Zeitschrift: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft =

Actes de la Société Helvétique des Sciences Naturelles = Atti della

Società Elvetica di Scienze Naturali

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 23 (1838)

Artikel: Bestimmung der Erdwärme durch Beobachtungen in dem Bohrloche bei

der Saline Schweizerhall

Autor: Merian, Peter

DOI: https://doi.org/10.5169/seals-89714

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Beilage VI.

Bestimmung der Erdwärme

durch

Beobachtungen in dem Bohrloche

bei der

Saline Schweizerhall,

unweit Basel,

von

Peter Merian.

Die allmählige Zunahme der Wärme der Erdschichten, je mehr wir uns unter die Oberfläche vertiefen, ist eine der lehrreichsten Thatsachen für die Naturgeschichte der Erde, welche durch die Beobachtungen der neuern Zeit ausgemittelt worden sind. Die ersten Wahrnehmungen hierüber wurden in Bergwerken gemacht. Es wirken aber so mancherlei fremdartige störende Einflüsse in den Bergwerken mit ein, daß es längere Zeit gedauert hat, bis die Ueberzeugung der wirklichen Zunahme der Erdwärme mit zunehmenden Tiefen sich allgemein verbreitet hatte. Ein weit zuverläßigeres Ergebniß geben hingegen Beobachtungen in Bohrlöchern, deren Anlegung in den jüngsten Jahren zur Auffindung von Artesischen Quellen oder von

Steinsalzlagern sich sehr vervielfältigt hat. Auch in der Schweiz sind mehrere Bohrlöcher zu diesen Zwecken niedergetrieben worden, nur bei einem einzigen wurden aber, so viel mir bekannt ist, Temperaturbeobachtungen angestellt, nämlich bei dem 680 Par. Fuß tiefen Bohrloche von Pregny bei Genf, durch die Herren De la Rive und Marcet. (S. Mémoires de Genève, T. VI. p. 11., und daraus in der Bibl. univ. Bd. 56. S. 50.). Höchst erwünscht erschien mir daher die Gelegenheit, in einem der Bohrlöcher der Saline des Rothen Hauses bei Basel, in welchem man bei etwa 400 Fuss Tiefe Salz erbohrt hat, einige Beobachtungen anzustellen. Herr Salinen-Inspektor von Seckendorff hatte dazu Herrn Prof. Schönbein und mich, unter Zusage seiner gefälligen Beihülfe, aufgefordert. Das Bohrloch N.0 2 erschien dazu besonders geeignet, indem es schon seit mehrern Monaten beendigt dastund, die Saugröhre und die Pumpe aber noch nicht eingesetzt waren, weil einige Bauten zur Aufnahme der erforderlichen Maschinerie erst ausgeführt werden mußten. Gerade weil aber kein Wechsel des das Bohrloch erfüllenden Wassers eintritt, scheint dasselbe besonders geeignet zu zuverläßigen Angaben über die eigentliche Erdwärme zu führen.

Die durchsunkenen Gebirgslager sind nach der Mittheilung des Herrn von Seckendorff folgende; in Nürnberger Maß:

- Bohrschacht, in dessen Grund das Bohrloch anfängt. Feiner Sand.
- 32/ 3// Dolomit.
- 154' 7'' Muschelkalk.
 - 41' 8" Weifse und gelbe Mergel.
 - 61' 11" Mergel, Gyps und Thon abwechselnd.
 - 37' 5" Geschlossener Gyps.

^{341/ 10//}

341/ 01//

56' 9" Salzthon mit Zwischenlagern von Gyps. Hier bei einer Tiefe von 364' 7" wurde eine 3% Soole erbohrt, welche wieder verschwand.

24' 11" Thon und Gyps, der letztere vorherrschend.

25' 9'' Reines Steinsalz.

415' 3'' Tiefe des Bohrlochs.

429' 3" Tiefe unter Tag.

Die Oberfläche des Bodens bei dem Bohrloche mag annähernd 800 Pariser Fuss über das Meer erhaben seyn.

Der Durchmesser des Bohrloches beträgt 6 Zoll; nur ganz in der Tiefe hat es blofs 4 Zoll.

Zu den Temperatur-Beobachtungen selbst schien mir das Geothermometer von Magnus das geeignetste Instrument. (S. Poggendorff's Annalen, Bd. 22. S. 136.) besteht dasselbe bekanntlich aus einem Quecksilberthermometer mit etwas großen Graden, dessen Röhre oben offen und in eine feine Spitze zur Seite umge-Die Röhre wird bei einer Temperatur, bogen ist. die geringer ist, als die zu messende, ganz mit Quecksilber gefüllt. Es tritt dann, wenn das Instrument an Ort und Stelle heruntergelassen wird, durch die Erwärmung ein Theil des Quecksilbers zur offenen Spitze heraus. Wird nachher das Geothermometer wieder heraufgezogen, und in einem hinreichend großen Gefäß von kälterm Wasser, als das worin es sich beim Versuch befand, mit einem gewöhnlichen Normalthermometer verglichen, so kann man genau abmessen, wie viel Quecksilber nach Graden der in der Röhre des Geothermometers fehlt, viel kälter folglich die Temperatur ist, als diejenige der Tiefe, wo die ganze Röhre angefüllt seyn mußte. oben verschlossene, unten dem Wasser Zutritt gestattende Glasröhre, in welcher die Skale des Instruments sich

befindet, schützt auch beim erfolgenden Zusammenpressen der enthaltenen Luft das obere offene Ende der Thermometerröhre vor der unmittelbaren Benetzung durch das Wasser.

Der erste vorläufige Versuch wurde den 23 Juli 1838 Das Geothermometer wurde bei 11°,5 R. angefüllt, in eine Kapsel von durchlöchertem Blech eingeschlossen, an eine Eisenstange befestigt und an dem Seil des Bohrlöffels in das Bohrloch herabgelassen. sank in eine Tiefe von beiläufig 400 Nürnb. Fuß. 15' vom Grunde des Bohrlochs standen folglich in Schlamm. Beim Heraufziehen, was erst nach Verfluss mehrerer Stunden geschah, war die Blechkapsel des Instruments ganz mit thonigem Schmand erfüllt. Bis nahe zum Grunde war aber das Wasser ganz klar, und nur in der untersten Es zeigte sich, dass kein Quecksilber Tiefe gesalzen. herausgetreten war, dass also in jener Tiefe das Bohrloch die Temperatur von 110, 5 R. nicht erreicht, und dass man folglich zu den nöthigen Vergleichungen kälteres Wasser sich verschaffen muß.

Die Versuche wurden aufs Neue vorgenommen den 2 August 1838. Mittelst Eis wurde, bei der Statt findenden ziemlich hohen Luftwärme, das zu den Vergleichungen der Thermometer dienende, in einem großen Zuber enthaltene Wasser jeweilen genugsam abgekühlt. Das Geothermometer wurde in seiner durchlöcherten, mit einem Gewicht beschwerten Blechkapsel an einer Schnur, statt des schwerfälligen Löffelseils, heruntergelassen, was sehr schnell und leicht von Statten gehen konnte. Die an dem nassen Instrument entstehende Verdunstungskälte verhinderte, daß während der kurzen Zeit, die zwischen der Herausnahme des Thermometers aus dem kalten Wasser, bis zu seiner Einsenkung ins Bohrloch verstrich, dasselbe

in der warmen Atmosphäre höher steigen konnte, als im Wasser des Zubers. Zu mehrerer Vorsorge wurden indess jedesmal einige Eisstückehen um die Thermometerkugel in die Blechkapsel hineingesteckt.

Die Schnur war nach Schweizerfus von 50 zu 50/ abgetheilt. Wegen der verschiedenen Spannung und des Zusammenziehens und Aufdrehens, welche die stark gedrehte Schnur bei der Durchnässung erlitt, besitzen die Abmessungen der Tiefen nur einen annähernden, für den vorliegenden Zweck jedoch genügenden Grad von Genauigkeit. Die Masse in Schweizersus zu 0,3 Meter gelten vom Anfang des Bohrlochs an, im Grunde des Schachts. Um die Tiefen unter der Erdoberfläche zu heben, müssen folglich überall 14' hinzugezählt werden. Das Wasser stand im Bohrloch etwas weniger als in 14' Tiefe, also 28' unter Tag, dem dameligen Niveau des nahe vorüberfliefsenden Rheins entsprechend, mit welchem es steigt und fällt.

Erste Versuchsreihe.

Den 2 August 1858, Vormittags.

Das Geothermometer wurde gefüllt bei 7°, 0 R.

Einsenkung.			Stand des Normalthermom. bei d. nachherigen Vergleichung.	Leerer Theil des Geothermometers.	Temperatur in der angegebenen Tiefe.
50 Schw.Ffs.		v.Ffs.	6°, 4 R.	1°, 7 R. —	8°, 1 R. —
200	u	u	70,5	1 °, 6 —	90, 1 -
300	"	u	7 °, 4	20,8	10 °, 2
400	"	α	$8^{\circ}, 5$	2 °, 4 +	10 °, 9 +

An den unmittelbaren Angaben des Geothermometers, ist, nach einer Statt gefundenen genauen Vergleichung mit dem Normalthermometer, eine kleine Korrektion angebracht.

In 400' sass das Instrument auf dem Grunde auf. Das erste Mal war es, wegen der Besestigung an die schwere Eisenstange, etwas tieser eingedrungen, nämlich bis 400 Nürnb. Fuss, was etwa 6' Unterschied gegen 400 Schw. Fuss beträgt. Beim Heraufziehen kam auch diessmal weit weniger Schlamm in der Kapsel mit herauf.

Zweite Versuchsreihe.

Im Nachmittag desselben Tags.

Das Geothermometer wurde aufs Neue angefüllt bei 7°, 5 R.

Einsenkung.	Normalthermom.	Leerer Theil des Geothermometers.	Temperatur in der Tiefe.
200 /	7°, 8 R.	1°, 4 R.	9°, 2 R.
400 /	8°, 1	2 °, 7 +	10 °, 8 +

Die Angabe der Temperaturen bedarf noch einer kleinen Korrection, weil durch den Druck der überstehenden Wassersäule das Quecksilber im Geothermometer mehr zusammengedrückt wird, als das umschließende Glas, folglich in der Tiefe etwas weniger Quecksilber zur obern Oeffnung des Instruments heraustritt, als wenn es oberhalb auf dieselbe Temperatur erwärmt würde.

Colladon und Sturm haben den Unterschied in der Zusammendrückbarkeit des Quecksilbers und des Glases für den Druck einer Atmosphäre von 0^m, 76 Quecksilber oder 10,32 Meter gleich 34,4 Schweiz. Fuß Wasser zu 1,73 gefunden.

Nach *Dulong* und *Petit* dehnt sich das Quecksilber bei 1° R. Erwärmung um $\frac{1}{5184}$ des Raumes aus, den es bei 0° einnimmt. In Graden des Réaum. Thermometers

bewirkt also jener Druck eine Erniedrigung von $\frac{1,75.5184}{1000000} = 0^{\circ},009$, oder ein Druck von einer Wasser-

säule von h Schw. Fuß eine Erniedrigung von 0,009 $\frac{h}{34,4}$.

Da das Wasser nur im Tiefsten salzig ist, so kann es überall als süfses Wasser angenommen werden. Die Werthe von h sind

in	50 /	Tiefe	36 .
	100		86.
	200		186.
	300		286 .
	400		386.

Daraus ergiebt sich für die korrigirten Temperaturen:

		1 te Reihe.	2te Reihc.
in 50/	64^{\prime} unt. \mathbf{Tag} .	8°, 1 R.	
200/	214 «	9 °, 1	90, 2
300 /	314 «	10 °, 3 —	
400 /	414 "	$11^{\circ}, 0 +$	$10^{\circ}, 9 +$

Die mittlere Lufttemperatur in Basel beträgt, nach meinen Beobachtungen der 11 Jahre 1827—1837: 7°, 8 R. Wir hätten folglich, die Temperatur des Bohrlochs zu 11°,0 angenommen, eine Zunahme von 5°, 2 R.

> für 414 Schw. Fuß, od. 124 Meter, od. 382 Par. Fuß,

ungefähr 0°, 8 R. für 100 Schw. Fuß, oder genauer 0°, 84 R. für 100 Par. Fuß, was 1° R. für 119 Par. Fuß Vertiefung entspricht.

Die Eingangs erwähnten Versuche in Genf ergeben im Mittel 0°, 875 R. für 100 Par. Fuß, also eine etwas stärkere Temperaturzunahme.

Nach der Abnahme von 0°, 8 R. für 100′ berechnet erhielten wir, bei Annahme einer arithmetischen Progression,

in 414' 11°, 0, 514' 10°, 2, 214' 9°, 4, 64' 8°, 2,

was mit den unmittelbaren Beobachtungen gut stimmt, ungeachtet man glauben sollte, dass wenn auch der zähe Schlamm im Grunde des Bohrlochs genau die Temperatur des umgebenden Erdreichs besitzt, in der klaren Wassersäule oberhalb, durch das Heraufsteigen des untern wärmern Wassers und das Heruntersteigen des obern kältern in einem Bohrloch von 6 Zoll Durchmesser, größere Abweichungen von einer regelmäßigen arithmetischen Progression entstehen müßten.

Es beweist diese Erfahrung, dass die verschiedentlich erwärmten und folglich ein verschiedenes spezifisches Gewicht zeigenden Wasserschichten, auch in nicht ganz engen tiefen Röhren, sich nicht so leicht durch einander bewegen, als in manchen Theorieen über das Aufsteigen der warmen Quellen angenommen zu werden pflegt.

Das Ergebniss von 1°R. Wärmezunahme auf 119 Par. Fuß Vertiefung, wozu wir gelangt sind, möchte übrigens zu denjenigen Angaben über die Temperaturzunahme der Erdrinde gehören, welche das meiste Zutrauen verdienen, da keine störenden Umstände auf die Beobachtungen haben einsließen können. Es nähert sich dasselbe auch sehr dem Mittel aus den Wahrnehmungen, welche Bischoff S. 254 seines Werkes über die Wärmelehre des Innern unseres Erdkörpers zusammenstellt.

400