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I numeri naturali come autovalori
di un modello di oscillatori classici
a bassa temperatura

Danilo Merlini!, Luca Rusconi' e Nicoletta Sala!?

1 CERFIM Centro di Ricerca in Fisica e Matematica, Via F. Rusca, CH-6600 Locarno
2 Accademia di Architettura di Mendrisio, Largo Bernasconi, CH-6850 Mendriso, Universita della Svizzera italiana

Riassunto: Lo scopo di questo articolo ¢ di presentare alcuni aspetti di una nostra ricerca orientata allo studio di un mo-
dello armonico unidimensionale il «modello di Mehta- Dyson».

Abstract: The aim of this paper is to present some aspects of a one-dimensional oscillator using the Mehta Dyson

model.

INTRODUZIONE

Verso gli anni ‘50, Wigner, Dyson e altri introdussero le
matrici aleatorie o stocastiche in fisica nucleare; 'intento
primario fu quello di comparare lo spettro energetico dei
sistemi complessi, come quello dei nuclei pesanti, con
quello dei sistemi descritti da Hamiltoniane aleatorie H
(H ¢ I'energia totale del sistema).

Infatti se il sistema allo studio ¢ supposto contenere
molti nuclei, e se le energie di eccitazione in gioco sono
molto alte, allora i livelli energetici sono molto densi ed
essi non possono pilt essere calcolati esplicitamente
(MEHTA, 1991; ITZYKSON, DROUFFE, 1991). Dai principi
generali, un’analisi indica poi (tenendo conto che le leggi
di distribuzione dei livelli devono essere invarianti ri-
spetto a un gruppo di trasformazioni, per esempio il
gruppo ortogonale o unitario, e che I'ipotesi che gli ele-
menti di matrice sono variabili indipendenti), che le di-
stribuzioni dei livelli di energia devono essere studiate
statisticamente.

Questo significa che, siccome 'Hamiltoniana H di un
nucleo non ¢ conosciuta, allora essa sara presa a caso da
un insieme di Hamiltoniane, la cui probabilita di distri-
buzione diventa perd determinata, e quindi proposta
concretamente.

Le proprieta statistiche dei livelli energetici di un nu-
cleo sono cosi calcolate tramite una media su una grande
quantita di livelli energetici. Una situazione questa vicina
a quella delle misure di Gibbs della meccanica statistica
di un sistema di particelle interagenti e descritte appunto
un’Hamiltoniana H.

Nel caso dei nuclei in questione, le «particelle» sono
appunto i livelli energetici dell’Hamiltoniana stocastica H
attinta dall'insieme di interesse.

Si notera ora che, dal punto di vista sperimentale, le
diverse proprieta caratteristiche dei livelli di energia,
quali ad esempio la distanza fra di essi e le loro correla-
zioni statistiche (analoghe alle correlazioni fra le parti-

celle in meccanica statistica), se calcolate tramite gli in-
siemi proposti[l], danno una buona descrizione degli
spettri di energia osservati e si giunge persino ad una de-
scrizione della distribuzione degli zeri della funzione zeta
di Riemann, lo spazio fra di essi e la loro correlazione
(Opryzko, 1987).

Rispetto alle simmetrie fondamentali, sono emerse tre
famiglie importanti di matrici aleatorie. Citeremo qui sol-
tanto le matrici simmetriche reali (connesse con il pre-
sente lavoro) che possano essere diagonalizzate tramite
una trasformazione ortogonale nello spazio vettoriale as-
sociato ai livelli energetici (valori energetici indicati con
x, € R,i=1, 2,..., N) e le matrici complesse hermitiane
che sembrano appunto essere in legame piu stretto con
il grande e complesso problema dello studio dell'ipotesi
di Riemann sulla distribuzione degli zeri della funzione
zeta (importante per il comportamento dei «mattoni» del-
l'aritmetica, cio¢ 1 numeri primi) (COHEN, 1998).

Dalla teoria sviluppata da Mehta et al. (MEHTA,
1991), ¢ emerso che nel caso gaussiano la distribuzione
di probabilita dei livelli energetici ¢ data da una misura
di Gibbs, associata a un gas di filamenti di Coulomb
(ognuno di carica e) dove l'interazione o potenziale fra
due filamenti (ossia due livelli energetici) ¢ data dal
potenziale a lungo raggio di azione ¢(r)=—¢& s r
dove r ¢ la distanza fra due livelli (o particelle) in dimen-
sione 1.

La misura di probabilita ¢ cosi fornita dalla seguente
relazione:

px)dX=c -TII |Xi-xj|a'eXP(—BZx.2)

1<i<j<N

con X=X, X,, ..., Xy; dove o e B (le «temperature») sono
due costanti reali, o0 =1 per il caso ortogonale e o =2 per
il caso unitario.

Emerge cosi la seguente funzione di partizione del mo-
dello di Mehta-Dyson unidimensionale:
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N N
Z(a, B)= c~Ide, -exp(—BY_x})- l_”x, —x}|a
i=1 i=1 l<i<j<N

Da notare che o. >0 rappresenta la repulsione dei livelli
energetici.

Questo modello ¢ stato studiato sia numericamente, sia
analiticamente (CALINON, JOHANNESEN, MERLINI, TAR-
TINI, 1990).

Nel modello gaussiano dove du ~ exp(—traccia H?) la
distribuzione di probabilita per le famiglie di interesse di
Hamiltoniane aleatorie ¢ la distribuzione di Gibbs di un si-
stema di particelle di posizioni x; € R (livelli) in dimen-
sione 1 interagenti, attraverso il potenziale coulombiano

¢( 1) e dove 'Hamiltoniana ¢ data da:

N
Yo = Zln'x, —xj| + costante

A
A=1sy
25

=

Nel presente lavoro, si analizza tale modello a basse
temperature (alti valori di o e B), (per un sistema N —oo,
si puo porre 0=P per via di una trasformazione lineare di
scala, data da: \B-x, = va -x;), sviluppando i potenziali at-
torno ai siti di equilibrio delle particelle (o livelli energe-
tici) allo zero assoluto.

Gli autovalori dell’Hamiltoniana bilineare nelle flut-
tuazioni sono studiati nel dettaglio in seguito, dove lo spet-
tro dell’oscillatore associato al sistema risulta essere costi-
tuito dai numeri naturali.

Loscillatore armonico

Il modello di Mehta - Dyson consiste di N cariche puntuali
ciascuna con carica + e (con | e|=1,6 - 101° C), libere di
muoversi su una retta di lunghezza infinita, —eo < X < oo,
on B S,

La posizione delle cariche e 'energia potenziale del si-
stema ¢ data da (MEHTA, 1967):

V({xi})zéezgxf —ezilnlx,. —xj‘ 1)

i<j

I'Hamiltoniana classica (compresa I’energia cinetica) ¢
fornita dalla seguente relazione:

H= iﬂ iV
=TI @
Le equazioni di Newton risultano:

mx. = - - —A(lezxi2 —ezz:ln’xi = XJU =

YA Ax 2 “
2(xv -X )
|erxz-ery 12X TN/
[ ’ gﬂ"‘i"‘if]
Cosi:

. 1
2
mx, =-e?( x, - 3
A= ®)
Le precedenti equazioni sono in connessione con

quelle del modello di Calogero (CALOGERO, 1977a, 1977b;
PERELOMOV, 1990) dove il potenziale tra due cariche ¢ for-
nito da:

invece del termine:

. 1
=—e?x -2
mx, = —e [x, ;Z—” ) ‘J

E interessante infatti notare che le posizioni di equilibrio
di entrambi i modelli coincidono e sono fornite dalla so-
luzione dell’equazione differenziale: g—v =0¥i=1,2,.. N
X.
Esiste un’unica configurazione di equilibrio, indicata con
4xi0 t, che ¢ fornita dal modello studiato da Mehta. Lin-
sieme %XiOF ¢ infatti dato dagli zeri dei polinomi di Her-
mite di ordine n:

V, = V(ix, D)= %N(N “1)in2 - % Yini (@)
con la proprieta:
VAxH > Vo Vixb#{xob ®)

Si rammenti che Vj ¢ un minimo assoluto di V.

In questo ambito ci riferiamo a un’approssimazione ar-
monica di V, che descrive correttamente le proprieta di
equilibrio del sistema alle basse temperature, nell’'insieme
statistico canonico (AREDE, JOHANNESEN, MERLINI,
1984).

Di conseguenza I'approssimazione armonica ¢ mo-
strata coincidere con lo sviluppo alle basse temperature
della soluzione del modello di Mehta - Dyson nell’'insieme
canonico; con X, = X, + &, e consideranto solo i termini
quadratici in &, come approssimazioni di (AREDE, JOHAN-
NESEN, MERLINI, 1984):

e2 N

\ Y (X0 +§i)z -ezilnlxijo +§ijl
i=1 i<j

2 N 2 N g2
R R (6)
275 2 xijOI

iz

1
=V, +=
o +5EAE

dove x, = x,, — X € &g =& - §j
€= (,,.-,Ey) ¢ A ¢ la matrice quadrata N x N di elementi
dati da:

A 2[1&_2].% +(1-5ﬁ)[—x%] )

1
k=i Xjxo ij0

dove Sij ¢ il simbolo di Krénecker.

Ricordiamo che con { A }, i=1,2, ..., N indichiamo gli au-
tovalori di A; vale la seguente proprieta:

N
traccia A =32, =N+ZL2
i=1 Xijol

izj

@®)
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di conseguenza la posizione di equilibrio 3 E_,i()} soddisfa le
equazioni (MEHTA, 1967):

gxi:N+%N(N—1)=%N(N+1) VN; 9)

St ha:

N 1 1
A, =N+=N(N-1)=—N(N+1) WN;
32 =N+ NN-1) = NN+1)

=1

con 47%} =1{it Vi=1,2,..N come ipotizzato in un prece-
dente lavoro sul modello di Mehta - Dyson (AREDE,
JOHANNESEN, MERLINI, 1984).

I nostro lavoro intende appunto provare la precedente
proprieta con metodi elementari, ad esempio che il sistema
¢ equivalente a un oscillatore armonico (un bosone) qui
chiamato «oscillatore di Mehta - Dyson».

Il nostro approccio allo studio del problema ¢ indipen-
dente dal trattamento algebrico dei sistemi integrabili, pre-
sentati nel testo di Perolomov (PEROLOMOV, 1990).

Ci riferiamo anche a un originale lavoro di Calogero
(CALOGERO, 1977a).

Uno dei primi aspetti che mostreremo ¢ che 'appros-
simazione armonica per il modello di Mehta-Dyson offre
un altro esempio di sistema classico integrabile, un oscil-
latore armonico con spettro Ai =1 Vi < N, che nel limite
termodinamico N — oo, diventa un oscillatore armonico
quantistico con spettro A, € N* (MERLINI, RUSCONTI, SALA,
1998).

La nostra prova della proprieta Ai=1 Vi<N, con espli-
cita costruzione degli autovalori discreti del modello ¢ for-
nita nel prossimo paragrafo.

Autovalori del modello di Mehta -Dyson

La parte armonica H, di H, H, = I/-\I - H,, ¢ data dalla ma-
trice simmetrica A:

1 =& oo
Hh=5;§i2+%z@i=l(§’ A‘:)

- ! 2
b=l Ixij0| 2

dove x;, = X, — X,. Da ora ometteremo, per rendere pit
leggibili le relazioni, il pedice 0. Cosi che: (x) ; _, , _yde-
notera gli N zeri del polinomio di Hermite di ordine N (ad
esempio Hy (x) =0 Vi=1,2, .., N).

Esplicitamente gli elementi di A sono:

Aij=_1_2=_aij l=.]
T"i “Xjf

N
Aﬁ=1+z;=l+2a“‘ 1=]

2
ki Xi —XJ‘ ki

Quindi A ¢ reale e simmetrica e puo essere diagonalizzata
tramite una matrice ortogonale U (U « UT=1, dove | ¢la
matrice d’identita):

€ AZ)= A2)

i 0 .. 0
A= 0 7\,2 ... 0
0... A

Ricordiamo che gli autovalori { At sono positivi.

on({x )
Sia (X heas n =|- l'autovettore di A tale che:

(ka({xN })

AX =AX, k=1,2, .., N con autovalore A,.

Abbiamo dimostrato che A = A, = 1 ¢ un autovalore di
A VN e che per nostri calcoli fino a k=5, la congettura di
ricorrenza con il polinomio di Hermite associato al mo-
dello di Mehta -Dyson ¢ (MERLINI, MORESI, RUSCONI,
SALA, 1998):

Pyp, ke ®)= 2% Pyppy 1 yy = 2(NK) Py (10)

dove PMD’ =le PMD2

Assumendo che la relazione (10) sia vera,Vk=1, 2, ..., N-2,
abbiamo costruito un classico operatore di annichilimento
e creazione a, a* e dimostrato che lo spettro di A ¢ espresso
dalla relazione 3 }‘k%k=1,2 N=4k}k=1’2 ,,,,,, N VN.

,,,,,,

=2x.

Supponendo che la relazione di ricorrenza (10) sia vera,
abbiamo:

(AQri(x1) = (A21 @ 1r1(X 1)-(A2(NK) @ 1)1(x1))

calcoliamo:
(A2x1 Qraa)1(X1) = A1i2X;1 @ (X 1)- ZA1i2xi(pk+1(xi) =

i#1

N N

= 2X1 AnQ in(X1)- 2X12A1i‘pk+1(xi)_ ZAﬁ(zxi =2%)0,,1(%)
i#1 i#1

=2x1 (AQx+1)1(x 1)

Cosi:

N
(AQs)i(X 1)= 21 An@ k1(X 1)- D Au(2X, = 2X,)94,1(X) - 2(N-K)(Ag, ), (X,)

i1

assumiamo che AX, =k Xy e AXys; = (k+1) X+ allora:

) N
(Ap2)1(x1) = 2x1 (k+1)0 (X 1)- 2(N-K)k @ k(X1) + D Ay (2% = 2X)P,,1(%)
i1

= N2X1 (k1)@ k1(x 1)- 2(N-k)(k+2) @ k(x1)- 2X) @ +1(X 1)+4(N-k) @ k(x1)
+3 A% = 2%, (%) =(k+2) @ s2(X 1) - @ rsa(X 1) + 2(N-K) @ 4(x 1)+

i1

N N
+ZA1i(2xi = 2X ) (@11 (X)) = 0y, (X)) + Z A (2% = 2X A0, (%)

izl i1

Lultimo termine ¢ dato da:

N 2 — X L 1
Z )((1X1—X,.X;) (pk+1(xi)=2(pk+1(xi)zﬁ =20(X 1) X1=2X1 QK (X1)

Cosi:
(AQ 21X 1) - (k+2) @ k2 (X 1) = - @ (X 1) + 2 (N-K) @ (X 1) + 2% @ (X 1) +
23 @l =0 00 _
i1 (X, —=x)
= [@ w2(X 1) -( 2%1 @ ks1(x 1) - 2 (N-K) @ k(x 1)] + 4 (N-K) @ (x 1) +
i=1 (=)
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Ora definiamo 'operatore di annichilimento ( a ¢ una

matrice NxIN):
i (@i (X)) = 91 (X))

d
" == Xq)=
(@@ x)i(x1) ax, P (X1) o (X —X;)

dove con il simbolo ai si indica la derivata discreta.
X4

La precedente equazione ¢ data da:

[(A+2) T 2 1(x 1) = -2[(a @ xr)1(x 1) - 2(N-K)( T @ 1 )i(x 1)]

I matrice unita.

Considerando vera la (10) se
AXy =M Xk =k Xpe AXir = Ayt Xirr =(k+1) Xy,

otteniamo AXys = Ak Xirr =(k+2) Xisa

d
@orhi(x1)= ;‘Pku(xo = (0@, (X)) = 2(N=K)p, (%)
1

e dunque:
X1 = 2(N-K) T Xy .

Utilizzando la relazione di ricorrenza si ha:
O k2 (X 1) = 2X1 @ (X 1) - 2N-K)o k(X 1) = 2%1 @ 11X 1) -

~(aQ ki h(x 1)

In modo analogo definiamo I'operatore di creazione:

2x1 @ k1(X 1) - (a9 k1 )1(X 1) :(2X1 _aixj Py (X1)

:
Si ha

a* X1 = Xin

Quindi:

([a, a*]@ kr1)1(x 1) = ((aa*- a*a) @ kr1)1(X 1) = (@ @ k2 i(x 1) - a* 2(N-K) @ &

= 2[N-(k+1)] @ 1 (X 1) = 2(N-K) @ 101 (X 1) =-2 @ 1 (X 1).
Cosi 1l commutatore ¢ dato da:

[a, a*] =-2 (11)

Assumendo ora che: AXy = A Xk =k Xy, V k, si ha:

[A, a*] Xk = Aa* X - a*A X = A Xy - a¥k X = (k+1) Xis1 - k Xitr
=X =a* X

[A, a*] =a* (12)

Allo stesso modo:
(A a]=-a (13)

L«Ansatz» per A ¢ dato da:
A=a+Ba*a+tyaa*
Usando le equazioni (11) e (12) si ha:
A=a+2{3—1aa*= Z—laa*
2 2
E si ottiene alla fine (MERLINI, RUSCONI, SALA, 1998):

A=N I—laa*
2

Il risultato rigoroso che abbiamo ottenuto ¢ che gli auto-
valori delle autofunzioni di

A=N |‘%aa* sono datida A= {kbi L2.n e X =0

CONCLUSIONI

Dai risultati del nostro lavoro si nota quindi che siamo riu-
sciti a introdurre degli operatori classici discreti di crea-
zione e annichilimento e a determinare le autofunzioni,
cio¢ 1 polinomi di Mehta - Dyson, e gli autovalori del si-
stema. Abbiamo inoltre dimostrato che A=A (MERLINI,
RUSCONTI, SALA, 1998)
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