Zeitschrift: Bollettino della Società ticinese di scienze naturali

Herausgeber: Società ticinese di scienze naturali

Band: 92 (2004)

Artikel: Interazione fra Armillaria cepistipes e armillaria ostoyae in foreste

montane di abete rosso nel cantone Ticino

Autor: Prospero, Simone / Holdenrieder, Ottmar / Rigling, Daniel

DOI: https://doi.org/10.5169/seals-1003158

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Interazione fra Armillaria cepistipes e Armillaria ostoyae in foreste montane di abete rosso nel Cantone Ticino

Simone Prospero¹, Ottmar Holdenrieder², Daniel Rigling¹

¹WSL Istituto Federale di Ricerca, Zürcherstrasse 111, CH-8903 Birmensdorf
² Scuola Politecnica Federale di Zurigo, CH-8092 Zurigo

Riassunto: Nelle foreste dell'orizzonte montano dell'Europa centrale, *Armillaria cepistipes*, a comportamento preferenzialmente saprofita, spesso coesiste simpatricamente con *Armillaria ostoyae*, una specie patogena primaria. Nel presente studio abbiamo investigato la capacità di *A. cepistipes* e *A. ostoyae* di insediarsi su ceppaie fresche di taglio e la struttura di popolazioni di queste due specie in tre aree di studio di un ettaro situate in foreste di abete rosso (*Picea abies*) sottoposte a gestione selvicolturale nel nord del Cantone Ticino.

I nostri risultati dimostrano che ambedue le specie di *Armillaria* producono una fitta rete di rizomorfe nel suolo, grazie alla quale si insediano sulla maggior parte delle ceppaie fresche. In foreste sottoposte a gestione selvicolturale, le ceppaie sono perciò un'importante risorsa per la sopravvivenza delle due specie. Da 7 a 9 individui di *Armillaria* con una superficie massima di 150-4100 m² sono stati identificati in ogni area di studio. Soltanto raramente l'area di distribuzione di individui della medesima specie si sovrapponeva, indicando una reciproca esclusione spaziale. La ridotta sovrapposizione di diversi individui delle due specie in alcune zone delle aree di studio indica la presenza di fenomeni di competizione interspecifica. Tuttavia, in altre zone delle aree studiate, abbiamo trovato ampie zone di sovrapposizione nell'area di distribuzione dei diversi individui di *A. cepistipes* e *A. ostoyae*, fatto che suggerisce una possibile coesistenza delle due specie con poca influenza reciproca.

Interaction between Armillaria cepistipes and Armillaria ostoyae in mountainous Norway spruce forests in the Canton Ticino.

Abstract: The preferentially saprotrophic *Armillaria cepistipes* and the pathogenic *Armillaria ostoyae* occur sympatrically in mountainous forests in central Europe. In this study, we investigated the capability of *A. cepistipes* and *A. ostoyae* to capture fresh stumps and their population structures in three 1 ha plots established in managed Norway spruce (*Picea abies*) stands in the north of the Canton Ticino.

Our results show that both *Armillaria* species produced a dense network of rhizomorphs in the soil, through which they efficiently captured most fresh stumps. In managed forests, stump resources are therefore important for the survival of the two species. Seven to nine genets of *Armillaria* with a maximal estimated size of 150-4100 m² were identified in each plot. In all three plots, genets of the same species rarely overlapped, indicating a mutual spatial exclusion. On parts of the investigated areas, interspecific overlaps were rare, which suggests a competitive interaction between the two species. However, on other parts, genets of *A. cepistipes* and *A. ostoyae* overlapped widely, indicating a more neutralistic coexistence.

Key words: Armillaria cepistipes, Armillaria ostoyae, Norway spruce, stump colonisation, population structure.

INTRODUZIONE

I funghi che causano marciumi radicali sono agenti di disturbo di notevole importanza negli ecosistemi forestali di tutto il mondo. Essi possono provocare ingenti perdite economiche nei boschi di produzione e possono compromettere la stabilità dei boschi di protezione.

Il genere Armillaria comprende una quarantina di specie attualmente conosciute, molte delle quali sono importanti componenti della micoflora nelle foreste boreali, temperate e tropicali così come in piantagioni forestali e frutteti (SHAW & KILE 1991). Armillaria può comportarsi da patogeno primario o secondario, causando marciumi radicali in numerose specie di conifere e latifoglie. Inoltre, tutte le specie di Armillaria sono in grado di sopravvivere saprofiticamente su substrati le-

gnosi quali radici e ceppaie, contribuendo così alla loro decomposizione.

Frequentemente diverse specie di *Armillaria* coesistono nel medesimo popolamento forestale. È probabile che queste specie competano fra di loro e con altri agenti di marciumi radicali, come ad esempio *Heterobasidion annosum* (Fr.) Bref., per le risorse disponibili (HOLDENRIEDER & GREIG 1998). Una conoscenza dettagliata delle interazioni fra specie di *Armillaria* coesistenti simpatricamente è indispensabile alfine di valutare la possibilità di utilizzare specie preferenzialmente saprofitiche per il controllo biologico di specie patogeniche.

In Europa, cinque specie di Armillaria con gambo munito di anello sono conosciute: esse differiscono fra di loro sia quanto a distribuzione geografica che quanto a comportamento ecologico (GUILLAUMIN et al. 1993). A. cepisti-

pes Velenovsky, a comportamento prevalentemente saprofita, è probabilmente la specie più frequente nelle foreste di conifere della Svizzera e dell'Europa centrale (RIGLING et al. 1998, MARXMÜLLER & HOLDENRIEDER 2000). Spesso, essa coesiste con A. ostoyae (Romagnesi) Herink, un patogeno primario che attacca specialmente conifere.

Nel presente studio si è voluto indagare la capacità di *A. cepistipes* e *A. ostoyae* di insediarsi su ceppaie fresche di taglio così come la struttura di tre popolazioni di queste due specie in foreste di abete rosso (*Picea abies* (L.) Karst.) sottoposte a normale gestione selvicolturale. In particolare sono state affrontate le due seguenti domande: (1) in che misura *A. cepistipes* e *A. ostoyae* si insediano sulle ceppaie fresche di taglio e (2) quale è la distribuzione spaziale degli individui delle due specie? Considerando questi aspetti, osservazioni sono poi state fatte sulle interazioni intrae e interspecifiche. Questo articolo rappresenta una sintesi originale di due capitoli (PROSPERO *et al.* 2003a, PROSPERO *et al.* 2003b) di una tesi di dottorato (PROSPERO 2003).

MATERIALI E METODI

Aree di studio

Le tre aree di studio (ognuna di 100 m x 100 m) sono situate nel nord del Cantone Ticino ad un'altitudine di ca. 1400 m slm in popolamenti di abete rosso sottoposti a normale gestione selvicolturale (tab. 1). I tre popolamenti sono paragonabili quanto ad associazione vegetale (*Calamagrostio villosae-Abietetum*, KELLER *et al.* 1998), età degli alberi (140-160 anni) e gestione selvicolturale passata. Tramite un prelievo preliminare di campioni di terreno, si è inoltre potuta stabilire la presenza in ogni area di rizomorfe di *A. cepistipes* e *A. ostoyae*.

Campionamento

La distribuzione di *Armillaria* nel suolo è stata determinata prelevando sistematicamente dei campioni di terreno di ca. $3~\rm dm^3$ in ogni punto di una rete quadrata di $10~\rm m \times 10~\rm m$ ($100~\rm punti$ per area). Nel caso in cui un campione non contenesse rizomorfe, al massimo quattro ulteriori campioni di terreno sono stati prelevati ad una distanza mas-

sima di 2 m dal punto di prelievo sistematico. Tutte le rizomorfe presenti in un campione di terreno sono state raccolte e portate in laboratorio.

Durante l'estate 1999, tutte le ceppaie fresche di taglio (1-3 anni di età) con un diametro > 12 cm sono state numerate e cartografate usando il programma ArcView 3.2a (Environmental Systems Research Institute, Inc., Redlands, CA., USA). L'insediamento di Armillaria sulle ceppaie è stato indagato nel modo seguente. Usando un'accetta, una porzione di corteccia è stata distaccata dalle tre radici laterali principali nella zona del colletto radicale. Da ogni radice colonizzata, pezzi di legno con micelio o rizomorfe di Armillaria in superficie sono stati rimossi e portati in laboratorio.

Isolamento di Armillaria

Le rizomorfe e i pezzi di legno con micelio sono innanzitutto stati lavati sotto acqua corrente per eliminare eventuali residui di terra. Dopodiché, le rizomorfe sono state immerse in etanolo (50%) per 15-20 secondi. Da ogni rizomorfa, tre segmenti di 1 cm sono successivamente stati sterilizzati superficialmente per 25-40 secondi in perossido di idrogeno (30%) e posti in piastre di Petri contenenti substrato di MALOY (1974). Da ogni pezzo di legno con micelio, 6 porzioni (2-5 mm x 2-5 mm) di micelio sono state sterilizzate superficialmente in ipoclorito di sodio diluito (7%) per 5-10 secondi, risciacquate in acqua distillata sterile per 10-15 secondi e poste in piastre di Petri contenenti agar maltoso con tiabendazolo e streptomicina (PROSPERO et al. 2003a).

Le piastre con i segmenti di rizomorfe e le porzioni di micelio sono state incubate in condizioni di oscurità a temperatura ambiente. Dopo 1-3 settimane, le colture di *Armillaria* sono state trasferite su agar maltoso e incubate per 30 giorni alle medesime condizioni (PROSPERO *et al.* 2003a).

Identificazione degli individui e della specie

L'appartenenza dei singoli individui ai vari gruppi di incompatibilità vegetativa è stata verificata accoppiando gli isolati su substrato di Shaw e Roth come descritto da HARRINGTON *et al.* (1992). Per la determinazione della specie, tre isolati di ogni individuo sono stati accoppiati su agar maltoso con appositi tester aploidi rappresentanti

Tab. 1 - Caratteristiche topografiche e selvicolturali delle tre aree di studio.

					Alberi vivi				Ceppaie				
Area	Coordinate	Altitudine ¹	Esposizione	Provvigione ²	N	DPU ³	Abete rosso ⁴	N	Diametro ⁵	Abete rosso	Età ⁶		
		(m s.l.m.)	1054	$(m^3 ha^{-1})$		(cm)	(%)		(cm)	(%)	(anni)		
Ludiano	46° 25' 26" N	1400	Nord-Est	300	98	31	77	217	45	92	1		
	8° 56' 28'' E												
Lurengo	46° 30' 5" N	1440	Sud-Est	300	90	33	96	203	46	99	2-3		
	8° 44' 55'' E												
Dalpe	46° 27' 50" N	1360	Nord	350	129	42	43	138	50	65	1-2		
	8° 47' 25'' E												

¹Altitudine del centro dell'area.

²Prima dell'ultimo intervento selvicolturale (Fonte: Servizio Forestale del Canton Ticino).

³Diametro medio a petto d'uomo (1.3 m). Solo gli alberi con DPU > 12 cm sono stati considerati.

⁴Percentuale di abete rosso (*Picea abies*).

⁵Diametro medio a 0.3 m di altezza. Solo le ceppaie con diametro > 12 cm sono state considerate.

⁶Età nel 1999, all'inizio dello studio (espresso in anni dal taglio).

le 5 specie europee di Armillaria provviste di anello (KORHONEN 1978). L'appartenenza di un isolato ad una specie è stata valutata sulla base del cambiamento della morfologia del tester dopo 4-6 settimane di incubazione delle piastre in condizioni di oscurità a temperatura ambiente (GUILLAUMIN et al. 1991).

RISULTATI

Armillaria nel suolo

Rizomorfe di Armillaria sono state trovate a Ludiano in 54, a Lurengo in 60 e a Dalpe in 85 dei 100 campioni di suolo

reno. La maggior parte dei campioni di terreno da cui è stato possibile ottenere più di un isolato di Armillaria contenevano rizomorfe di una sola specie. Soltanto a Dalpe, in 7 campioni di terreno su 33, sono state trovate rizomorfe sia di A. cepistipes che di A. ostoyae.

Colonizzazione delle ceppaie da parte di Armillaria

La presenza di micelio o rizomorfe subcorticali di Armillaria è stata riscontrata a Ludiano su 38.7%, a Lurengo su 79.2% e a Dalpe su 86.5% delle ceppaie investigate. In tutte le aree, sia A. cepistipes che A. ostoyae sono state isolate dalle ceppaie (tab. 2). Inoltre, a Ludiano su 12 ceppaie si era in-

Area	Campioni di terreno						Ceppaie						
			Con rizomorfe di (N) ²					Occupate da (N) ⁴					
	N	Positivi ¹	A. cep	A. ost	A. gal	N	Positive ³	A. cep	A. ost	A. gai			
Ludiano	100	54/50	38	8	7	199	77/63	44	9	12			
Lurengo	100	60/52	2	50	0	202	160/111	2	110	0			
Dalpe	100	85/82	54	35	0	133	115/95	53	54	0			
Totale	300	199/184	94	93	7	534	352/269	99	173	12			

¹Campioni di terreno contenenti rizomorfe / Campioni di terreno dalle cui rizomorfe si è potuto isolare Armillaria.

Tab. 2 - Incidenza di Armillaria spp. nel suolo e sulle ceppaie.

prelevati in ogni area (tab. 2). In tutte le aree, un campione con rizomorfe conteneva in media due, al minimo una e al massimo sei singole rizomorfe. Le reti più dense di rizomorfe nel suolo sono state osservate a Dalpe (lunghezza media 14 ± 1.7 m m⁻²) e a Ludiano (13 ± 2.6 m m⁻²), mentre a Lurengo le rizomorfe sotterranee erano nettamente meno abbondanti (7 \pm 1.9 m m⁻²).

Da 296 rizomorfe presenti in 184 campioni di terreno è stato possibile isolare Armillaria. L'identificazione della specie tramite tester aploidi ha dimostrato una dominanza di A. cepistipes a Ludiano e di A. ostoyae a Lurengo. A Dalpe, A. cepistipes prevaleva leggermente su A. ostoyae. A Ludiano, è pure stata individuata la presenza di rizomorfe di Armillaria gallica Marxmüller & Romagnesi in 7 campioni di tersediata A. gallica. La presenza di A. cepistipes e A. ostoyae sulla medesima ceppaia è stata osservata a Lurengo (una ceppaia su 111) e a Dalpe (12 ceppaie su 95). Queste ceppaie erano localizzate ai bordi delle aree di distribuzione delle due specie nel suolo. L'incidenza delle singole specie di Armillaria sulle ceppaie variava considerevolmente fra le aree. A Ludiano e a Lurengo la specie dominante nel suolo (rispettivamente A. cepistipes e A. ostoyae) era anche la più frequente sulle ceppaie (tab. 3). Per contro, a Dalpe le due specie mostravano praticamente la medesima frequenza sulle ceppaie, nonostante una leggera prevalenza di A. cepistipes nel suolo. In questa area, la differenza fra l'incidenza di una specie nel suolo e sulla ceppaie era statisticamente significativa (tab. 3). In tutte le aree, la maggior

	Ludiano				Lurenge)	Dalpe		
	N ¹	A. cep (%)	A. ost (%)	N	A. cep (%)	A. ost (%)	N	A. cep (%)	A. ost (%)
Suolo ²	33	81.8	18.2	49	4.1	95.9	61	73.8	37.7
Ceppaie ³	53	83.0	17.0	111	1.8	99.1	95	55.8	56.8
Test del chi-quadrato	$\chi^2 =$	= 0.02, P =	= 0.88	$\chi^2 =$	0.74, P=	= 0.39	$\chi^2 =$	4.67, P =	0.03

Numero di campioni di terreno o ceppaie da cui si è potuto isolare A. cepistipes o A. ostoyae.

Tab. 3 - Paragone fra le frequenze di A. cepistipes e A. ostoyae nel suolo e sulle ceppaie.

²Campioni di terreno contenenti rizomorfe di A. cepistipes (A. cep), A. ostoyae (A. ost) e A. gallica (A. gal).

³Ceppaie su cui si è insediata Armillaria / Ceppaie da cui si è potuto isolare Armillaria.

⁴Ceppaie su cui si è insediata A. cepistipes (A. cep), A. ostoyae (A. ost) e A. gallica (A. gal).

²Una somma delle frequenze di A. cepistipes e A. ostoyae maggiore di 100% indica la presenza di campioni di terreno contenenti rizomorfe di ambedue le specie (Dalpe: 7 campioni).

³Una somma delle frequenze di *A. cepistipes* e *A. ostoyae* maggiore di 100% indica la presenza di ceppaie colonizzate da ambedue le specie (Lurengo: una ceppaia, Dalpe: 12 ceppaie).

parte delle ceppaie (70-90%) era colonizzata da un individuo di *A. cepistipes* o *A. ostoyae* presente in almeno uno dei quattro punti di prelievo nel suolo più vicini.

Struttura delle popolazioni

I test di incompatibilità vegetativa hanno permesso di identificare da due a sei individui di *A. cepistipes* e *A. ostoyae* in ogni area (Tab. 4). Ciò corrisponde a una densità di otto individui di *Armillaria* per ettaro. Un numero maggiore di individui è stato rilevato nel suolo rispetto alle ceppaie. A Ludiano e a Lurengo alcuni individui di piccole dimensioni (100-200 m² di area) presenti nel suolo non sono infatti stati trovati sulle ceppaie. La superficie media occupata da un individuo variava da 125 a 2310 m² mentre la superficie massima da 150 a 4100 m². In tutte le aree di studio sono stati riscontrati individui con distribuzione irregolare e complessa (Prospero *et al.* 2003b).

A Ludiano sono stati identificati tre individui di A. cepistipes,

le specie di Armillaria producono rizomorfe nei suoli di foreste di abete rosso dell'orizzonte montano. L'elevata capacità di A. cepistipes di formare rizomorfe è già stata evidenziata da studi precedenti (LEGRAND et al. 1996, RIGLING et al. 1998). La nostra indagine indica che anche A. ostoyae è in grado di sviluppare una fitta rete di rizomorfe nel suolo. L'elevata densità di rizomorfe di Armillaria potrebbe essere stata favorita dalla gestione selvicolturale passata delle tre aree di studio. Infatti, dopo essersi insediata sulle ceppaie prodotte a seguito di interventi selvicolturali quali diradamenti o tagli di rinnovazione, Armillaria è in grado di produrre rizomorfe fino a quando il substrato nutrizionale (food-base) non è esaurito (STANOSZ & PATTON 1991).

Dopo 3-4 anni dall'abbattimento degli alberi, *Armillaria* si è insediata sul 40-90% delle ceppaie. Un'elevata presenza di *Armillaria* è pure stata osservata da STANOSZ & PATTON (1990) su ceppaie di pioppo (*Populus tremuloides* Michx.) di due anni in Wisconsin. CRUICKSHANK *et al.* (1997) hanno

		Ludiano		Lure	engo	Dalpe	
Caratteristiche	A. gal	А. сер	A. ost	A. cep	A. ost	А. сер	A. ost
Area occupata (m²)	800	4100	1270	250	7070	6500	5200
Individui (N)	2	3	4	2	6	3	4
Individui nel terreno (N)	2	3	4	2	6	3	4
Individui sulle ceppaie (N)	2	2	3	2	6	3	3
Superficie di un individuo (m ²)							
- minima	250	100	100	100	300	1200	200
- massima	700	3000	600	150	4100	4000	3100
- media	475	1425	340	125	1285	2310	1350

Tab. 4 - Caratteristiche delle popolazioni di *Armillaria* nelle tre aree di studio.

quattro di *A. ostoyae* e due di *A. gallica* (tab. 4). *A. cepistipes* e *A. ostoyae* occupavano differenti settori dell'area, mostrando una ridotta sovrapposizione dell'area di distribuzione. I due individui di *A. gallica* erano invece confinati in un angolo dell'area e si sovrapponevano parzialmente con un individuo di *A. cepistipes*. Sovrapposizioni dell'area di distribuzione di individui della medesima specie erano rare.

L'area di Lurengo era caratterizzata dalla presenza di sei individui di *A. ostoyae* e due individui di *A. cepistipes. A. ostoyae* mostrava poche sovrapposizioni intraspecifiche, generalmente limitate ai bordi di distribuzione degli individui. I due piccoli individui di *A. cepistipes* di limitata estensione (100 e 150 m² di area) erano localizzati in due diversi settori dell'area, già occupati dall'individuo di *A. ostoyae* di maggiore estensione.

Tre individui di *A. cepistipes* e quattro di *A. ostoyae* sono stati identificati a Dalpe. A differenza delle altre due aree, qui l'area di distribuzione delle due specie si sovrapponeva notevolmente. Al contrario, sovrapposizioni spaziali fra individui della medesima specie erano rare.

DISCUSSIONE

Il prelievo sistematico di campioni di terreno ha evidenziato la presenza di rizomorfe di *A. cepistipes* e *A. ostoyae* nelle tre aree di studio considerate. Ciò dimostra che ambedue

invece rilevato che in quattro diverse zone biogeoclimatiche della Columbia Britannica, due anni dopo un diradamento A. ostoyae si era insediata sul 12-51% delle ceppaie di douglasia (*Reudotsuga menziesii* (Mirb.) Franco). Il nostro studio dimostra come l'*Armillaria* colonizza le ceppaie quando è presente nel suolo. Infatti, una bassa frequenza di *Armillaria* sulle ceppaie è stata osservata soltanto in zone senza rizomorfe nel suolo (per esempio a Ludiano).

Secondo REDFERN & FILIP (1991), Armillaria può insediarsi sulle ceppaie (1) tramite rizomorfe provenienti dal suolo circostante, (2) tramite rizomorfe già presenti sulla superficie delle radici (epifitiche), (3) estendendosi rapidamente da lesioni radicali, o (4) attraverso la germinazione di basidiospore sulla superficie di taglio della ceppaia. Nelle nostre aree, l'elevato numero di ceppaie occupate da un individuo di Armillaria presente nel suolo circostante, suggerisce un insediamento tramite rizomorfe. Non è però possibile dire se queste rizomorfe fossero già presenti sulla superficie delle radici oppure siano arrivate dopo l'abbattimento degli alberi. In ogni caso, la capacità di Armillaria di sviluppare una fitta rete di rizomorfe nel suolo, avvolgendo gli alberi vivi quali potenziali fonti di nutrimento, è probabilmente decisiva per un suo rapido insediamento sulle ceppaie.

Sia A. cepistipes, sia A. ostoyae, si insediano con successo sulle ceppaie. Di conseguenza, in foreste sottoposte a gestione selvicolturale le ceppaie fresche rappresentano

un'importante risorsa per la sopravvivenza delle due specie. In due aree (Ludiano e Lurengo) la specie di Armillaria dominante nel suolo è anche la più frequente sulle ceppaie. A Dalpe le due specie sono state isolate con la medesima frequenza dalle ceppaie, benché A. cepistipes prevalesse nel suolo. Questa situazione potrebbe indicare una miglior capacità di A. ostoyae di insediarsi sulle ceppaie (PROSPERO et al. 2003a). Una prevalenza di A. cepistipes nel suolo e di A. ostoyae sulle ceppaie è pure stata osservata da LEGRAND et al. (1996). In uno studio sperimentale (PROSPERO et al., 2004) abbiamo osservato come A. ostoyae sia capace, a differenza di A. cepistipes, di causare lesioni alle radici di giovani piantine di abete rosso. Questa abilità di penetrare nelle radici di alberi vivi potrebbe dare ad A. ostoyae un vantaggio su A. cepistipes nell'insediarsi sulle ceppaie.

La rara sovrapposizione dell'area di distribuzione di individui della medesima specie di Armillaria, già osservata in studi precedenti, suggerisce una forte concorrenza intraspecifica probabilmente dovuta all'incompatibilità somatica e all'uso della medesima strategia ecologica (RIZZO & HARRINGTON 1993, LEGRAND et al. 1996). Il tipo di interazione fra A. cepistipes e A. ostoyae è invece meno facile da definire. A Ludiano, le due specie occupano differenti settori dell'area indicando una possibile esclusione reciproca. Nelle altre due aree di studio, in particolare a Dalpe, gli individui delle due specie si sovrappongono invece con una certa frequenza. Importanti sovrapposizioni dell'area di distribuzione di specie prevalentemente saprofitiche e specie patogeniche di Armillaria sono già state evidenziate in altri studi (RIZZO & HARRINGTON 1993, BAUMGARTNER & RIZZO 2001). Esse sono state attribuite a una ripartizione delle risorse fra le diverse specie e a una diversa strategia ecologica.

CONCLUSIONI

In foreste di abete rosso sottoposte a gestione selvicolturale in cui A. cepistipes e A. ostoyae coesistono, l'incidenza delle due specie così come la loro distribuzione spaziale possono variare notevolmente. È assai difficile definire un tipo generale di interazione interspecifica. I nostri risultati suggeriscono sia la presenza di fenomeni di competizione che una possibile coesistenza con poca influenza reciproca (Prospero et al. 2003b). Nell'ottica della sopravvivenza di A. cepistipes e A. ostoyae le ceppaie prodotte dagli interventi selvicolturali sembrano assumere una certa importanza quale substrato nutrizionale. Ambedue le specie di Armillaria si insediano infatti con successo sulle ceppaie di abete rosso per mezzo della fitta rete di rizomorfe presenti nel terreno. A. ostoyae è tuttavia leggermente avvantaggiata rispetto ad A. cepistipes nello sfruttamento di queste risorse. Il nostro studio fornisce soltanto un'immagine istantanea di un sistema dinamico. Ulteriori indagini sarebbero necessarie per stabilire se, a lungo termine, si assisterà alla coesistenza delle due specie o alla sostituzione di una da parte dell'altra.

RINGRAZIAMENTI

Gli autori ringraziano C. Cattaneo, E. Cereghetti, F. Fibbioli e C. Matter per l'assistenza durante i lavori sul terreno, H. Blauenstein per l'aiuto in laboratorio, P. Cherubini e M. Conedera per i commenti sul manoscritto.

BIBLIOGRAFIA

- BAUMGARTNER K. & RIZZO D.M., 2001. Ecology of *Armillaria* spp. in mixed-hardwood forests of California. Plant Dis. 85: 947-951.
- CRUICKSHANK M.G., MORRISON D.J. & PUNJA Z.K., 1997. Incidence of *Armillaria* species in precommercial thinning stumps and spread of *Armillaria ostoyae* to adjacent Douglas-fir trees. Can. J. For. Res. 27: 481-490.
- GUILLAUMIN J.-J., ANDERSON J.B. & KORHONEN K., 1991. Life cycle, interfertility, and biological species. In: SHAW C.G. III, KILE G.A. (eds.), *Armillaria* Root Disease. Agricultural Handbook No. 691. USDA Forest Service, Washington D.C., 10-20 pp.
- GUILLAUMIN J.-J., MOHAMMED C., ANSELMI N., COURTECUISSE E., GREGORY S.C., HOLDENRIEDER O., INTINI M., LUNG B., MARXMÜLLER H., MORRISON D., RISHBETH J., TERMORSHUIZEN A.J., TIRRO A. & VAN DAM B., 1993. Geographical distribution and ecology of the *Armillaria* species in western Europe. Eur. J. For. Pathol. 23: 321-341.
- HARRINGTON T.C., WORRALL J.J. & BAKER F.A., 1992. Armillaria. In: SINGLETON L.L., MIHAIL, J.D. & RUSH, C.M. (eds.), Methods for research on soilborne phytopathogenic fungi. APS Press, St. Paul. Minnesota, 81-85 pp.
- HOLDENRIEDER O. & GREIG B.J.W., 1998. Biological methods of control. In: WOODWARD S., STENLID J., KARJALAINEN R. & HÜTTERMANN A. (eds.), *Heterobasidion annosum*: biology, ecology, impact, and control. CAB International, New York, 235-258 pp.
- Keller W., Wohlgemuth T., Kuhn N., Schütz M. & Wildi O., 1998. Waldgesellschaften der Schweiz auf floristischer Grundlage. Statistisch überarbeitete Fassung der «Waldgesellschaften und Waldstandorte der Schweiz» von Heinz Ellenberg und Frank Klötzli (1972). Mitt. Eidgenöss. Forsch.anst. Wald Schnee Landsch. 73: 91-357.
- KORHONEN K., 1978. Interfertility and clonal size in the *Armillariella mellea* complex. Karstenia 18: 31-42.
- LEGRAND P., GHAHARI S. & GUILLAUMIN J.-J., 1996. Occurrence of genets of *Armillaria* spp. in four mountain forests in Central France: the colonization strategy of *Armillaria ostoyae*. New Phytol. 133: 321-332.
- MALOY O.C., 1974. Benomyl-malt agar for the purification of cultures of wood decay fungi. Plant Dis. Rep. 58: 902-904.
- MARXMÜLLER H., HOLDENRIEDER O., 2000. Morphologie und Populationsstruktur der beringten Arten von *Armillaria mellea* s.l. Mycologia Bavarica 4: 9-32.
- Prospero S., 2003. Ecology of *Armillaria cepistipes*: population structure, niches, pathogenicity and interactions with *Armillaria ostoyae*. Dissertation ETH No. 15079, 110 pp.
- PROSPERO S., HOLDENRIEDER O. & RIGLING D., 2003a. Primary resource capture in two sympatric *Armillaria* species in managed Norway spruce forests. Mycol. Res. 107: 329-338.

- PROSPERO S., RIGLING D. & HOLDENRIEDER O., 2003b. Population structure of *Armillaria* species in managed Norway spruce stands in the Alps. New Phytol. 158: 365-373.
- PROSPERO S., HOLDENRIEDER O. & RIGLING D., 2004. Comparision of the virulence of Armillaria cepistipes and Armillaria ostoyae on four Norway spruce provenances. For. Path. 34: 1-14.
- REDFERN D.B. & FILIP G.M., 1991. Inoculum and Infection. In: Shaw C.G. III, Kile G.A. (eds.), *Armillaria* Root Disease. Agricultural Handbook No. 691. USDA Forest Service, Washington D.C., 48-61 pp.
- RIGLING D., BLAUENSTEIN H., WALTHERT L., RIGLING A., KULL P., SCHWYZER A. & HEINIGER U., 1998. Rhizomorph producing *Armillaria* species in Norway spruce stands in Switzerland. In: DELATOUR C., GUILLAUMIN J.-J., LUNG-ESCARMANT B. & MARÇAIS

- B. (eds.), Root and Butt Rots of Forest Trees. 9th International Conference on Root and Butt Rots, Carcans-Maubuisson, France, 1-7 September 1997. INRA Editions, Paris, 259-265 pp.
- RIZZO D.M. & HARRINGTON T.C., 1993. Delineation and biology of clones of *Armillaria ostoyae*, *A. gemina* and *A. calvescens*. Mycologia 85: 164-174.
- SHAW C.G. III & KILE G.A., 1991. Armillaria Root Disease. Agricultural Handbook No. 691. USDA Forest Service, Washington, DC., 233 pp.
- STANOSZ G.R. & PATTON R.F., 1990. Stump colonisation by *Armillaria* in Wisconsin aspen stands following clearcutting. Eur. J. For. Path. 20: 339-346.
- STANOSZ G.R. & PATTON R.F., 1991. Quantification of *Armillaria* rhizomorphs in Wisconsin aspen sucker stands. Eur. J. For. Path. 21: 5-16.