**Zeitschrift:** Bollettino della Società ticinese di scienze naturali

Herausgeber: Società ticinese di scienze naturali

**Band:** 98 (2010)

**Artikel:** Malattia del legionario o malattia del giardiniere?

Autor: Casati, Simona / Conza, Lisa / Gaia, Valeria

**DOI:** https://doi.org/10.5169/seals-1003094

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# Malattia del Legionario o malattia del giardiniere?

# Simona Casati, Lisa Conza, Valeria Gaia

Centro nazionale di referenza per la Legionella, Istituto cantonale di microbiologia, Via Mirasole 22A, CH – 6500 Bellinzona (simona.casati@ti.ch)

Riassunto: La Legionella è un batterio Gram negativo appartenente alla famiglia delle Legionellaceae e causa la malattia del Legionario. Questo microrganismo è ubiquitario e vive negli ambienti idrici naturali e artificiali. Dati sulla sua presenza al di fuori dell'ambiente idrico sono scarsi, perciò la ricerca di ecosistemi alternativi e non convenzionali che potrebbero fungere da serbatoi per questo germe assume attualmente una grande importanza. Abbiamo considerato 8 centri di raccolta di rifiuti verdi, inclusi 3 centri di compostaggio. Nei campioni analizzati sono state isolate diverse specie di Legionella in 6 centri su 8: L. pneumophila sierogruppo 1–15, L. bozemanii, L. cincinnatiensis, L. jamestowniensis, L. micdadei e L. oakridgensis. Il grado di contaminazione varia da 10<sup>3</sup> a 10<sup>8</sup> unità formanti colonie per grammo. I centri di compostaggio costituiscono un serbatoio importante per la disseminazione della Legionella e potrebbero quindi fungere da fonte di contaminazione in quanto, oltre al rilascio di aerosol, il composto è usato nei giardini, nelle aiuole pubbliche e nei campi. L'importanza per la salute pubblica della presenza di Legionella nel composto è finora sconosciuta e il rischio reale per la popolazione deve essere ancora valutato.

## Legionella disease or gardener disease?

Abstract: Legionellae are gram-negative bacteria that may cause Legionnaires' disease (LD), a pulmonary infection in humans, after inhalation of contaminated aerosols. The principal reservoir for these microorganisms is water. Data on the presence of Legionella outside the aquatic environment are scant. Alternative ecosystems that could act as a reservoir for Legionella spp. have been investigated to identify unconventional contaminated substrates that can produce bioaerosols. We considered 8 green waste collection sites including 3 composting facilities. L. pneumophila sg 1-15, L. boxemanii, L. cincinnatiensis, L. jamestowniensis, L. micdadei and L. oakridgensis were isolated from 6 of the 8 sites. The degree of contamination ranged from 10<sup>3</sup> to 10<sup>8</sup> cfu/g. Compost facilities seem to be an important reservoir for Legionella and could be considered an alternative and important source of infection (aerosol dissemination and compost used for gardens, fields and flowerbeds).

Although the importance for human health of the presence of *Legionella* spp. in compost is unknown and the risk assessment has yet to be defined, bioaerosols produced from these elements should not be underestimated.

Key words: Legionella, potting soil, compost, amoeba, Legionella disease

# **INTRODUZIONE**

La Legionella è un batterio Gram negativo appartenente alla famiglia delle Legionellaceae ed identificato per la prima volta nel 1976 in un hotel di Philadelphia negli Stati Uniti durante una riunione di ex-combattenti della Legione straniera dove causò un'epidemia di polmonite tra i veterani (FRASER et al. 1977) (da cui il nome «malattia del legionario»). Il microrganismo isolato dai materiali clinici prelevati ai legionari, sconosciuto fino al quel momento, fu chiamato Legionella pneumophila. Il termine generico legionellosi è ora usato per descrivere infezioni batteriche causate da L. pneumophila o da altre specie di Legionella e include la forma moderata chiamata febbre di Pontiac (malattia febbrile), la forma più grave e potenzialmente fatale la malattia del Legionario

(polmonite) e altre forme di infezione extrapolmonari (rare) (ANONIMO 2006). La legionellosi può colpire chiunque, il rischio d'infezione sembra correlato con l'età (anziani), lo stato immunitario deficitario, il fumo e il consumo di alcool.

Le legionelle sono dei batteri ubiquitari che vivono in ambienti idrici naturali o artificiali e nel suolo in associazione con dei protozoi (amebe e ciliati) (ROWBOTHAM, 1980, FIELDS et al. 1984). Grazie a diversi meccanismi le legionelle sono in grado di sopravvivere e di moltiplicarsi all'interno di questi microrganismi (FIELDS et al. 1984).

L'infezione è trasmessa per inalazione di aerosol, contenenti delle legionelle, prodotti da sistemi come torri di raffreddamento, apparecchi per le cure respiratorie, umidificatori, installazioni di condizionamento dell'aria, idromassaggi e sistemi d'acqua potabile e sanitaria (ANONIMO 2006). La trasmissione interumana non è stata finora osservata.

Dalla sua scoperta, 53 specie di *Legionella* sono state descritte, ma solo una ventina sono ritenute patogene per l'uomo. *Legionella pneumophila* sierogruppo (SG) 1 è responsabile del 70% dei casi di legionellosi in Europa, gli altri sierogruppi (SG2–SG15) ne causano tra il 20 e il 30% e le altre specie (soprattutto *L. micdadei* e *L. bozemanii*) tra il 5 e il 10% (BARTRAM *et al.* 2007).

Tra il 2000 e il 2001 in Europa ed anche in Svizzera è stato registrato un aumento del numero di casi di legionellosi. Questo potrebbe essere attribuito alla messa sul mercato del test per il rilevamento dell'antigene di Legionella pneumophila nelle urine, un test diagnostico rapido, non invasivo e con una sensibilità superiore agli esami precedentemente utilizzati (ANONIMO 2008). In Svizzera, a partire dal 2002, l'incidenza media si situa tra 2.0 e 2.8 casi/100'000 abitanti (www.bag.admin.ch). In Ticino ogni anno si diagnosticano dai 30 ai 40 casi di malattia del legionario. Si tratta di episodi sporadici e per la maggior parte di origine comunitaria e non sono mai state rilevate epidemie o focolai. Ciononostante, l'incidenza nella nostra regione si situa tra 9 e 11 casi/100'000 abitanti ed è la più elevata d'Europa.

Verso la fine degli anni '80 è stato riportato in Australia un numero significativo di casi di legionellosi non associati agli aerosols provenienti dall'acqua. Le indagini epidemiologiche hanno potuto identificare i terricci da giardino quale nuova fonte di infezione, con *Legionella longbeachae* quale agente patogeno (STEELE *et al.* 1990, STEELE *et al.* 1990). Dopo queste prime segnalazioni, molti altri casi sono identificati ogni anno in Australia. A differenza dell'emisfero nord dove la maggior parte dei casi sono causati da *L. pneumophila*, in Australia circa il 50% dei casi sono dovuti a *L. longbeachae* e quindi correlati all'uso dei terricci. Solo recentemente, anche *L. pneumophila* SG 1 è stata isolata in un campione di suolo

Fig. 1 – Centro di compostaggio: i cumuli di materiale vegetale in fermentazione sono disposti per età in ordine crescente da destra a sinistra (produzione finale). È possibile osservare il rilascio passivo di aerosol (foto L. Conza, 2008).

e correlata a un caso clinico (KOIDE *et al.* 1999, WALLIS & ROBINSON 2005). Per lungo tempo questa fonte di contaminazione alternativa è stata considerata esclusiva dell'Australia.

Recentemente, però, alcuni casi dovuti a L. longbeachae e associati all'uso dei terricci da giardino sono stati segnalati nel 2000 negli Stati Uniti (ANONIMO 2000) nel 2001 in Giappone (KOIDE et al. 2001) in Europa nel 2007 in Olanda (DEN BOER et al. 2007) e nel 2008-2009 in Austria (SCHMID et al. 2009). Questi dati ci indicano che altri casi in altre parti del mondo potrebbero presentarsi non solo dopo il contatto con aerosols prodotti da acque contaminate, ma anche dopo il contatto con aerosols provenienti da terricci. In un nostro studio precedente (2006–2007) sui terricci da giardino abbiamo messo in evidenza che il 46% dei campioni di terricci acquistati in sacchetti di plastica nei supermercati svizzeri sono contaminati da Legionella con delle quantità che vanno da 10<sup>3</sup> a 10<sup>5</sup> UFC/g (CASATI et al. 2009). Questo primo dato europeo sulla contaminazione dei terricci è stato preso in seria considerazione anche dall'Ufficio federale della sanità pubblica che ha inserito nel formulario per la notifica dei casi di legionella (malattia a dichiarazione obbligatoria) l'uso dei terricci da giardinaggio come fattore di rischio.

Diversi terricci da noi esaminati contengono composto prodotto dalla catena di compostaggio (riciclaggio dei rifiuti verdi), quindi per meglio capire l'origine della Legionella nei terricci da giardino ci siamo orientati sui centri di raccolta dei rifiuti verdi includendo anche alcuni centri privati di compostaggio produttori di composto. In Svizzera spesso la fonte dell'infezione non può essere identificata. I sistemi idrici e le torri di raffreddamento, considerati la fonte principale d'infezione, spesso risultano non contaminate da Legionella. Degli ecosistemi alternativi come per esempio la catena di compostaggio devono quindi essere studiati per identificare substrati non convenzionali ma produttori di aerosol che potrebbero essere fonte d'infezione.

## MATERIALI E METODI

Sono stati scelti otto centri di raccolta dei rifiuti verdi in Ticino: 3 centri privati di compostaggio situati in 3 diversi distretti e 5 centri comunali. Questi ultimi sono suddivisi in 3 centri con stoccaggio del materiale verde per un massimo di 3 mesi (centro con stoccaggio a breve termine) e 2 centri senza un programma di compostaggio, ma con uno stoccaggio del materiale vegetale a lungo termine. In ogni centro, i rifiuti verdi come erba, foglie, rami sono raccolti e in accordo con la funzione del centro introdotti nella catena di compostaggio (centro di compostaggio) oppure stoccati senza nessun processo di compostaggio per un breve o lungo periodo (decomposizione naturale).

I campioni sono stati prelevati tra maggio e ottobre 2008 in ogni sito dal materiale vegetale fresco, nei 3 centri di compostaggio e nei 2 centri a lungo termine dai diversi mucchi in decomposizione e solo nei 3 centri di compostaggio dal mucchio del prodotto finale, il composto, per un totale di 31 campioni.

La coltura della Legionella è stata effettuata usando due diversi tipi di terreni specifici e selettivi addizionati con propiconazolo (antimicotico) (Sigma-Aldrich, Svizzera): MWY (Wadowsky-Yee modificato; Oxoid, Svizzera) e GVPC (glicina-vancomicina-polimixina B-ciclohexamide, BioMérieux, Svizzera). Per ogni campione 5 grammi di terra o materiale vegetale sono stati sospesi in 15 ml di soluzione salina (PAGE) sterile. Dopo l'omogeneizzazione e un'incubazione di 30 minuti a temperatura ambiente del campione, la sospensione è trattata con 0.2 M HCL-KCL (pH 2.2) per ridurre la flora contaminante del suolo (le legionelle sono resistenti a pH molto bassi). Le diluizioni del campione nel tampone acido di 1:100 (A) e di 1:20 (B) sono state mischiate e incubate per 15 minuti (A) e per 10 minuti (B) a temperatura ambiente. I due diversi terreni di coltura sono stati inoculati con una sospensione di 50 µl di ogni campione trattato con l'acido. Le piastre sono state incubate per 5 giorni a 35°C. Le colonie di Legionella sono state contate e la specie identificata: L. pneumophila sg 1 e L. pneumophila sg 2-15 con un test di agglutinazione (slidex Legionella, BioMérieux, Svizzera); per determinare rispettivamente il sottotipo e il sierogruppo con il test dell'immunofluorescenza indiretta usando anticorpi monoclonali secondo il pannello di Dresda (HELBIG et al. 2002). L'identificazione di altre specie di Legionella è stata eseguita sequenziando il gene mip (RATCLIFF et al. 1998) (database www.ewgli.org).

### **RISULTATI**

Legionella è stata isolata in 6 su 8 (75%) centri di raccolta dei rifiuti verdi: in tutti e 3 i centri di compostaggio, in entrambi i centri di raccolta con stoccaggio del materiale a lungo termine e in un solo centro di raccolta (su 3) con stoccaggio a breve termine. Inoltre abbiamo potuto osservare che il materiale verde fresco è risultato negativo alla coltura della Legionella in 7 siti (87.5%). Invece, il composto, prodotto finale della catena di compostaggio, era sempre positivo nei 3 centri di produzione. Il grado di contaminazione nei centri positivi varia da 10<sup>3</sup> a 10<sup>8</sup> UFC/g.

Legionella pneumophila sg 2–15 è stata isolata in 5 centri (62.5%), L. pneumophila sg 1 in 4 centri (50%), L. bozemanii in 3 centri (37.5%), L. micdadei e L. oakridgensis in 2 centri (25%) e infine L. jamestowniensis e L. cincinnatiensis in un solo centro (12.5%). Tutte le specie isolate, tranne L. jamestowniensis, sono considerate patogene per l'uomo.

### **DISCUSSIONE**

Questo studio dimostra che le legionelle sono presenti nella catena di compostaggio regolata da una gestione

Tab. 1 – Presenza e quantificazione di *Legionella* negli 8 centri di raccolta dei rifiuti verdi: 3 centri di compostaggio (1-3) e 5 centri di raccolta dei rifiuti verdi [3 con stoccaggio a breve termine (4-6) e 2 con stoccaggio a lungo termine (7-8)]. CDC= centro di compostaggio; CR= centro di raccolta rifiuti verdi; Lp= *Legionella pneumophila*; Lp1 = *Legionella pneumophila* sierogruppo 1; Lp2-15 = *Legionella pneumophila* sierogruppo 2-15.

| Numero<br>del centro | Tipo di centro                    | Legionella spp. isolate                | Legionella spp.<br>quantificazione<br>(UFC/g) |
|----------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|
| 1                    | CDC                               | Lp1                                    | 112'000                                       |
|                      |                                   | Lp2-15 (Lp3, Lp4, Lp5, Lp6, Lp9, Lp10) | 777'000                                       |
|                      |                                   | L. bozemanii                           | 42'000                                        |
|                      |                                   | L. jamestowniensis                     | 1'300                                         |
|                      |                                   | L. micdadei                            | 7'000                                         |
| 2                    | CDC                               | Lp1                                    | 15'000                                        |
|                      |                                   | Lp2-15 (Lp3, Lp4, Lp5, Lp6, Lp10)      | 1'470'000                                     |
|                      |                                   | L. oakridgensis                        | 42'000                                        |
|                      |                                   | L. micdadei                            | 1'300                                         |
| 3                    | CDC                               | Lp1                                    | 39'000                                        |
|                      |                                   | Lp2-15                                 | 104'000                                       |
|                      |                                   | L. bozemanii                           | 156'000                                       |
| 4                    | CR con stoccaggio a breve termine | -                                      | -                                             |
| 5                    | CR con stoccaggio a breve termine | -                                      | _                                             |
| 6                    | CR con stoccaggio a breve termine | L. cincinnatiensis                     | 13'000                                        |
| 7                    | CR con stoccaggio a lungo termine | Lp2-15 (Lp3, Lp6, Lp10)                | 350'000                                       |
|                      |                                   | L. bozemanii                           | 700'000'000                                   |
| 8                    | CR con stoccaggio a lungo termine | Lp1                                    | 3'900                                         |
|                      |                                   | Lp2-15 (Lp10, Lp12)                    | 2'800'000                                     |
|                      |                                   | L. oakridgensis                        | 7'000                                         |

appropriata (ciclo di 1 anno e mezzo fino a 2 anni) o quando i rifiuti verdi sono stoccati per un lungo periodo (anni) senza un piano di compostaggio. Al contrario, il materiale vegetale fresco sembra in genere non contenere Legionella, in quanto il batterio è stato trovato solo in un sito. Da dove arriva allora la Legionella? Probabilmente i fattori atmosferici come la pioggia e il vento giocano un ruolo importante nella contaminazione dei cumuli di materiale verde in decomposizione. In letteratura, ci sono poche informazioni concernenti la contaminazione dei vegetali durante e dopo le procedure di compostaggio. Nella catena di compostaggio grandi quantità di rifiuti verdi sono ammucchiati e dopo qualche settimana il materiale è macinato e di nuovo ammucchiato. Periodicamente, i mucchi sono rivoltati e spostati alla prossima posizione. Durante la fermentazione dei mucchi di materiale verde e la loro lavorazione avviene un rilascio importante di aerosol passivo e attivo (fig. 1).

Ogni centro di compostaggio raccoglie i rifiuti verdi provenienti da una grande area attorno al proprio sito. Il prodotto finale è ridistribuito su tutto il territorio, per esempio ai giardinieri (giardini, aiuole comunali, aiuole autostradali, ecc.), ai contadini (campi), o venduto in sacchi per l'uso privato. Sarebbe molto interessante seguire il percorso di questo terriccio dal produttore al luogo di utilizzo per capire se la trasmissione della Legionella all'uomo da composti contaminati è possibile anche al di fuori del centro di produzione. Nel 2009, nel nostro cantone è stato notificato il primo caso in Svizzera dovuto a L. longbeachae; purtroppo non ci è stato possibile analizzare l'ambiente circostante al paziente. Quindi al momento in Svizzera, la relazione tra composto e casi non è ancora stata dimostrato. Abbiamo però la conferma che Legionella spp. può essere isolata tramite co-coltura con amebe da aerosols campionati nei centri di compostaggio (L. Conza, dati non pubblicati).

In conclusione, i centri di compostaggio costituiscono un serbatoio importante per la disseminazione della Legionella e potrebbero fungere da fonte di contaminazione alternativa ai sistemi idrici artificiali. I composti e terricci da giardino (CASATI et al. 2009) devono essere tenuti in considerazione per capire l'epidemiologia della malattia del Legionario. L'importanza per la salute pubblica della presenza di Legionella nel composto è sconosciuta e il rischio deve essere ancora valutato. Questi substrati alternativi e gli aerosol da loro prodotti non devono comunque essere sottostimati.

#### RINGRAZIAMENTI

Un sentito ringraziamento va a La Lega Polmonare e all'Ufficio federale di sanità pubblica per il sostegno finanziario. Ringraziamo tutti gli operatori dei centri di raccolta di materiale verde per la grande disponibilità.

### **BIBLIOGRAFIA**

- Anonimo 2000. Legionnaires' Disease Associated With Potting Soil California, Oregon, and Washington, May–June 2000. MMWR Morbidity and Mortality Weekly Report 49: 777–778.
- Anonimo 2000. Legionella et légionellose. Office fédéral de la santé publique.
- Anonimo 2008. La légionellose en Suisse: cas recensés de 2004 à 2008 (31 juillet 2008). Bulletin OFSP 38: 651-655.
- BARTRAM J., CHARTIER Y., LEE J. V., POND K. & SURMAN–LEE S. 2007. Legionella and the prevention of Legionellosis. World Health Organization.
- Casati S., Gioria–Martinoni A. & Gaia V. 2009. Commercial potting soils as an alternative infection source of *Legionella pneumophila* and other *Legionella* species in Switzerland. Clin Microbiol Infect 15: 571–575.
- DEN BOER J. W., YZERMAN E. P., JANSEN R., BRUIN J. P., VERHOEF L. P., NEVE G. & VAN DER ZWALUW K. 2007. Legionnaires' disease and gardening. Clin Microbiol Infect 13: 88–91.
- FIELDS B. S., SHOTTS E. B., JR., FEELEY J. C., GORMAN G. W. & MARTIN W. T. 1984. Proliferation of *Legionella pneumophila* as an intracellular parasite of the ciliated protozoan *Tetrahymena pyriformis*. Appl Environ Microbiol 47: 467–471.
- Fraser D. W., Tsai T. R., Orenstein W. *et al.* 1977. Legionnaires' disease: description of an epidemic of pneumonia. N Engl J Med 297: 1189–1197.
- Helbig J. H., Bernander S., Castellani Pastoris M. *et al.* 2002. Pan–European study on culture–proven Legionnaires' disease: distribution of *Legionella pneumophila* serogroups and monoclonal subgroups. Eur J Clin Microbiol Infect Dis 21: 710–716.
- Koide M., Arakaki N. & Satto A. 2001. Distribution of *Legionella longbeachae* and other legionellae in Japanese potting soils. J Infect Chemother 7: 224–227.
- KOIDE M., SAITO A., OKAZAKI M., UMEDA B. & BENSON R. F. 1999. Isolation of *Legionella longbeachae* serogroup 1 from potting soils in Japan. Clin Infect Dis 29: 943–944.
- RATCLIFF R. M., LANSER J. A., MANNING P. A. & HEUZENROEDER M. W. 1998. Sequence–based classification scheme for the genus Legionella targeting the *mip* gene. J Clin Microbiol 36: 1560–1567.
- ROWBOTHAM T. J. 1980. Preliminary report on the pathogenicity of *Legionella pneumophila* for freshwater and soil amoebae. J Clin Pathol 33: 1179–1183.
- Schmid D., Indra A., Blaschitz M. et al. 2009. Three sporadic cases of *L. longbeachae* Legionnaire Disease in Austria, 2008 and 2009. Legionella Meeting Paris.
- STEELE T. W., LANSER J. & SANGSTER N. 1990. Isolation of Legionella longbeachae serogroup 1 from potting mixes. Appl Environ Microbiol 56: 49–53.
- STEELE T. W., MOORE C. V. & SANGSTER N. 1990. Distribution of *Legionella longbeachae* serogroup 1 and other legionellae in potting soils in Australia. Appl Environ Microbiol 56: 2984–2988.
- Wallis L. & Robinson P. 2005. Soil as a source of *Legionella pneu-mophila* serogroup 1 (Lp1). Aust N Z J Public Health 29: 518–520.