond des lacs, paraissent les principaux agents des divergences de formes et d'allures que l'on constate dans nos différents bassins. Il est intéressant de voir combien, dans un espace si limité, des conditions de milieu différentes ont pu profondément modifier en sens divers les caractères morphologiques et biologiques des premiers types naguère isolés dans nos eaux.

16. M. Fatio traite ensuite de l'Observation ornithologique en Suisse, dont il a déjà entretenu la Société l'an passé, à Lucerne, et signale les progrès que la question a faits depuis lors. Une Commission ornithologique, nommée par le Département fédéral du Commerce et de l'Agriculture, pour donner suite, autant que possible, aux vœux émis par le Congrès ornithologique international de Vienne, publie aujourd'hui les résultats de ses premières délibérations.

En vue d'obtenir sur les oiseaux de la Suisse des données exactes, toujours comparables aux observations faites dans d'autres pays, cette Commission a composé des tabelles de trois sortes, qui visent trois buts différents.

La première de ces publications, intitulée: Catalogue question aire des oiseaux observés en Suisse, est destilans les olter tout d'abord des matériaux précis sur la d'Istribution géographique des oiseaux dans le pays, et sur les circonstances de leur habitat dans différentes saisons et conditions.

349 espèces sont inscrites dans ce catalogue, comme représentées à divers titres dans les limites du sol helvétique. Toutes les pages de gauche sont consacrées à la liste des oiseaux en quatre langues : latin, allemand, français et italien. Sur les pages de droite, et en regard des premières, sont établies des colonnes destinées à l'inscription des observations sous les rubriques : Espèces sé-

dentaires, nicheuses, de passage régulier, de passage irrégulier, hôtes d'hiver, exceptionnelles. Les ornithologistes appelés à remplir ces colonnes n'ont qu'à mettre dans chacune de celles-ci des chiffres de quantités relatives, déterminés comme suit: 1, rare; 2, assez rare; 3, assez fréquent; 4, commun; 5, très-abondant.

Il est évident que la comparaison de ces chiffres, dans les diverses colonnes, suffira à établir les proportions comparées de la reproduction et de l'émigration des diverses espèces dans différentes conditions.

La seconde tabelle, portant le titre de : *Tableau d'observation*, est destinée tout spécialement à recueillir des observations parfaitement exactes sur les lignes de passage des oiseaux au travers du pays et sur les allures de ceux-ci durant leurs migrations. Ces observations, confiées à des hommes compétents dans de nombreuses stations, jusque sur les cols les plus élevés de nos Alpes, doivent, par comparaison avec celles entreprises simultanément en tous pays, sur toute la surface du globe, résoudre autant que possible le problème si obscur encore de l'instinct de migration et de ses agents directeurs naturels.

Quarante-cinq espèces sont désignées pour être plus particulièrement observées, aussi bien au printemps qu'en automne, durant leurs passages au travers du pays.

La tabelle est subdivisée en plusieurs colonnes, dans lesquelles, au moyen de signes abréviatifs clairement expliqués, chaque observateur doit consigner, avec les dates d'arrivée des premiers individus, du passage principal et des retardataires, toutes les circonstances atmosphériques qui, le jour même et deux ou trois jours avant, ont accompagné ou précédé les déplacements signalés.

D'autres colonnes sont réservées également à l'indica-

tion de la direction des passages et aux allures des diverses espèces durant leur déplacement, suivant que celles-ci stationnent plus ou moins durant le passage ou passent sans s'arrêter, haut ou bas, isolément ou en bandes nombreuses.

Enfin la troisième tabelle, intitulée: quelques observations biologiques, doit recueillir un certain nombre de renseignements utiles sur la reproduction et l'alimentation de certaines espèces, en vue de l'établissement d'une loi rationnelle de protection en Suisse, comme en tous pays. Ici, grâce à la diversité des conditions, le choix des espèces à étudier a dû être laissé à l'appréciation de chacun; toutefois, pour que les données puissent être, sur certains points, comparables avec celles d'autres pays, la Commission indique, par leurs numéros d'ordre dans le catalogue, un certain nombre d'oiseaux qu'il serait plus particulièrement utile de suivre dans leurs divers agissements. Elle a, dans cette idée, signalé surtout quelquesunes des espèces au sujet desquelles il est jusqu'ici difficile de dire si elles sont véritablement utiles ou nuisibles.

Le Catalogue questionnaire, adressé à tous les ornithologistes suisses, devra être rempli au moyen des données antérieurement recueillies par ceux-ci et retourné, le plus vite possible, au Département fédéral du Commerce et de l'Agriculture (section forestière), pour que la Commission puisse baser sur tous ces renseignements comparés, sinon des cartes de distribution géographique des espèces dans différentes régions et altitudes, du moins les proportions dans lesquelles chacune est représentée dans le pays en différentes saisons et conditions.

Pour ce qui concerne tout spécialement les questions de passage et d'agents directeurs, cinquante stations environ ont été fixées dans diverses parties de la Suisse; non seulement dans les régions élevées des Alpes, là où

existent déjà des stations météorologiques, mais encore dans différentes conditions et à différents niveaux, au Nord, au Sud, à l'Est et à l'Ouest. Il est évident que toutes les stations ne seront pas placées de manière à pouvoir également étudier les quarante-cinq espèces signalées; mais chacune trouvera dans cette liste bon nombre de sujets d'observation à sa portée.

Les observations plus spécialement appelées biologiques seront confiées, même en dehors des stations, à toutes les personnes reconnues compétentes qui voudront bien se charger de ce travail aussi utile qu'intéressant.

M. Fatio espère que cette entreprise, maintenant en bon chemin, trouvera de l'écho parmi les naturalistes suisses, et que bientôt l'on apprendra à mieux connaître, soit les hôtes ailés qui vivent avec nous, ou les voyageurs qui traversent notre pays, soit les circonstances qui accompagnent ou régissent aussi bien les migrations lointaines que les plus petits déplacements.

17. M. Emile Yung, de Genève, présente un résumé de ses recherches expérimentales relatives à l'influence des milieux physico-chimiques sur le développement des animaux, dont il a déjà à plusieurs reprises entretenu la Société. On se souvient que M. Yung s'est donné pour tâche d'étudier le rôle joué par chacun des éléments, température, intensité lumineuse, couleur, pression, densité, alimentation, etc., qui, dans leur ensemble, constituent le milieu dans les variations que subissent les êtres vivants. Après avoir rappelé les conclusions auxquelles il est arrivé précédemment, il communique à la Société de nouveaux résultats.

Il paraît suffisamment établi par les recherches classiques de Paul Bert, Félix Plateau et autres, que le chlorure de sodium est, parmi les sels que renferme l'eau de la mer, celui qui est le plus nuisible aux animaux d'eau

douce. M. Yung a eu l'occasion de confirmer ce fait une fois de plus. Il a toujours vu les Batraciens, par exemple, mourir plus rapidement dans une solution de chlorure de sodium, de même densité que l'eau de mer, que dans un même volume de cette dernière.

Mais M. Yung a jugé plus utile d'étudier l'action des sels de la mer dans leur ensemble et dans les proportions où ils se rencontrent normalement. Il a, dans ce but, simplement évaporé à siccité une quantité suffisante d'eau de la Méditerranée, et il a employé le résidu pour la fabrication des milieux expérimentaux. Bien qu'il ait expérimenté sur trois types fort différents, l'Hydra viridis, le Daphnia pulex et les larves de Rana esculenta, M. Yung ne communique, pour le moment, que les résultats obtenus sur ces dernières.

Un têtard de grenouille, plongé dans l'eau de mer, y meurt ratatiné et comme desséché au bout de trois à vingt minutes, selon son âge, et les œufs déjà embryonnés n'y éclosent pas. Dans une solution de sels marins à $1^{\circ}/_{\circ}$, un têtard succombe au bout de quelques heures; toutefois, il peut s'adapter à ce milieu, si on l'y prépare par un séjour dans une série de solutions moins concentrées à 2, 4, 6 et $8^{\circ}/_{\circ \circ}$.

M. Yung a suivi le développement complet de têtards frères, placés en nombre égal dans des solutions graduées comme il vient d'être dit; il a constaté que les larves se sont développées d'autant plus lentement que la solution était plus concentrée. La première grenouille parfaite est apparue en moyenne dix-sept jours plus tôt dans l'eau douce que dans l'eau renfermant 9 % de sels marins. Les différents stades évolutifs (disparition des branchies externes, apparition des membres) se sont manifestés avec des retards correspondants.

D'ailleurs, les têtards ne se développent pas dans une

solution saline supérieure à 1%, à moins qu'ils ne soient placés sur un appareil agitateur dont M. Yung montre une photographie et qui communique constamment à l'eau un mouvement de vague.

M. Yung relate aussi les expériences entreprises dans le but d'apprécier l'influence du nombre des individus contenus dans un même vase et de la forme de ce vase sur le développement des larves. Les résultats de quatre séries d'expériences sont les suivants :

1º La durée du développement des larves de grenouille est d'autant plus longue que leur nombre est plus grand dans une même quantité d'eau, la nourriture étant d'ailleurs en abondance.

2º Les larves de grenouille se développent d'autant plus rapidement que, toutes choses égales d'ailleurs, le diamètre, et par conséquent la surface d'aération des vases dans lesquels on les place, est plus considérable.

3º A égalité de surface d'aération, le développement des larves est d'autant plus rapide que le volume de l'eau est plus grand.

Enfin, M. Yung a constaté que, si on examine la sexualité de cent larves de Rana esculenta, prises au hasard dans un marais au mois de juin ou de juillet, époque à laquelle les têtards achèvent leurs métamorphoses, on trouve à peu près autant de mâles que de femelles; mais si on élève les larves, en les nourrissant d'une manière spéciale, si on les alimente en particulier avec de la viande exclusivement, les jeunes grenouilles auxquelles ces larves donnent naissance sont en immense majorité des femelles. Il y a là une preuve que le sexe n'est pas décidé au moment de la fécondation et que l'on peut, par une nutrition spéciale des jeunes, les sexuer tous, ou à peu près, dans un même sens. Il est vrai que M. Yung n'a

pas réussi jusqu'ici à trouver les conditions d'une production exclusive d'individus mâles.

18. M. le professeur *Ch. Dufour*, de Morges, fait la communication suivante sur l'influence de l'attraction de la Lune pour la production des Gulf-streams:

On a beaucoup discuté dans les derniers temps l'influence que peut avoir l'attraction de la Lune sur les vents alisés.

Je crois depuis longtemps que notre satellite est aussi la cause première d'un autre grand mouvement qui existe à la surface du globe, c'est-à-dire des Gulf-streams.

En effet, chaque jour, la Lune, en s'avançant vers l'ouest, entraîne avec elle une certaine quantité d'eau; celle qui est ainsi déplacée sur l'Atlantique est arrêtée par l'Amérique; celle qui est déplacée sur le Pacifique est arrêtée par l'Asie et par les nombreuses îles qui sont au Sud-Est de ce continent.

Depuis ce moment, là configuration des côtes joue un grand rôle pour renvoyer, dans un sens ou dans un autre, les eaux qui s'accumulent contre elles. Ainsi, pour la partie de l'Atlantique qui est au Nord de l'Equateur, les eaux entraînées par la Lune s'accumulent dans le golfe du Mexique, d'où elles sortent par le canal qui existe entre la Floride et l'île de Cuba, puis reviennent sur les côtes d'Europe combler le vide produit par les eaux que, chaque jour, la Lune entraîne du côté de l'Amérique.

Sur les côtes d'Asie, la question est plus complexe, parce qu'il n'y a pas un bassin comme le golfe du Mexique, et que l'on y trouve au contraire un grand nombre d'îles dont les côtes, qui ont des directions diverses, influent aussi bien différemment sur la direction de l'eau. Cependant, une partie de cette eau est renvoyée d'abord au Nord, puis à l'Est et forme le Gulf-stream du

Pacifique, tandis qu'une autre partie, passant entre les îles, continue sa route vers l'Ouest. Un de ces courants, très sensible dans le détroit de la Sonde, se prolonge dans l'Océan indien. On a même prétendu que depuis deux ans sa direction était changée, à cause des profondes modifications que ce détroit a subies ensuite de l'éruption du Krakatoa.

On sait que le Gulf-stream de l'Atlantique se déplace suivant les saisons, il va plus au Nord en septembre qu'en mars, ce qui revient à dire qu'en septembre il a plus de force pour refouler vers le Nord le courant d'eau froide qui descend par la baie de Baffin. Ceci est une conséquence de la théorie que je viens d'exposer. En effet, au printemps et en été, le Soleil est au Nord de l'équateur, et son action, analogue à celle de la Lune, est plus énergique qu'en hiver pour entraîner les eaux de l'hémisphère boréal, de là un courant plus considérable.

Mais, à cause des grandes distances qu'elle doit parcourir, c'est seulement deux ou trois mois plus tard que cette plus grande masse d'eau arrive dans le voisinage de Terre-Neuve et se manifeste par un déplacement qui se reproduit chaque année.

D'un autre côté, le Gulf-stream ne peut pas être affecté de variations analogues à la marée. Sans doute, l'action de la Lune pour entraîner les eaux du côté de l'Amérique est différente, suivant que cet astre est au périgée ou à l'apogée; mais comme toutes ces eaux se réunissent dans le golfe du Mexique, les variations qui se produisent d'un jour à l'autre se neutralisent dans cet immense bassin et ne paraissent pas à la sortie, sauf l'effet beaucoup plus prolongé du Soleil d'été et du Soleil d'hiver.

Le Gulf-stream de l'Atlantique est le plus grand fleuve du monde; il est même trente fois plus considérable que tous les fleuves du monde ensemble. En effet, ceux-ci débitent un million de mètres cubes d'eau par seconde, tandis que le Gulf-stream en débite plus de trente millions. C'est assurément une chose bien remarquable de voir que le plus grand de tous les fleuves ne coule passur un vaste continent, comme le font l'Amazone ou le Mississipi, mais qu'il coule au milieu de l'Océan, entre des parois liquides et que, comme le dit Maury : « Dans les plus grandes sécheresses jamais il ne tarit, dans les plus grandes pluies jamais il ne déborde ». Mais sa cause est aussi bien différente de celle des autres fleuves.

Il est possible que d'autres facteurs, par exemple les différences de température, aient aussi de l'influence sur le mouvement de l'eau. Mais quand on considère la direction des Gulf-streams, il est naturel de voir là une conséquence du mouvement de la Lune, et quand on considère la quantité d'eau qu'ils déplacent et la force nécessaire pour produire une aussi puissante action, on peut demander s'il est possible de la trouver ailleurs que dans l'action d'un corps céleste.

19. M. F.-A. Forel, de Morges, expose un calque et des profils de la Carte hydrographique du Lac des Quatre-Cantons, levée en 1884 par l'ingénieur J. Hörnlimann, du bureau topographique fédéral, sous la direction du colonel J.-J. Lochmann, chef de ce bureau. Cette carte, au ½,25000, qui appartient à l'atlas Siegfried, montre un relief fort compliqué du bassin de ce lac; celui-ci est divisé en neuf bassins secondaires par des barres immergées, dont les unes sont dues à l'alluvion des torrents (barre de la Muotta), les autres à des faits orographiques (barre du détroit des Nases), les autres probablement à des moraines (barre du Kindlimord).